ICOT Technical Memorandom: TM-1032

TM-1032

An Application of CAL to Robotics

by
5. Sato & A, Aiba

Febmary. 1991

1991, ICOT

Mt Kokusa Bldg. 21F {0313456-3191 -5

I C DT 4-28 Mita |-Chome Telex 1COT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

An Application of CAL to Robotics
Shinichi Sate and Akira Aiba

OO Research Center
4-28 Mita l-chome, Minato-ku, Tokvo 108, JAPAN

January 7. 1991

1 Constraint Logic Programming Experimental System CAL

We previously developed a constraint logic programming experimental system CALI4] which
stands for “Contrante Avec Logique™ as one of the attempts of CLP. This is a configration
of the system. Although CAL has a similar framework which is the combination of the logic
programiming and the constraint programming as olher CLP languages. it has the feature of
being able to handle non-linear polvnomial equations on complex numbers by employing the
Buchberger Algorithm[1] as one of the constraint solvers. The Buchberger alrorithm caleulates
a canonical form of system of equations called Grobner Hases. This algorithm has been widely

used in the field of computer algebla in these years.

2 Application of the Greobner bases(in RISC)

At Research Institute for Symbolic Computation (RISC) of dohanes-Kepler university, there
has heen many rescarclies on its application to various fields as these. Among these researches,
one of the most practical problems is an application to handling robol kinematics. For a given
handling robot, it deals with the problem of determining the extension of cach arm and the
rotation angle of each joint that will result in a targel position and an orientation of the end
effector. It is a typical problem of handling non-linear equations. In their rescarch, Lhe main
work has heen a mathcmaltical evaluation of compnting Grébner bases. We also took the similar
roboties problem, but tried to write and solve the problem on ovr system CAL. By applying
("AL to the problem, having the merits of both of logic programming and Gribner bases, we
intend to write more feasible and useful program casily as well as to evaluate the com puting

cfficiency.

3 Programs for Handling Robots on CAL

In this presentation, we introduce two programs for the eontrol of handling robots as an example

of cngineering application of CAL, one is a program for kinematics and the other is for static

dynamics. First, we will formalize the kinematics and static dvpamics of handling robots.
Handling robot is a kind of industrial robot like this which picks np an object with its end-
effector and changes its position and orientation by rotating each joint and changing the length
of each arm. To move an object to the desired position and the orientation, we need to control
the rotation angle of each joint and the lengih of each arm of the robot. Kinematics represents
the relation among the target position and orientation of the end-effector, and the extension of
each arm and the rotation angle of each joint. Note that the position and the orientation of the
end-effector are same as these of an abject. Static dynamics represents the relation hetween the

torque working on each juint and the force working on the end effector,

4 Definition of the Position and the Orientation of an object

Then. before formalizing kinematics of handling robols, we will define parameters of the position
and orientation which represent a state of an object held by the end-effector, The position of
the object is expressed by the three dimensional vector P {px,py, pz). which indicates the center
of the object. The orientation is expressed by two unit vectors a (ar, ey, uz) and b (bx, by, bz,
which are perpendicular to each other. These vectors are fixed on the object and their directions
will be changed by its rotation.

5 Definition of the position and Orientation Matrix

Then to represents the position and orientation together, we define the position-orientation ma-
triz [P**] like this. We abbreviate it as p o matriz here after.

r ar hx

w_ | ¥ ey by
[P] = r az bz
1 0 0

Remark that auy state of an object that is, position and orientation, can he expressed by
this matrix. Although the matrix cogluins 9 variables, there are 3 redundancies among the
components of the orientation vectors because they are 2 unit vectors perpendicular to each
other,

ar’ + ay’ +azt = 1

br® + by* + bz?
az + br + ay * by + nz « bs

n 1
= —

Therefore, actual degree of freedom of the p-o matriz is 6. In other words, any state of an

object has 6 degree of freedom. Therefore, by using a robots having 6 degree of freedom, we can
transform the state of an object to any position and any onentation. In this matrix the 1 and
0%s on the fourth row wre components added for convenience of caleulation managing rotation
and straight movement of an object together and therefore, not related to degree of freedom.

