ICOT Technical Memoran__dom: TM-1028

T™-1028
Second Joint ICOT/DTI-SERC Workshop
on Decomposition of Parallel Applications
and Benchmarking and Evaluation
of Parallel Systems

by
S. Uchida

February, 1941

© 1991, 1COT

Mita Kokusai Bldg. 2IF (03)3456-3191 5

" :D ' 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Second Joint ICOT /DTI-SERC Workshop
on
Decomposition of Parallel Applications
and

Benchmarking and Evaluation of Parallel Systems

Monday, October 15 ~ Wednesday, October 17, 1990
Shiba Park Hotel & ICOT
Tokyo, Japan

Workshop Chairpersons: Dr. Paul Refenes (Dpt. of Trade & Industry)
Dr. Shunichi Uchida (ICOT)

Secretarial: Takashi Kurozumi (ICOT)
Hiroshi Hara (ICOT)

|

(]

Content

cPreface oo % Ucduda PN, Refenes
- Details of the Workshop (Schedule and Participants)

. Presentations _

31 Overview of the Final Stage R&D of FGOS Project, . oou oo oo 50 chida

4-2 Overview of Parallel Computing Research in the U

and Furope RN Pefenes
33 PIM Avchitectores and RED Status......o.. K Tata
4-4 Evaluition of the KLT Tmplementation on the Multi-I'ST. ..V Tnamurs

oW Nakafiima
45 Benchmarking and Fyaluation of Software Systeme the EDS
and Flagship Project e e P Tovwnsend
cevo B Proetor
e PO Watson
4-b Performance Aspecis of the FDS Parallel Processing Machine

5.). Cockroft

e M. Ward

3-7 Rescarch on parallel Inference Svstems in the Fifth Generation
Computer Systems Project............................. T. Chikavama
3-8 KL1 Programming envirtonment-PIMOS- - H. Yashiro

................ IH. DL Warren
3-10° A Programming Environment for Parallel MIMD Machines P. Evan
3-11 Decomposition of Paralle! Applications for SIMD Machines. G. Manning
3-12 Parallel Application Program Research at ICOL. N. Ichivoshi
3-13 MGTP: A Hyper-matching Model-Generation Tleorem Prover

with Ramified Stacks0 R. Hascpawa
d-14 Parallel Programming in LST CAD Systems K. Taki

3-15 Parallel Programing in Genomne Analysis System K. Nitta

$-16 Consiraint Logic Programming and [tz Parallel Tmplementation:

Cuarded Definite Clanses with Constraintsooveva... . DL Hawley
AL Adba

3-17 Mapping Applications onto Varous Parallel Architectures
psing Fuentional Language and Program Transformation). Dalington
3-18 Pane] disuusaion o e e e I Turukawa
D HO T, Warren
...... J Barlington
........... T, (hikavama
coee L Jehivasha

4. Guide to the Japan and UK Demonstrations

1-1 Japanese DNemonsirations

4-2 Ul Demonstration

Preface

It has been eight vears since the Fifth Generation Cumnputer Svstems Project started. The
main aim of the project was to develop new computer technologies for knowledge information
processing unifving “knowledge processing” technology and "parallel processing” technology
using logic programming.

it was several years before the start of the project that researchers of UL and Japan
realized the importance of logic programming as a link between these two technologies.
Since then, researchers in both countries Lave been cxploring the new research lield of logic
programmung in co-operation with each other.

i these eight vears, a great deal of research effort has been made toward the goal
fFGCS throughout the world and produced many escelleut results. The Second Join
ICOT/DTIHSERC Worlkshop is the evidence of this progress and of international co-operation.
Throngh the presentations and discussions made in this workshop, we are sure that the re-
scarchers conld convinee themselves of the appropriateness of their research direction and
sharpen the focus for the future.

These proceedings consist of papers wud lecture notes that can be divided into four
groups. First, there are overviews of the final stages of the FGCS project. and of Parallel
Computing Research in Furope and the U.I. These overviews summarize progress in the
areas ol Architecture, Operating Svstems and application.

Second, there are papers on the topic of Benchmarking and evaluation of paralicl systems.
These papers deseribe both benclusaking strategy and specific benchmarking examples from
1COT.

Third, there are papers dealing with the problem of Decomposition and mapping of
parallel applications. These papers describe methods aud Lechniques for decomposing and
mapping applications to architectures. Thev also describe software tools.

Fourth, there are papers deseribing the demonstrations done by both Japan and U L.
sides. These papers introduce what kind of problems can actually be handled by the current
technology.

It is our sincere hope that the workshop proceedings and lecture notes will serve as a
valuable reference service for the rescarchers heing engaged in the parallel processing and
knowledge processing in Loth countries for vears to come.

Finally, we would like to thaak you the many people from UK. and 1COT whe provided

high quality input to the proceedings and the discussion sessions.

Shunichi Uehida Paul Refenes
Hesearch Department Information lechnology Directorate
ICOT DTI

Second Joint ICOT/DTI-SERC Workshop

1 Date and Place

Oct. 15 (Mon] Shiba Park Hotel
Oct. 16 (Tue) ICOT Annex
Oct. 17 (Wed) ICOT Annex

2 Topics of the workshop

1) Decomposition of parallel applications
2) Benchmarking and evaluation of parallel systems

3 Participants and their presentations

1) UK side
D.H.D. Warren (U. Bristol): Progress in the Development
of the Data Diffusion Machine
J. Darlington (Imperial C.}: Mapping Application onto Various Parallel
Architectures using Functional Language and
Program Transformation

F. Refenes(DT1): Overview of Parallel Computing Research

in the UK and Europe
P. Evans (METKOQ): A Programming Environment for Parallel MIMD Machines
G. Manuing (AMT): Decomposition of Parallel Applications for SIMD Machines
P. Townsend (ICL): Benchmarking and Evaluation of Software Systems

- the EDS and Flagship Projects
C. Hughes(LOGICA)
D. Watson{PARSYS)
C. Sharpington(Thorn-EMI)

2%} Japan side

I1.
I
Y.

o

I

1.

