ICOT Technical Memorandom: TM-1030

TM-1030

Paralle] Logic-level Simulation System on

a Distributed Memory Machine

by
Y. Matsumoto & K. Taki

February, 19491

19, 1OOT

Mitn Kokusu Bldg, 21F (3134560-3191 —5
| (:D ' 4-28 Mita 1-Chome Telex 1COT 132964
Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Parallel Logic-level Simulation System
on a Distributed Memory Machine

Yukinori MATSUMOTO Kazuo TAKI
Institute for New Generation Computer Technology

Januarv 11, 1991

Abstract

We have just constructed a parallel logic-level simulation system based on Virtnal
Time, It was implemented on the Multi-1'Sl, the experimental parallel inference ma-
chine developed at JCOT. Our system simulates sequential circuits of practical size.
Different delay times can be assigned to gates in the circuits.

T'his paper proposes a new parlitioning strategy of circnit data that is eflicient
for Virtual Time and also reports the measurement results of the simulator. In onr
experiment, a sequential circuit consisting of over 10,000 gates was simulated. Using
fi4 processors, the system indicated about 47k events/sec as its performance, and also
indicated abont 47 times specdup. This paper, using these results, denotes that Virtual
Time is an efficient local synchronization mechanism and the new partitioning strategy
proposed here can be a practical strategy.

1 Introduction

Logic-level simulation is one of the most important stages in LSI design. It verifies both
logic design of cirenits and timing of signal propagation in the circuits. Since the simulation
phase consnmes a lot of computation time, faster simulators are urgently needed. Although
a hardware simulator works quickly, it has little flexibility in actual use. A parallel software
simulalor is a likely alternative. Many people expect it to be useful when accurate simulation
is required.

We have constructed a parallel logic-level simulation system based on Virtual Time on
the Multi-PSL, an experimental paralle] inference machine. This system is onc of the target
applications of the Fifth Generation Computer Project.

This paper firstly overviews our system. A local message scheduler and antimessage
reduction mechanism are mentioned. Secondly, this paper argues a load balancing strategy
useful for a simulator based on Virtual Time. A new partitioning strategy named “the Depth-
first Search Oriented Partitioning Strategy” is proposed. Finally we report the performance
and speedup of our system in actual execution.

2 Event Simulation and the Virtual Time Paradigm

The simulation mechanism of our system is classified as event simulation. Event simulation
can be represented by a model in which several objects change their states by communicating
with cach other. An object is described as a state-antomaton. A message has information of
an event whose occurrence time is stamped on the message (time-stamp). An object changes
its stale after receiving a message from another object. If a new event arises, the object also
sends messages to other objects that the event concerns,

In this model, messages should arrive at their destination objects in time-stamp order to
maintain correctness of the simulation. So usually a centralized message scheduling mech
anism is tequired for sequential exccutivn. This mechanism is called the time wheel. In
parallel execution, however, a local synchronization is more suitable because such a central-
ized mechanism decreases parallelisin considerably.

Chandy and Misra proposed a local synehronization mechanism based on the block-and-
resume mechanisi [2]. Thongh fairly efficient, its chief defect is that its naive implementation
always runs the risk of deadlock. Generally it takes a lot of overhead to avoid deadlock.

Jefterson proposed the Virtual Time Paradigm and its implementation, the Time Warp
Mechanism [1]. As it uses no blocking mechanism, there is no possibility of deadlock.

In Virtual Time, assuming that messages might arrive chronologically, each object is
usually executing and also recording the history of messages and states. But when a mes-
sage arriving at an object in incorrect order, the object rewinds its history (this procedure
is called rollback). Then it executes again from the time when the message should have
arrived. Il there are several messages which should not have been sent, the object also sends
antimessages in order to undo, or cancel, those messages.

As frequent rollback oceurrence decreases the total performance of the system, it is
necessary to reduce the incidence of rollback.

3 System Overview

This system is written in a parallel logic programming language KL1 on the Multi-PSL
Multi-PSI is a MIMD machine where 64 processing elements are connected to each other to
form a 2-dimensional mesh.

The Multi-PSI is a distributed memory machine, so it costs rather a lot to access data
in other processing elements, but it is also easy (v scale up.

KL11s a stream AND-parallel logic programming language. In stream AND-parallelism,
processes are execiuted concurrently, conununicaling with each other through the message
streams. There is a lot of pipeline parallelism.

This systern simulates combinatorial circuits and sequential circuits that have loop struc
tures and states in the loop. 1t handles three values: Hi, Lo, and X. Multiples of a unit time
can be assigned to each gate as its delay time. This system is very simple, having only
essential functions for the experiments of parallel processing, but we can easily add other
functions if necessary.