6 The Transformation of the Position and Orientation

By the way, any transformation of an object in three dimensional space can be expressed by
a combination of the straight movement and the rotation. Any state of an object can be
expressed by the P — O matriz defined before. If you rotate an object having a state of [F7]
by an angle # around an axis Wi= {(Wae, Wy, Wz2)) crossing its center, then move it by vector
dPi= {de, dy,dz)), the new p-o matriz [P can be cxpressed as the multiplication of [P**] by

matrix [M] like this.

[= M
11 F1z £93 AT

E dFf fa € exy dy
Ml = _
. (0 1) ear tar eay i

0] { |
In these expression, [M] is a matrix called trans formation matriz which contains both
of rotation and straight movement transformation . Each element of the rotation matrix F is

determined by the rotation axis W oand the rotation angle @,

7 Kinematics of Handling Robots

As we have shown, the movement of the end-effector is performed by the rotation of each joint
and the extension of each arm. As they respectively correspond to the rotation and the straight
movement, the transformation of the state of the end-effector can be expressed by the sequential
multiplication of transformation matrix corresponding to each arm and joint. In general, the
relation among the p-o matrie P of the end-effector and each transformation matrix M; of a
handling robot having m joints is described by this expression.

E] Rl Ea Ha E R Err-r, -H-m Gﬂ g E"U
o 1 | T O R W 1 1w 0

[MJ[Ma] .. [M]. . [][G], (1)

T

It

This expression represents the Kinematics of handling robots. In this expression, [P is the
p-o matrix which represents the target position and the target oricntation of the end-effector,
[(+**] is the p-o matrix which represents initial grip vector and orientation. E; is the rotation
matrix of the i-th joint, R, is the vector of the i-th arm before rotation,

and m is the number of joint. Each element of the transformation matrix [M,] is determened
by the rotation angle #;, the rotation axis W; of the i-th joint and the i-th arm vector R; before
rotation. Therefore | we call &, (W=, Wy, Wz}, and (Bz, Ry, Rz), rans formation matriz
parameters because Lthey determines the content of each transformation matriz [M;] in this

eXpression.

8 Statics Dynamics of Handling Robots

Next, we formalize static dynamics of handling robots. When a force works on the end-effector,
a torque works on each joint. To rotate a joint, the robot kas to rotate the mortor shaft of the
joint against the torgue. I the torque is ﬁtréng{:r than the torque permission of the mortor, the
robot cannot rotate the joint. Thus, we need to calculate the torque working on each joint. The
torque of the ¢-th joiul is calculated as functions of the position of the joint, and the position
of the end-effector, and the force working on the end-effector like this expression. Note that the
anly force we consider here is the weight of the object held by the end-cffector.

I"_-z:'{Pm H’]”-Fm {2]

In this expression,

Zi is the direction vector of the rotation axis of Lhe i-th joint, P, is the position vector of
the end-effector. F, is the position vector of the i-th joint. And F,, is the force vector working
on the end-effecior,

Among these parameters, as Z;, Py, and P, changes according to the movement of the robot,
we need to calenlate Z,, F;, P, and I, every time the robot finishes moving one of the arms or
rotating one of the joints, By calenlating the position of each joint, we can recognize the whole
orbit of robot hand on that time. Therefore, we can check whether certain obstacle will be in

the way of the orbit, or not,

9 The Program for Kinematics

We developed two CAL programs. One is for kinematics, and the other is for static dynamics.
Kinematics program calculates the valne of each trans formalion matriz parameter from the
target position and the target orientation parameters by applying Kinematics expression.