o A

8

Tanaka (U.Tokvo): Welcome
Hirata (ICOT-1L): PIM Architectures and R&D Status
lnamura (ICOT-1L) and K. Nakajima (Mitsubishi}: valuation

of the L1 Implemeniation on the Multi-PSI

. Chikayama (ICOT-2L): Research on Parallel Inference Systems

in the FGCS Project
. Yashiro (ICOT-2L): KL1 Pregramming Environment = PIMOS -
Ichivashi {ICOT-TL): Parallel Application Program Research at ICOT
Hasegawa (ICOT-3L): MGTP: A Hyper-matching Model-Generation
Theorem Prover with Ramified Stacks

Hawley and A, Aiba (ICOT-4L):

Constraint Logic Programiming

and Its Parallel Implementation:

Guarded Definite Clauses with Constraints

. Nitta (1COT-TL): Parallel Programming in Genome Analysis System
. Taki (1COT-TL: Paralle] Programming in VLST CAD Systems
. Goto (NT'T)

Uchida (ICOT): Overview of the Final Stage R&D of FGCS Project
. Furukawa {'{GGT}

. Fuchi (ICOT}

and a few more researchers from [COT and manufaciurers

4 ICOT demonstration (3rd day afternoon)

4.1 Parallel systems

(Written in KL1 and running on the Multi-PSI/PIMOS)

- 5mall benchmarking programs (Pentomino, Bestpath)
- Go-playing program: GOG

- LSI CAD programs (Logic simulation and Routing)

- Legal reasoning program

- Genome analysis programs

4.2

Sequential systems

(Written in ESP and running on the PSI/SIMPOS)

- Constraint logic programming language: CAL
- Molecular biological database in Kappa

5 Time table

second Joint ICOT/DTI-SERC Workshop

(Tokyo, Oct.15-17, 1990)

L0/15 (Monday) 10/16 (Tuesday) 10/17 (Wednesday)
@ Shiba Park Hotel @ ICOT Annex T
G40 | I
W D t 50 ‘
}Hfﬁ]g Tanaka:Welcome (101 arren (50) ariington (30) |
10:2
1039 Uchida (40) Break (10]
Evaas (40)
ﬁ'gﬁ l Mini Panel (90):
' Refenes (40) | Rrealk (20) | Dazlington,
[1:20) ' Watren,
11:30 Furukawa,
léaﬁ Break (20)] Manning (40} " Chikayama
T Hirata (40)
12230 —
Lunch
13:30
Ichiyeshi (40)
14:00
14:10 Inamura/
Nakajima (40) Hasegawa (40)
1440} -
14:50
Townsend (50) Coffee Brealk (30)
15:20 ICOT
15:30 _ o Demonstrations
Coflce Break (30) Taki (50) (Yoshioka)
16:00 —
16:10
Chikayama (50) Nitta (40)
16:50 T
Yashiro (40) .m::ﬁ [{ }
17:30
17:50
15:30
Reception | Farewell Party
@Shiba Park Hotel @*Chugokn Hanten”

I"H

6 Participants

| British Participants]

Name | Oreanization | Department i Position
Aeademin -
Dr John Dari.i;;g_lbﬁ | Imperiai College | [fnm-[r-.u-;lrti-r;:q_” Professor o
Dr David HD. Warten | Bristol University | Computing | Professor
Government
Dr Paul Relenes Department of Trade | Information | Consultant

& Industry

! Technology
I Directorate

Tndustry

Dr Geoflf Manning
Dr Patrick Evans

Dr David Watson
Dr Paul Townsend

Mr C. Sharpington
Dr Cliften Hughes

Active Memory Technology

MEIKO

PAREYS
[OL-Manchester

Thorn-EA1
LOGICA

Board

Board

Managing Dircctor
Saftware Lngineering
Manager

Managing Director
Parallel Systems
Manager

Principal Consultant

w

| Japanese Participants |

Nare | Organization | Department Position
Dr Hidehiko Tanaka U of Tokve [Electrical Fng. | Professor
[ir Hanpei Koike Uat Tokyvo | Electrical Fng. | _
Dr Atsuhiro Goto nNIT | Software T.ab | Senior Kesearchor
Mr Rikio Onai NTT Software Lab | Supervisor
Mr Kenichi Yamazaki N1T Software Tab | Research Engineer
Mr Kazuhiro Kazama NTY | Soltware Lab | Research Enginecr
Mr Katsuto Nakajima Mitsubishi [Info.5ys.Lab | Senior Researcher
Mr Iliroshi Makashima Mitsubishi | Info.Sys.Lab
Mr Toshiaki Tarui Hitachi | Central Lab
Mr Takayuki Nakagawa Hitach Central Lab
Mr Kaichi Kumon Fujista Lah
I Tsutomu Maruyama NEC C&C Sys. Lab
Mr Takashi Usuki Sony
Dr Svuicht Saka ETL
Mr Kenji Nishida TL
Mr Hiroichi Hiroshige 1COT Executive Director
Dr Kazuhiro Fuchi 1COT Res.Center Director
Dr Koichi Furukawa ICOT Res.Center | Deputy Director
Mr Takashi Kurozumi ICoOT Res.Center | Deputy Director
Mr Yoshihisa Ogawa 1COT Res.Plan.Dpt. | Manager
Dr Shunichi Uchida ICOT Research Dpt. | Manager
Dir Ryuzo Hasegawa 1COT 44&:5th Lab Deputy Manager
Mr Kenji Tkoma 1COT Research Dpt. | Deputy Manager
Mr Tsutomu Yoshioka ICOT | Research Dpt. | Managing Researcher
Dr Kazunori Ueda [COT 2nd Lab Senior Researcher
Mr Kuniaki Mukai 1CoT drd Lab Senior Hesearcher
Dir Takashi Chikayamna ICOT 2ud Lab Chief
Dr Katsumi Nitta ICOT Tth Lab Chief
Dr Kazuo Taki ICOT st (Tth) Lab | Chief (Deputy Chiel)
Mr Kazumasa Yokota ICOT drd Lab Chief
Mr Yuichi Tanaka ICOT 6th Lab Chief
Dr Akira Aiba 1COT 4th Lab Deputy Chief
Mr Nobuyuki Ichiveshi 1Cor 7th Lab Deputy Chief
Mr Masayuki Fujita 1ICOT 5th Lab Deputy Chief
Dr Keij: Hirata 1ICOT 1st Lab Researcher
Mr Yii Inamura Icor Izt Lab Researcher
Mr David J. Hawley [COT 4th Lab | Researcher
Mr Hiroshi Yashiro 1CoT 2nd Lab Researcher