3.1 Local Message Scheduler

In our system, a gate corresponds to an object and a signal line corresponds to a channel.
Sinee there are usnally many more objects than processors, each processor has to take charge
of several objects. For this reason, scheduling messages locally in each processor is expected
to reduce rollback frequency efficiently.

I our system, each processor has a message scheduler for that purpose. When a message
is spawned, the message is not sent to its destination object directly. Instead, the message
15 first sent to the scheduler which manages its destination object. The scheduler sends the
message to its destination object al a suitable time.

Basically a scheduler behaves in a way similar Lo the time wheel of sequential event
simulation, The scheduler has its clock value like the time wheel. The clock value is defined
as the smallest time-stamp value of messages that are registered at that moment.

1The difference between the time wheel and the message scheduler is that the clock value
of a time wheel increases monotonically, whereas the clock value of a message scheduler
sometimes decreases. Decreasing occurs when a message with smaller time-stamp value
than the scheduler clock arrives from another processor.

3.2 Reduction of Antimessages

If we follow the original Virtual Time, when rollback occurs, an antimessage must be gener-

ated for each message that nceds to be undone.
However, the number of antimcessages can be reduced when we assume the following two

conditions,

Environment copditions
1. The network of objects is static.

2. Message sending orduer is kepl when messages are received by their destination objects.

Assume My, M;, M, are messages and AM is an antimessage. Also assume that mes-
sages My, My, ..M, satisfy these three conditions just before the antimessage AM is sent.
Undone message conditions

1. They were sent before the antimessage AM .

25

. They were sent along the same channel that the antimessape AM will be sent along.
3. They have time-stamp values greater than or equal to the antimessage AM.

It is clear that My, My, ..M, should be undone; no other messages should be undone.

Only the antunessage that corresponds to the nndone message with the smallest time-
stamp valuc need be scul. The destination object can recognize that all the messages satis-
fying the undone message conditions should be undone.

In our syslemn, target circuits have static networks. However, the second environment
condition may be not satisfied because messages are sorted by the message scheduler. So
the messages are stamped in the order in which they were sent (order stamp), in addition
to being thne-stamped. Since the second environment condition is satisfied by using the
order-slamp, our system needs fewer antimessages.

4 Partitioning Strategy

In parallel logic-level simulation, since the amount of work per message al an object is very
small (the grain size of processing is very small), luler-processor communication cannot be
ignoted. Besides, as there are speculative computations during simulation based on Virtual

Time, rollback happens sometimes.
When partitioning of a given circuit network is done, we have to consider the following
three points so that simulation will e executed efficiently on a distributed memory machine.

1. Load balancing should be nearly equai
2. Inter-processor commuunication frequency should be reduced

4. The incidence of rellback =should be reduced

Theoretically we should define an evaluation function that expresses the above three
requirements adequately. Then we have to find a partitioning solution that attains the best
[unction value. Since such a problem is considered NP hard, some heuristic algorithms are
required.

In this paper, we propese a new parlitioning sirategy pamed “the Depth-first Search
QOriented Partitioning Strategy” (in short DSOPS). This strategy 1s expected Lo satisly the
above three points tolerably, It is also expected to require only a little computation time.

DSOPS intends to demarcate clusters in which gates are connected in a cascade form.
The algorithm is outlined below.

I. Select gates connected to input terminals of the circuit. Thaose gates will be the start

points of search
2. Form the gates into a quene

3. Choose a new gate that does not belong to any clusters. It iz called the current gate
and will be used as a start point. If there is no such gate in the queue, then finish.

4. Allocate some memory arca ready to hold a new cluster
5. Assign the current gale to that memory arca

6. List all gates that connect the output of the current gate, except the gates already
included in other clusters. If there is no gate listed, go to 3.

Pick an arbitrary gate from the gates listed in 6, and reguard that gate as the current
gate.

=]
4

8. Enqueue the rest of the gates as new start points of search, and go to 5.

Afler the procedure is finished, there may be small clusters that contain very few gates.
They should be merged into large clusters that the small ones are connected to. Conversely,
extremely long cascade formed clusters should be cut into several small clusters.

Finally clusters are assigned to processors randomly; the only constraint is that each
processor should contain a roughly equal number of gates.

DSOPS is expected to be a practical strategy because it give us a fairly good solution
with only a little computation tune.