In kinematics program, the head of the predicate on the top level is as follows.

robot(Mlist, Gz Gy, (G2, Arg, Ay, Azg, Bry. Byy, Bzg, Pz, Py, Pz, Ar, Ay, Az, Bz, By, B=)

In this predicate, ({2, Gy, Gz} is the iutial grip veclor on the end-effector, (azg, ayp, azy), (bzo, byo, bzg)

are the intial orientation of the end-effector. (F’z, Py, Pz) is the target position of the ob-
Ject and (ar,ay,az),(bz, by, bz) are the targel orientation of the object. Mlist is the list of

trans formation matriz parameters like this.

[eosm, sinm, Rr,,, Ry Bz Wae, . Wi . W e

feos2, sin2, Ry, Byg. Rzg. Wy, Wi, W 2,),
[cosl. sinl, Raq, Ry, Rz, Way Wi, W i)

In Mlist, you car find sin’s and cos’s, in place of the rotation angle §. Since our system
cannot handle tigonometrical function directly, we are applying sinfl and cosf in place of # as
an variable respectively. Of course, the sum of the square of each of them is forced to be 1. As
you can see, since frans formation matriz parameters can be expressed by lists like them, the

program can handle any structure of handling robot by manipulating the contents of them.

10 Vector Sketch of a robot

Let us consider, for example, a robhot having 3 arms and 3 joints expressed by this vector sketch,
I'he robot can rotate each joint and change the length of each arm. Therelore, the robot has
G degree of freedom. If you want to know the general relation among the tarper position and
the target orientation. and the rotation angle of each joint and the length of cach arm, you can

obtain the result by this quary.

11 examplel

robot([[eosd, s 0.0, 29,0.0, 1],
[fﬂ:i',l, sin?, r;.0,0.1,0.0],
[eosl, stn1.0.0, 2,.0,0, 1)),
o 0.1.0,0,0,1,0,

propy.p,ar, ay, @z, o, ey, ez,

In this query, pr.py. and p: represent the targel position, and az,ny.az, co.ecy, and ez are
companents of two unil vectors which represent the orientation of the end-effector. Sin’s and
cos's represent the rotation angle of each joint, and 24,24, 27 are the final length of cach arm.

This is the answer to the guery.

cos? = | — sin2*
cosl = 1— sinl?
rosd = 1 — sind?
pr = =Stcos2=sindwsinl 4 z o+ sin? 2 5inl 4+ 5 ¢ cosd + cosl + 2y % eosl

5-

py = dwcosds=mnl +xy+5ml 4 5% cosl % cos2 = 5ind — 23 = cosl + sin?

pz = bxsind+smd+ 5+ 53 ¢ cos?

ar = —1+cosds simdw sinl + cosd = cosl
ay = cosd=sinl 4 cosl * cos? « sind

0z = sind = sin?

rr = =1wcoslssind — cosd « cos? sinl
ey = —1w=sind+sinl + cosl + cosl = ros?
cz = o3l s sin?

In this way, the parameters of the target position and the orientation are expressed as functions
of the length of each arm and the rotation angle of each joint.

Next, we will calculate the values of the length of each arm and the rotation angle of each
Juinl when concrete values are given to all of the target position and orientation parameters.

This is the query and the answer in that case.

12 example2

robol([leosd, sind, 0,0, 23,0,0, 1],
[eos2, sin2, x5,0,0,1,0,0],
[eesl, sinl, 0,0, z,,0,0, 1]],
5,0,0,1,0,0,0,1,0,
40, -30,20, -1/3,2/3,-2/3,2/3.2/3,1/3).

sinl? = 4/5

sin?2 — 5/6 = sinl
gind = —1*sinl
ros? = 2/3

rosl = 12+ ginl

cosd = 1/2wxsinl

I = 28
Ty = ~1056/2+ sinl
n = 6

‘I'herefore, you can get the concrete values of all arm lengthes and joint rotation angles hy

determing the value of sinl from the answer.

13 The Program for Static Dynamics

The static dvnamics programs caluculates the position of each joint and torque working on it
from the values of transformation matriz parameters by applying static dynamics expression.