Second Joint ICOT /DTI-SERC Workshop

PROGRAMME

(Tokve Oct.15~17, 1990)

10/15 (MONDAY)

At Shiba Park Hotel (Botan-no-ma)

10:00~11:30

g 10:00~10:10
10:10~10:50

10:50~-11:30

11:30~11:50

Morning Session (1)
Chairperson: K. I'urukawa
H. Tanaka: Welcome
S. Ucluda: Overview of the Final Stage R&D
of FGCS Project

P. Refenes: Overview ol Parallel Computing Rescarch

! Break {20 min.)}

in the UK and Europe |

111:50~12:30

11:50~-12:30

Morning Session (2)
Chairperson: N. Ichivoshi
K. Hirata: PIM Architectures and R&D Status

12:30~14:00

{ Lunch (90 min.}}
at vy room (Shiba Park Hotel Annex 2F)

14:00~15:30

- 14:00~14:40

| 14:40~15:30

Afternoon Session (1)
Chairperson: D.H.D. Warren

| Y. Inamura and K. Nakajima: Evaluation of the

KI.1 Implementation on the Multi-PSI
P. Townsend: Benchmarking and Evaluation of Software
Systems — the EDS and Flagship Projects

15:30~16:00

{ Coffee Break (30 min.) }

16:00~17:30

16:00~16:50

16:50~17:30

Afternoon Session (2)
Chairperson: C. Hughes
T. Chikayaina: Research on Parallel Inference Systems

in the FGCS Project

': H. Yashiro: KL1 Programming Environment -PIMOS-

18:30~

{ Reception }
at Rose room (Shiba Park Holel Annex 2F)

- 1.,!1'_

At TCOT Annex

' 9:30~11:00
9:30~10:20

o 10:20~11:00

Morning Secssion (1)
Chairperson: I. Refenes |
D.H.D. Warren: Progress in the Development .
of the Data Diffusion Machine .

P. Evans: A Programming Environment
' for Parallel MIMD Machines

| 11:00~11:20
11:20~12:00

11:20~12:00

| { Break (20 min.) }
Morning Session (2)

Chairperson: T. Chikayama
G. Manning: Decomposition of Parallel Applications
for SIMD Machines

12:00~13:30

{ Lunch (90 min.) }

13:30~14:50
13:30~14:10

14:10~14:50

Afternoon Session (1)
Chairperson: A. Goto
N. Ichiyoshi:
. Parallel Application Program Research at ICOT
R. Hasegawa: MGTF: A Hyper-Matching
Model-Generation Theorem Prover
with Ramified Stacks

14:50~15:20

{ Coffee Breal (30 min.) }

| 15:20~16:50

15:20~16:10
L 16:10~16:50

' Afternoon Session (2)

Chairperson: Y. Inamura
Iv. Taki: Parallel Programming in VLSI CAD Systems
I Nitta: Parallel Programming
in Genome Analysis System

16:50~17:30

16:50~17:30

Afternoon Session (3]
Chairperson: K. Hirata |
D. Hawley and A. Aiba: Constraint Logic Programming
and Its Parallel Implementation: |
Guarded Definite Clauses with Constraints

— ¥it

At ICOT Annex

10/17 (WEDNESDAY)

9:30~10:20

9:30~10:20

MDl‘llill-g Session (1)
Chairperson: Ik, Ueda
J.Darlington: Mapping Applications onto Various Parallel
Architectures using Functional Language

and Program Transformation

10:20~10:30 |

1{ .Breal_c_ (10 min.) }

10:30~12:00
10:30~12:00

Morning Session (2)

Mini Panel: (Title to be announced)

Coordinator: IL.Furukawa

Panelists: 1. Warren, J.Darlington, T.Chikayama, N.Ichiyoshi

-i2_:DI]~13:3EI { Lunch (90 min.} }
13:30~17:50 | Demonstrations
13:30~13:40 | Overview of the demonstrations

13:40~14:15

14:15~14:30
14:30~15:00
15:00~15:30

15:30~~15:55
15:55~16:00

16:00~16:25

16:25~16:50
16:50~17:00

17:00~17:25
17:25~17:50

1} Parallel systems
(Written in KL1 and running on the Multi- PSI/PIMOS)
Pentomino-Packing Piece Puzzle Solver
Bestpath-Shortest Path Problem Solver
Go-playing program: GOG
{ Coffee Break (30 min.) }
LSI CAD program (Routing)
LSI CAD program (Logic Simulation)
Functional Programming Environment
{ Break (5 min.) }
Legal Reasoning prograrn
Genome Analysis programs
{ Coffee Break (10 min.) }
2) Sequential systems
(Written in ESP and running on the PSI/SIMPOS)
Constraint logic programming language: CAL
Molecular Biological Database in Kappa

18:30~21:00

{ Farewell party }
at “Chugoku Hanten” (Chinese restaurant)

— il —

Overview of the Final Stage R&D of
FGCS Project

Shunichi UCHIDA
Institute for New Generation Computer Technology (ICOT)

September 30, 1990

Extended Abstract

FGCS project was substantially started from June 1982, Roughly speaking, it aimed at the
R&D of following three major technological goals;

1. Knowledge processing
2. Parallel processing
3. Combination of above two using Logic programming

Since then, the project has developed following hardware and software systems for the re-
search on parallel processing;

1. Sequential inference systems

*» 1984 PSI-I attaining 37 KLIPS (KL0) and ESP language and SIMPOS
* 1936 PSI-II attaining 330 KLIPS (KL0)

2. Parallel inference systems

« 1935 GHC

* 1986 Multi-PSI/V1 attaining 1 KLIPS x 6PE (FGHC),
and Paralle] interpreter of FGHC

¢ 1088 Multi-PSL/V2 attaining 150 KLIPS x 64PE (KL1),
and PIMOS /V1 and small benchmark programs

* 1990 VLSI chips and CPU boards for final PIM modules,
and PIMOS /V2 and many small application programs

* 1992 Final PIM modules, 256-512PE x 3 modules,
attaining 300-400 KLIPS x N (KL1) = Target/module: 200-500 MLIPS
and PIMOS + KBMS and medium scale experimental application systems

For the research on knowledge processing, a variety of experimental software systems have
been built on the sequential inference system.