[nter-processor channels ratio(%) || 10.02 | 14.02 [15.99 | 16.90 [17.227] 17.4

Number of PEs e 4 % 16 32 ﬁL’
3

Table 1: Ratio of inter-processor channels

Number || Performance | Speedup Ratio of True message | Upper limit
of PFs || (events/sec) | (times) | rollback messages (%) | balance (%) | of speedup
1 056 | 1.0 -

2 1,852 1.878 | 1.33 102.33 1.95

4 4.515 4.5495 4.05 103.27 3.57

8 7.000 T.191 7.01 L0610 7.04

16 14,331 14.534 7.89 116.37 13.75

32 28,209 25619 11.44 115.83 26493

i1 46,666 47.329 24.65 139.04 46.01

Table 2: Measurement results of simulation

5 Result and Discussion

We executed scveral experimental simulations on the Multi-I'ST. We used data of a se-
quential circuit “s13207.bench”, which was published by ISCAS'8Y. We partitioned it ac-
cording Lo DSOPS.

In our experiments, the clock cycle was fixed to be a constant value. Signals to the other
input terminals were given randomly. They changed synchronously with the clock rising
time.

Table I shows the percentage of all channels that are being used as inter-processor chan-
nels. That percentage represents quality of the partitioning result in terms ol reducing
inter-processor communication. PFs means processing elements.

Table 2 shows several clues that suggest the performance of our system. Ratio of rolled
back messages means the ratio of all the rolled back messages 10 all the true messages.
True message balancing suggests degree of load imbalance on the assumption that all the
compntation times of true messages at gates are equal. The value of true message balancing is
calenlated by Num of Msg,__ /Num of _Msg,,,; where Num.of_Msg,,.. is the number of true
messages received hy the scheduler that received most true messages, and Num_of Msg,,.
is the average number of true messages received by schedulers, Upper limit of speedup
is raleulated by (number of Pls)/(true message balancing). It denoles the upper limit of
speedup when the influence of load imbalance is taken into account.

Figure 1 shows the speedup of our experiments. The vertical axis shows speedup and the
horizontal axis shows the number of processors.

Table 1 claims that DSOPS is efficient for reducing the number of inter-processor chan-
nels. I'he number of infra-processor channels is expected Lo be greater than the number of
gates in the circult when partitioned according to DSOPS. Since there are 18,489 channels
of 513207.bench and 11,965 gates, the ratio of inter-processor channels to all channels should

Figure 1: Speedup

be 35.29% at mosi. In practice, the ratio 1s 17.43% in case of 64 partitioning, much less than
the maximum value 35.20%. The merging procedure, in which small clusters are merged
into large clusters, might reduce inter-processor channels.

Figure 1 shows that linear speedup was attained using up to 32 processors, whercas the
speadup nsing 64 processors was a bit worse then expected. CGenerally these three reasons
affect the speedup.

1. High cosi of inter-processor communication

]

- Frﬁ'qun‘_'ﬂt QUCUrrencs I'J[rul]hﬂcl{
3. Load iinbalance

Table 2 shows that actual speedup is ronghly equal to the speedup limit. It means that
load imbalance should have had the dominant effect on speedup i this experiment. In
the processor where extremely many events occur, simulation speed is the slowest among
all processors. Rollback rarely occurs in the processor, but it decides the total speed of
sitnulation.

Generally speaking, the larger the number of clusters (and therefore the smaller the
cluster sige), the better load balance, when clusters are distributed to processors at random.
Since the load imbalance appears to be the major performance limitation in our experiment,
we can expect to improve performance by slightly increasing the number of clusters. Too
many clusters, however, would cause too much communication overhead.

Now let us consider the influence of rollback. As we discussed above, rollback does
not affect the total speedup when we use 16 or more processors. Rollback occurs only
in processors where simulation proceeds too fast. When we use eight or fewer processors,
although both inter-processor communication and rollback affect speedup, their influence is
not so serious. .

Some say that Chandy’s algorithm suffers from having an enormous number of null
messages, and Virtual Time suffers from rollback. Our results, however, show that rollback
does not happen so often, and when it does happen, it does not affect speedup seriously.
Virtual Time has potential as a local synchronization mechanism for parallel logic-level
simulation.

6 Conclusion

We constructed a paraliel logic-level simulator. We also measured the performance of our
system using cirenit data partitioned based on the Depth-first Search Oriented Partitioning
Strategy. By evaluating the perlormance of our system, we conclude thal DSOPS gives comr-
paratively good partitioning solution. We also recognized that rollback did not decrease the
total performance of the simulator and that load imbalancing was the main factor affecting

speedup. Nearly linear speedup was attained in our experiment.
In the future, we will compare DSOPS with other strategies. We also intend to analyze
the relation between frequency of rollback and partitioning results using various benchmark

data.

References

1] DI Jefferson, “Virtual Time,” ACM Transaction on Programming Languages and Sye-
tems, Vol.7,No.3, 404-425 (1985)

[2] J.Misra, “Distributed Discrete-Event Simulation,” Computing Surveys,Vol.18,No.1, 39-
fid {1986)