The head of the predicate om the top level of the program is as follows.

robot2{ Qlist, Mlist, Tlist, Gor, Gy, Gz Py Pyy , Pog Frg, Fg, Fam),

(st is the list of position parameters of each joint like this,

v g g21) (922, gua. 422 (G s Qs G 7]|

Mizist is the list of transformation mafrir parameters same as that of kinematics program.
Tlist is the list of torque paramter working on each joint like this, [iy.00... .1,]

(G Gy, (] is same as that of kinematics program

(P, Py, Pz,) is the position of the end-effector

(b g Mg Pz,) is the foree veetor working on the end-effector

The program calculates the values of the parameters in Qlist and Tlist from the values of
the frans fermation matriz parameters in Mlist. Of cource, the static dynamics program is
also structure-free as kinematics program, and able to describe any type of handling robot by
changing the contents of the query to it . We will consider the same rohot as this figure and
show Lhe example of using both of kinamatics and static dynamics program suceesively. This is

the gquery and answer in the same case as shown before.

14 example3

robot(||cosd, sind, 0,0, 23.0,0,1],
(s, sin2.x5,0,0.1,0,00,
feosl, #inl. 0,0, 20,0, 1]].
5.0.0,1,0,0.0,1.0,
10,-30.20, —1/3,2/3, ~2/3,2/3.2/3.1/3).

robot2([[qry, qui.g21), lge2, gyz, 422, [g2a. qua. g2l
[[eosl, sinl, 0,0, z1,0.0, 1],
lcos2, sin2, 1,,0,0.1.0,0],
[cosd, sind, 0,0, 25,0,0,1]),
[ty b ta] 50,0, proy Pl P2, 0,0, f2,,.).

sinl* = 4/5 sin2 = 5/6 # sinl sind = —1 % sinl

cos2 = 2[3 cosl = ~1/2%sinl cosd = 1/24 sinl
z3 = 26 xy = —105/2 + sinl 2z =6
t, =10 ta=—20% fzp ssinl {3 =5/3+ [z,
gry =10 qin = 0 gz =6
grg = =105/2 « ainl gye = () iy =
gra = —105/2 * sinl gys = - G5/3 « sinl gz = T0/3
pr,, = 4l Pl = =30 Pim = 20

In this way, both of the position parameters of each joint and torque parameters are caleu-
lated as functions of sinl and fzm, which is the weight of the object held by the end-effector.
By finding the concrete values of those parameters, we can check of the validity of the solutions

to the condition of static dynamics.

15 tablel Total Computation Time

We applied our two programs to several robots on the market. The pumber of juints and
freedoms of each robot, and the total tiwe consumed for computing each transformation matrix
parameter and torques working on each joint by those programs are on tahle-1. The total
time has been mainly consumed by the kinematics program. It is because kinamatics program
includes problem of solving non-linear equations which is problem of computing the Grébner
Bases. Ou the contrary, the static dynamics program only computes the position of each joint
and torque working on it using the solutions computed by the kinematics program. Therefore,
the total efficiency mostly depends on that of the kinematics program. As shown in the table,
even in the case of the most complicated robot which has 5 joints and 6 degree of freedom,
we can ohtain a solution in teus of seconds. But actually, the time for computing the Grithner
Bases strongly depends on the arrangement of constraints and the ordering among variables on
constraints. If we want to obtain the solutions in time as short as we can, we need to consider
these factors, The computation times on table-1 are those of the hest cases in our experiments.
If we ask for further improvement of computing efficicncy, one of the effective methods is to
parallelize the Buchberger algorithm and imprement it on parallel inference machine. We are
researching about parallelization of CAL and trving to implement such parallel constraint logic
programming langnages on Multi-PST machine.