* A DBMS based on the nested relational model; Kappa-IT, and an experimental system
of deductive and object-oriented DB

Extended abstract

e An experimental system for natural language understanding; DUALS, and a tool-kit

for NL research; LTB

« Constraint logic programming language; CAL
design and diagnosis of electronic systems

vstem; CAP

« Expert systems for VLSI
» Theorem prover and a computer aided proof s

e A Go-game playing system; GOG
In the final stage, we plan to reconstruct some parts or some functions of these software sys-

tems on the parallel inference systems. Furtherimore, we try to include such new application

nformation analysis and legal information retrieval.
ted in Fig-1. Our research activities in the

hardware technology which we used for our

areas as genetic i
An image of our target system is tliustra
final stage is illustrated in Fig.-2. The trend of

inference systems is illustrated in Fig-3.

— e —————————————

rueluation and Benchmark Software

oy ok o EPT I TN

|)

ot &
il Problem Salving adpe Base

F 130] B

7 Nalural Language gnd Programming Structuring Utility !

Intarace . Module Modiuls

;ﬂ Ji‘r-ﬂ-;- L:;?:—f&m}ii S I bk, S
£ i;,_f.,._,,,_ e et el
8 = ZzEcprototupe Operating System.

I8 . 35 Infarance Contrel ""“',;_'_,;' Knowiedge Base it
e | =5 ok 3
.;.11.._‘ Moduls J%}l::‘i Managemen! Module =

P]

T

Fig.-1 The structure of the FGCS prototype system

Extended abstract

The experimatal parallel application systems are important research topics newly added in
the final stage.

Haowledge programming

sovirnBmant

= Man-machine |« KB [
inlerfars conrlracilss | i
moduls modula

* Problem sobving & hwhd:
Programming moduls

* Laaguage tool bex (LTB)
¥| - tocls for yntactic analyds
) & senlence gencration
+ gramoeary, dictioaarics &
: their dedgn work banch

- -
Basie software

i system
Organization of iy) meduls
F‘-&D themes * KB mansgement module
In the final stage - KBMS)

77 | st gz

Fig.-2 R&D themes in the final stage

Memaory 130KUPLPE 300.600 2 s P
(DRAM) (Pacalie) xuipsme MUPSPE KGates/ gjsg
Bits/Chip | o 300400 (Paralled) (Parallel) ey
KUPS/PE (Saqrentish Cabinet
| (Sequential) 1Board/PE
11000,
100 | 10
B4
16M 100 | 10
11
4M
Frototype 50
41
M
91
256K l 1

1995 Year 2000 Large Detk Detk
. P Cabinet Side Tep
FGCS Project

Fig.-3 Trend of the hardware technology used for inference machines
(by T. Kurozumi)

Extended abstract

The organization of ICOT has been changed and extended. Recently, we have started
international collaborative works with ANL, NIH and SICS using the sequential and parallel

inference svstems. These are summarized in Fig.-4 and Fig.-3.

Research Planning Research planning & management
Director of Department
g":"d' | 1st Research [- Frototype hardware system
— Lahoratory
Research
Deputy Department [T 2nd Research - fHaglc software (PIMOS)
Directors Laboratory
| 3rd Research B - Basle software (KEMS
1coT Laboratary & Constralnt model}
Research | 4th Research B -Constralnt loglc programming soft
Center Laboratory
[sth Research B).provers & its application
" Laboratory
Reserch & — . f
|| #th Research |j-Ha:4.rraF language Interface so
Development Warki Laboratory
7th Research [} -Parallel application
1 Laboratory ‘Knowledge utllization soft.
Advice From | Development &
Universities) | Making Work
Research Institutes

Project Promotion Committea
& Working Groups

Computer Manufacturers

1

Fig.-4 Organization of ICOT research center (by T. Kurozumi)
[Advisory Committee |

} Advice
‘Research
R&D ™, rcoT E'I?rganl::ﬁu ns
Expenses Research Center LME
7 | (<R&D work>) ﬂ;’:ﬂ?
— : 5 :
MITI Negotiation Researchers: 63{1985) Research| manufacturers
of Staff |Pujitsn Mitsublsh!,
R&D Plan k 1Uﬂ{1 935__.] | NEC, Hitachi,
_J Toshiba,OKI,
Sharp Matyushita,
General Affairs Others
Office
s | “Invited Reserchers
Dispached Reserchers
i advice [
I NTA 1 i Development &
— Project Programming
Permission Jot Promotion =
touse LP-R RESEARZH Commitee & Camputer
Companies Other Domestic Working Manufacturers
. ||#ETLEDR ete. Groups Fujitsu Mitsubishi NEC,
Or’gﬁm- Gve rseas ‘Unl\l‘!ﬂmti & Hlu:hj,Tuhiba.ﬂ'K[,
Zations |lepANLNIH,SICS | Research Institutes) Sharp, Matsushita

Fig.-5 Organization of FGCS project (by T. Kurozumi)

ISd-BINN “NIId :@1empaely M/

= = = e

Wwalshs gy

w, SOWId .Em:_mmm SunesadQ B\W

saden3due| 195

sweJtdoid uonjea)ddy

| waiskg aduaiajul ajjeiey

Buissadoud |3)|eiey L

Surrwrerdord o180

—

Buissadoad a3pajmouyy

J

W 3 Y JO HIomaWeI] [EIUD5)]

) (MA)

L10DI
ePIYON) TOIUNYS

jefoag SnOI
JOo a7y °8eyg reurg ayy

JO MararaA)

i3

030 ‘swplshg HSYVD —
wajsks Jurferd oo —

swa1sAS (VD ISTA —

EWASAg 11ad Xy AUe o

H€.LT Pue STVNAd
'S[00], PUR SWa)SAS SUIpUR)SIapU) TN ®

%0 'SNOYUY ‘SOTHAONET dvD
:surssAg Funumeidord-ejej] puUR [RIRWOIRIA @

Ty sefendue| SurweiSold JUrRIISUOL) e
g O-O pue 2ARONDPI(] U0 paseq SINHDI

sroxmyy pue U IO

:sadenFueT woryejuaserda)] afpa[mouy] «

D66T - L8GT

SOdNIS/1Sd uo

aIemiJog Sunuweldorg a8fpamouyy

_.H_DUH 1e mEm.um.___mm EHW §53008)
UL MIoMIDT TeUOT)RILIDUT DU OT)S2UIO(T-
XINA + LA/SOJNIS-
(ZA/0T) SATTN Z'T < III-ISd 1661
J10M30N] pue SOUTYORIA T[-ISd 00€ 1ROQY 4y
S-SOWId Pue [SJ-THNN Opnesd-
[1-eddesy pue A /SOJWIS- 8861
[-eddey] pue ZA /SOJINIS-
(2A/0T3) SAITH 08¢ II-ISd 9861
TA/SOJdNIS pue 98endue] JG3-
(TA/0T3I) SAITY L8 I-ISd #861

swe)sAg aduatajuy [erjuanbag

Parallel Inference Systems

1985
1986

1988

1990

1992

GHC
Multi-PSI/V1 I KLIPS x 6PE (FGHCQ)

Parallel interpreter of FGHC

Multi-PSI/V2 150 KLIPS x 64PE (KL1
(2 - 5 MLIPS)

PIMOS/V1 and small benchmark programs

Final PIM Chips and CPU Boards

PIMOS/V2 and many application programs
Final PIM System 300-600 KLIPS/PE (KL]

(PIM model/p = 200 MLIPS/512PE)

o modules: model-p, m, ¢, k, i

Total 1072PE’s = 512 4 256 + 256 -- 32 4 16
PIMOS/V3 4+ KBMS(Kappa-P)
Parallel Application Systems

Experimental Parallel Inference Machine: Multi-P51/v2

= mc_l__%_a ““““ i 'N{rilt k Controll
— f— ' etwor ontrouer
P:'E i 13DKLIPS/PE ' | PE:

; pararell |
) / P ," i Processing Element
FEP(PS)) A 7
QOKLIPS - ¢ f 8PEs
?Sequential c | fi ;
LP.L-KLO) NG . ;

—_— o E— — —

el el el gpps E

064 PEs max (PSI-1l CPU each)

2 ~ SMLIPS/system (ave) eNetwork :
2-dimentional mesh,
eMachine language : KL1-b -message exchange
-routing functions
eMemory : 16 Mw/PE -5MB/s x 2directions/ch
(80MB)

R&D Steps of System Software, Kernel languages & Hardware

2 -

< Initial Stage_><1ntermed|.ate Stage_>< Final Stage >

Sequgngal M—@—@—o—@—@
) ESPV1[—ESP V2] 9—< Kappa V2 >—@/
anguages

[k_:Low KLO uzl
Hardware |P,5|'1 | 25:;1;

................. e imretmimem.=d PSI FEP ! PIMEEP !...._._,_.-.
|_Parallel ¢ oIMos Vo) —9-<P1MDS vi Cpasic Soft.)

os Crosanr Y
ppa-P

Languages [GHC |,._ KL‘!—cf =3— KL1-u
““kL1b v fF—{xui-bv2 |—[r:u b V3

Hard- NI C R —— — e
ware (simulator) N jl’v‘lu&]- . | PIM . FGCS
CBM Mechansm | LestVi] [LPSIV2 .| PrototypeH/W
(Simulator) oo TTmTmmmm T KBM

anpoy Juswsbeugy \] ; BINPORY

m.u._wm_ aipajmouy ; [CIUCD BIUB2A)U|

: EmwmmmE...:E..ﬂ;m:iﬁmtﬁE\.

A ..4 e

AR

oINEON i 2RO ;
fAnan Buunganng ; Cuwwesbosy pue |
B5eg sbpapmouy H A _u_.._z._nw Em_n_En_ ;

S|Npay ssEpEil|
alienfue |_inep

Ea._ :_u__,_

.._ﬂ.ﬁu B

et aivmyjos u_wnm.mﬁ_mwffn_% H,.f

surexdod

uotyeoldde jo juotndopaasp syl ySnoryy syuys
pue s[ooy Sunwuresfoid ysrrered jo uworsanon ‘v
SINET PlEred "¢

we)sds Juryersdo resn-1ynur a[qrI ey g

sampowt I J pesds-ydng oeos-adier] |

Sua|goud
uonesijdde ajess a8.e| soj uado o1 3|qe ag o3 Juaw

-uosiaus Bunwwesdoud 230 j2qjeied e ysiqeiss of

ofe)g [eulg oYy uI

sje8ae} YoIeasal ureA]

1. PIM hardware modules

and KL1 language processors

e Completion of PIM H/W development

and evaluation of H/W:
Chips, CPU Boards, Clusters, Cabinets,

and Total systems
e Completion of distributed implementation of
KL1 language processors in the cluster and

total system:

Memory management, Message passing con-

trol, and etc.

(e A
Fagieice] I e p— 1336115
[4HIBHIPH P o (Aowsy pateys !
R I _ sng,

A SRR " e e I _ L
: I - ! "

SRR 1 ifad|'ad|fFad) - ad)

Lo ! ; ! "

Lo L. JL”TT i N —

(SRS I I B A 1l
) n_Tw__mlﬂna ﬁumﬁ_:u._w%: 8]90Q- MJIOM]SN
PHHEOHEPF\ L
_ I)

TN Ny B :J:Q
f_ 1 T T
N J
— S/
— |

—JUBWUOIIATUY JUsWdo[oAd(] 9IBMJOS [O[[BIR] —
uorjeInsyuoy) weisAg od4£j0301g

11

SIALE 211 10} ajoxing) ‘afendue| uoryejuasaidal

a8pamouy ¢ Jjo uonejuawa|dur pue udiso(T e
(] peiulL0-12alqO pue gq amionpa(] uo
paseq QY Jo uotrejuawaiduir pue usss(] @

WId PU® [Sd-NNp ‘siuow

-UOITAUD DPaINQIYsIp pue [a[[eted uo suolye
-1ado omeiqaB[e [euorjeal Jo uoryejusIA[dUI] e