16 discussion

Our approach has the following advanteges compared to the conventional unes. If we apply an
approach simply nsing the Gribner Bases, at first, we have to deduce complicated equations of
an handling robot like expression (1) to handle this kind of problem. Thus, if we get another
robot with different structure, then we have to deduce another equalions. If we apply the

conventional programming lunguages., we have to find ont a process to solve the system of
cquations and describe it as a program .

On the contrary, on our approach, the program we have to write on CAL is quite simple
hecanse it simply defines matrix multiplications. If we only input a query corresponding to the
structure of the robot to the program, then the system will deduce and solve the complicated
equations expressing the structure of the robot antomatically. Therefore, we can manege any
tvpe of handling robot without changing the program, and of course, finding out a process of
syatem of equations. Moreover, once we oblain the general symbolic solulions, then we can reuse
it many times as a kind of equational program to obtain the concrete solutions. We are now
realizing such a function in the latest version of CAL. Therefore, by applying CAL to this kind
of problem. we can expect great improvement of programmer prodoctivity compared to other

convenlional approaches .

17 Concluding Remark

We have developped two application programe for the control of handling robod om oot constraint,
logie programming system CAL, One 1s for Kinematics and the other is for static dypamics. Our
approach which connect the Grihner Bases with the logic programming has the following ad-
vantages., First. by cmployiog the Buchberger algorithun we can deal with son-linear squations
deduced by kinematics of handling robots. It is actually the first attempt in CLP languapges.
Second, by utilvzing Gribaer bases in the framework of CLP, we can bandle auy type of han-
dling robots by the same program. and manipulating a query to it. Moreover, since we can reuse
the svmbolic solutions many times as an equational program, we can state that the syvstom will
execule a kind of program generation. Such abilities have not been realized in the conventional
approach nzing Grabner Hazes, and of conrse by rohotics programs written in conventional pro-
gramming langnages. Therefore, we can expeet great improvements in terms of programmer
productivity. As for the efliciency, it much depends on the arrangement of constraints and the
ordering ol variables on constraints. Thus, we need to consider these factors and manipulate
ther il we want lo obtain a solution as fast as possible. By optimizing it, we can obtain a
solution that will result in the conclete target position and orientation of the end-effector in tens
of seconds even in case of a complicated robot which has 5 joinls and 6 degree of [reedom on
I'51 machine, For more improvementis of efficiency, we are now researching abont parallelization
of CAL, and implementing such parallel constraint logie programming languages on the top of
Multi-PST machine.

References

[1] B. Buchberger. : Applications of Grobner Bases in Non-linear Computational Geometry,
Lecture Notes in Computer Science 206, Trends in Computer Algebra, 1987

i2] A, Colmerauer : A new generation of Prolog Promoses some powerful capabilities, BYTE,
ppl77-182, 1687
(3] J. Jaffar and J-L. Lassez : Constraint Logic Programming, Ath IEEE Symposinm on Logic

P'rogramming, 1987

(4] K. Sakai and A. Aiba : CAL: A Thoretical Background of Constraint Logic Programming
and its Applications, J.Symbolic Computation &, pp589-603, 1980

[3] M. Dincbas, P. Van Hentenryck. H. Simonis, A. Aggoum, T. Graf, and F. Berthier : The
Constraint Logic Programming Language CIIP, Proceedings of the International Confer-
ence on Fifth Gerneration Computer Svstems [958, 1958

[6] S. Tooyama : Robotics for Machine Fngineer, Sougou Densi Shuppansha, 1989

figl. Tynpi

cal View of an handling robot

tablel, Total Computation Time
robot namoe nunber of | degree of computation
joints freedon time
SR-5 1 3 Icssﬂthan 2 zee
AH—40 2 4 less than 2 sec
AMF Berthatran 3 & 3~ 6 sec
IRA-50 4 6 4**1-1519:4;_
Unimate 26800 5 L+ 1 5~6 0sec

/AR1 = (0,0,z1)
= (0,0, 2z3)

O (0,0,0)

17777

fig2. Vector Sketch of a Robot
{(3joints and & degree of freedom)