[2poly |euCiIB|ay PRIsa UO paseq

d-eddeyy ‘S [e[rered jo yuswdopas(] e

SINE 3 01 uorsua)xa s¢1 pue QNG [2[[e1ed ¢

j043u02 Ajuoud pue uoisip qof

10} A331e5 pue 'swidipeied ‘SwYllo3)y
:g[[1ys Sunmreadord [aeIed e

‘233 pue

'siapdwon) ul sanbiuyds) uoneziwndg 'Fuld

-3ngsp souewaiopad Buipnpur sjool Sui83ngaq)
quawrnoriatua Juruurerdord [e

juswseuew 195 pue ‘|oi}

-U0D §S300Y 90wy ‘JuswaBeurw INN0SIY

-SONId

JO 2102 BT} JO UOISUI|XA pue justwaroidu] e

justutogiaua Jururuwrerdoad [y pue

SOWId ‘wagsds SurjperadQ g

(¢I11-eddey] weyy souewriojiag JuSIDYH a10)y) .
[[-edde)] jo ucsiay [oqered .
T7I3 UL Uagjiipy
[661 ‘yorey ut pajuswaldurr aq s J-eddey]

paseay £Ppip -
(Seg ‘3s17) siojonigsuon [e213081 -
902JI99U] B[qRUYA(] I9s() -
saseqe)e(] AIOWs ureyy .
[-edde}] wey]y, 80UBUIIONO{ UG SIOT -
dSH Tl S3ur] 000'SET -

686T ‘qoreJy ul pajustusduil sem [1-eddey]

SIas() 1597,-f [e19ARg .
dSH ut saury 0poe9 -
2861 ‘1sudny ur peguaws(dunt seam [-eddey] e

weysAg eddeyy oyj jo sngelg JUR 1IN

A_,,\
\

/
Vs SOUBWIIONSJ JUSIOLYS] -
-

o

1daouony
13190

sucljeley wisy, Juipnpour
8dAT, ®1e(] ® Se wiaf, .

BYR(] PIINYINILS I0] S[OPOIA N
I9Y3Q PUE SUOHR[EY Palsay] -

saseqeje(] J
\ SuQis m“_xm_ (aooq) seseqeieq

4
= —2)
JUSWTOITAUG] PRINGIIISI(] © Ul

\ pajusuQ-108iqO pue annanpaq -
\ SasEqeIe(] 9AIONPR(] (pepualxy) .

soseq adpajmouy J

\ (1oor, uSise(q oyewojny -twreg) .

\ seanjes] RjusIedxs gim
S0BJIDUT JUSIUIAUON)

'\ adejlalul asp

SOTOT[0] OISeg]

30X

‘afendue] uorpejuasaidal emﬁuﬂaozx ayy Fur

-STlL sUOI)0Bal Jljoqelswl jo uonjduosap pue
eiep yueguey) Suwsn [[-eddey] Jo uorpenyead (1)

sisf|eue woryew

-10jut o17uad I0] sasuanbos umjosd 10 YN

10 juswudije sousnbas sjdiynw oy swesdoad (1)
swesFosd Fuiuoseasr |eFs (F)

50D ‘waysks Surle(d oo Prreied (§)

NOAD ‘e8endueT Furumerdor g
o130 qurerjsuoy) Jo suoryejusmR(dur P[eIeJ (3)
S13n014 Waloay | 19||esed (p)
surayeds Surpueisiapun N
ur sisA[eme 0190euds pue [esXs] 10] Siasied (9)
swa)sds (VD
1STA ‘o] sweaFoud vonenwis a180| pue Sunnoy (q)

sweadoud of-awn| pue oulwojuad ‘yied-isag

:surerford Sunpreunpuaq [rews (e)

SINEI/SINE [Surpnour wragsds

aoualajurl [a[eted 1o} swajsAs uorjeorddy p

\\\@g&&\\g\@\\

EV|MPOWGNE (L) DUIYoWN UIIIUL (2] uLe g

\\ o

Emﬁ_ sAs aremprey adAj0l01 g

o8e3s euy sy ut

mmeﬂu Ay
SOMI 30 uoryezIURdI(y
TMPOW |0IYI0D 2IUDIAJUT »

,__ . SWHN 4
g Hnpoul juswaivuvur gy e

€31 PUT E£(1 SOnTREOp! shanan .

UI93SAS RS &
| @temyyos oseq |

A0 Pomaiio-1le pue on)Enpeg

TOeg Haowm uE)Eep sy
I ERLINICnap ‘el e
e ﬂu ajnpow Sumruresfond | _/
s¥pa|mony 7y Suiajos walgeag »

UonuRUEd sausuE
sisdewe oyavnds 10 spooy -

{ ®oq (003 9fundue
——— r— \ELT) x0q [ooy) T
U3 NI4E003 ERTRER]|

€ ¢ | PUnETW-Ey e

Sururmresfoad mesed of
00y eaiqdesd pue pnstp «

Tacid unicegy ppereg .

S[EATRTE D) TRERE T} [ONRDITOT .
Jommre:Foad nBoy jrensuosy «

81} puysIapon ssnoasp Jo E[IpOTY +

FUFUIUBITAUD
Supuweafoad mmﬁuﬁiu:uﬁ._ ¢
__ 7 ;
i N e ._HDHPM.UA._“Q.Q..N .
FysAs slsondeip 7 wsks Iuesioend able

' BTiACT B TIOTILI= X

- UBISIP SMOTRA W] TolEn[LAT » TIWIJ UL MRUAEy v 153 _”m
eo1gisnbag i

; / wrnsds Fmprusspan
.f..r aBunBm] angep) «
wshs Jurfed of) g .

Dol R % wisap ynode) -
wNshg QYOISIA Plrereg » [
i swesfoad voryusdde]H

//, lofeawd Tejuswre dwg

13pemony 10) sjooq 11eddng »

Fujuestal pastq-asta -
Huioosval poseq vondumsse -
stayeds jradxy 10]

wd._mpn.nnuu_._.. m.u._...__..:& Uy -

13

dol|

18l04d SOO4

ysag wsag obueq 0002 A ceBl 0661 G861
|] _ | |
e diHIL/3d1 [-15d
T II- 15d
_ 2 [Sd-13NIA
a8 aby N/
Ot - adA1030.4
001
di 0l
00t g0 et
fpieogl ",
OlF
001 009Vt ciagsnpy .
0001} jesanasg .
jpieog| 1d/PiR0gL {(lenuanbacg)
| o (lenusnbas) 3475417
auiqed mmwwvx 3d/SdITH]
_w /534 < 00%-00€ Q0105
diyy T: (13i|e42d) (131je4ed)
9ZIS /9910 M| F=ieled) 3d/5d1TN 3d/SdITA (19]|eied)
dNE e ! 009-00E 3d/SITAOEL

SHNTHOVIN DG B SHIDOTONHOHL IST JO SUNHYL

A95¢

— AL

- WP

— W91

— WP9

diyo/sg
(INwYQ)
AJOWI N

.|ﬂ_

5,

: Study

! Stage

L19?H~1QE1
L

fPreIimfnary«p:
!
|
i
H
I
|
J

Stages of & Budget for FGCS Project

R&D (10- year plan)

Initial Stage
3 years: ‘'82~'84

T
|
|
|
|
1

(TOTAL : y8,300M) |

Intermediate Stage

4 years: '85~'gs
(TOTAL : x21,600M)

o R&D of Basic 5th G. !
Computer Technology,

8 R&D of Experimental
Small-Sczle Subsystem

|

— i -] i
+Budget:1982 1983 1984 1985 1986 1987 1948 11989 19490
(foreach yA00M y278 y51B |y47B y5.55B y5.6B ¥578 I1v65B y7.0B
fisical $1.56M= £12.6M 323.7TM :HLQM $I4.5M-2 £35.0M S35.6M T 40BN S437M
year) E1.300 s £B.EOM £16.6M E E15.3M E22.0M-2 £22.4M F272.8BM | £26,0M £27.4M
» : e

Final Stage
3 years: 'g9-"91

e R&D of Total
{Prototype) System

i
]
L]
1
I
I
I
I
I
I
|
!
!
I
|
I
|
I
I
I
I
|

"R&D are carried out under the auspices of MITL
(All budget are covered by MITY.)

1 51=%215, E1= ¥ 307 (1982~1985)

*Z $1= ¥ 160, £1= %250 (1986—1989)

ICOT Organization

President Executive General Administration
Director fManager Department
o General | — _
Managing Affairs International Relations
Director Office Department
Research Pld.;m'lng
Department
W — 15t Research
IFeciar d Laborater
Research —y
Center | 2nd Research
-) Labaoratory
Board of Steering -
rDEre{mr; Committee Eﬁz‘;:g“ Research l 3rd Research
Depart- 4 Laboratory
! Auditor ment [ath Research
Managemesnt Research Ll,_E_lb:}ra_lL‘lr{.')
Committes C ISth Resea th.l
anter
B Laboratory
Technala
Commftlfz | |B6th Research
— Laboratory
|| 7th Research
Laboratory

Preject Promotion Committee
E Waorking Groups

_1?‘--

ICOT Research Center Organization

Research Planning

Director of Department

2::'::::'1 | 1sit Research

Laboratory

. Research

Deputy Department [2nd Research

Directors Laboratory
Ll 3rd Research

ICOT Laboratory
Research | 4th Research

Center Labaratory

i Fesearch & i
EDeve}opmenr Wor'l.'é M

!_EE.I: "_Resanr:h
! lLa borztury

6th Research
Laboratory

L 7th Research
Labaoratory

) - Basic software

f:l fResearch planning & management

:) s Prototype hardware system

(PIMOS)

j « Basgic software (KBMS

& constraint model)
0y Constraint fogic programming soft.
O -Provers & its application

= - Natural language interface soft.

Ty -Parallel application
Knowledge utilization soft.

ﬂ.ﬂ.d'w'ce

From
Universities }
Research fnstitutes

| |Project Promotion Committee
& Working Groups

nevéi"u";':}"ﬁ}-}'i &
: i Making Woerk :

"IvI'

Computer Manufacturers

Organization of Fifth Generation Computer Project

| Advisory Committee

l, Advice

R&D \
Expenses
|

Negct:a tion }
!

MITI
R&D P.ran

I.P.R of

ICOT

(Research Center \I
<RE&D work>
Researchers: 5‘31985}

General Affairs

R&D Office
Results
¥ T Publicati e ——
' of TR/T Advice
JITA Lend "‘l : r
i Project
i, JoI Promotion
| RESEARCH Commitee &
Companies Domestic Working
—! ;the{ ®ETLEDR etc. Groups
Zargaﬂ?]; Overseas {Universities &

oML NIH,SICS | Research Institutes)

/Research
N Staff |Fujitsu Mitsubishi,

‘Research
Organizations
ET L MEL,
NTT, EDD
-Computer
Manufacturers

Toshiba,OKI,
Sharp Matsushita,
Others

‘Anvited Reserchers
‘Dispached Reserchers

Development &
Programming

Computer
Manutacturers
Fujitsu Mitsubishi NEC,
Hitachi Toshiba, OFI,
Sharp, Matsushita

‘SIS "HIN "INV -+ suoleziuebip 19410 Y3}IM UDJIEISIY Julor -
ﬁ.uwmhmpm:m:‘_:Oﬂhm.ﬂmr_u._mwmwxv 10D] 03 SIOLISIA JO 3dur}daIY -
siaded jesjuysey juasaud 03 sbunsspy pue S8JUBJ8JU0D [BUOIRUIDIUI O}
(L0} senisianiun) siaydieasas 4o yojedsiq -
(Juswisaibe uo paseq)seaf | 03 ey 10) 10D 01 %m%m&AﬁQﬁ.D R (paxyeq-
VIYNI)@IURLH * (p2328q-4SN) "G WO SIBYIILISDY 4O 9dueldandy -
((6861-2861)sioydiea53.4 95) abueysxa yoieassad 104 spoliad pioys 10} 10D] 03
(siaypieasay) syrodx3 4O UOIR)IAUY -
[=)°N° r-Adeyj-uspams * r-ssueiq “ r-.s7n---.
(diysiosuods-od)sdoysyiopy pue ersodwAs juior.
((butuuejd)z66 L dUNF YIG-351'8861 J9GUSAON 186 * 186L)
§254 U0 33UdI9JU0) [euoneUIBIUl BY} JO diysiosuods .

eisodwAg pue saiud4ajuoy .
((SWLrdL 00v’L)epueiowsyy pue spoday [ediuysa) ‘jeusnor 10 “6a)

siaded |2d1UYdd] 4o uonnquisig pue uonesedsiy -

S}NS9UARY $0 SIIIANDY UOISNYIQ B UoNEISd0-07 [BUOIEUIS} U]

19 -

OVERVIEW OF PARALLEL COMPUTING RESEARCH IN THE UK AND EUROPE
PAUL REFENES
INFORMATION TECHNOLOGCY DIVISION

DEPARTMENT OF TRADE AND INDUSTRY

ABSTRACT

parallel and novel architecture research is a research area which
is becoming increasingly important for the IT Industry as a whole.
The majority of the novel programming styles and computational
models which are expected teo enhance programmer productivity (e.qg.
Functional, Logic, Object-Oriented, etc) have a strong reguirement
for powerful compute engines which is beyond the capabilities of
traditional seguential processors. In addition an increasing
number of new applications are emerging which are only possible to
tackle due to the availability of powerful parallel computers.

The research area of parallel and novel architecture encompasses
four key technologies:

_ hardware architecture: this technology includes both the design
of microprocessors/microcomputers and the architecture of
networks of such processors.

. basic system software: including operating system kernels,
memory management, message through-routing, etc.

. parallel application development tools: such as decomposition
tools, mapping tools, load balancing, etc.

. neural computing: soft information processing systems and
massively parallel and distributed architectures.

This paper reviews the state of the art in UK and European research
in these four areas.

Bujindwod [pinay
swwelfasg suo|jesdds ja)eeg -

s eypads -
SARERINI [Hads swuweiBold senuan uoneaddy |a)eled ,
sizefoud A3ATY PEO + S)j23 Ba)08 oMy - Sunnd
upndwod jenay ,

sjoo) uawdojanep woesdde |ajjesed ,

alemos Wwalsds Jjseg .,
Bujssasoid sppawny ,
eisofoud papae &) Bupssazoid Mjoguis ,

Y 2yl § adoing uj YyaIeasa) ainjaayyaly jajjeled

adoing u) yoaseasars y ,

Hn 2yl u yau=asal) ,

PP P

Giogimunwnnsig, Bl eau dug I3 DT
O s Eumps ks swaels

L 3 SLNILNOD

1 .

AHLSMANI % SOVHL SO INIRIEVIIT
NOISIAIT ADOTONHIIL NOILYIEOAN]

SINISIY N d
d% il - HN aul Ul yaseasad ||

Hi AHL % 340HN3 N ONISS320Hd T3T1YHYd 40 MIIAYIAD

066} 120 ohyoy doysyiom DHa271L0/LOD] IUtap pug
0661 120 ohyoy doys)iom OHIS-1LA/LOD! WUIOF Pug

— 21

sioalald Jabie yany -

S[]82 BAJIE OM] =

“IE3 pug pug 357) woay spoafead
PAOIUNPANEIOGE]I03 21 it £juo szap wodal sy - Supung DS
spaford sajoe Gb

BAIOE IS B yRym sEefead TAHATY

Yeasey SARRIOgRICD ¢ J - 1D

yueesal Mwepexy 1 J-dAY

{ovs uuum) ewnresbior d sojsues] Afiajoupel @ 4 - LL

_ - mm,_w_gU ‘*e ﬁ

#v3

LIHds3 - edoing u) yaieasal ||

SIOATOUd JALLDV DVS/dV.LI

0661 190 oAxo) doysyiopy DHISILONO D] e puz

ov¥a by
. {
[+t RIS NI
el Il =1l ._.n... 8 ELETET) RTINS TYIOL
- - ERRmHmcany) osmogddy - | oy iE & e
u....___ ..m.. LS T Vi or N0LY S -
i . eoely pangladg ¢ | g o i FUFEALS g
A — e | Ol 7L |1 M ey -
{oiqimamas 3noeys) ITdnvx3 T Y bl i fire]
T TLOL
” N bk o T iD T (nal s saade -
. n i Tt 2 Iz L -1l Eﬂhﬂr.w.
o : mand g gpandy [g & £ 181wl gagady -
. Roemlizwmat | fm | o% i LSl Tl ooy,
SPEELJSAD USRENLNLWI EYI'S] JO128) DHELINIT - NOTTARED TR IS Eﬁaﬁﬁruﬁt.rih
a5l TYLOL Lird | &1 TYLOL
eauaEjas a-fese; Ag T |8 B iy [T | g2 3 Sumndunsy ey -
pasyazeeyD am sepuopuadapieep gl do-peadepoolgEIZdn @ wr ol M s...hx&%. o6 | T £ aumda) uﬂ__h
o ! En..suwﬁx.....,u.nﬁ.l. - 1 Basy] po: 4_
SHAD e Sd9US (R0 ENdwo s Uenm|sn SISINGHHONES _.uh._“. t B memeag “.M_. MH _ _“ Aoy mxsis g
PUE BJED JO SJunowe 3 yHIqon sesseaoid 24 useg g ”i_ﬁ - v.a__- STt £ sy spocmis
¥R LT XY TENYadY |
Ly
VT ErE]

panddgend €1 alnanais 2 ijawoab jeuBuo ey 1ep
yans v Lya el Bupnquysip Aalpaueioo spWs)E)2iEd @

(TS " TATIC PV NOTE S G020 JE JT8 LIW030

\ NOILISOdING23a T1371vdYd y

53 z ol puz
0661 ‘190 oAxo) doysyiog DHISALALODN

siessascad jo ooy

3d 3d 3d a4
| [ﬁ

1 [L W

_ o dauli ino'a Hon

Satseooid jo [oog

7 junf < o) x doub 5 wesBaid 1noe ¢ ey yolj =

[sassazoid xup)

FTdWVX3

leod @y} 0] 553398 10} LO|IUTIUCD B S JoiaE] ANILIWT

pasn siosseocud jo § ey) o [euopiiodord sdn-paeds SHIJ40 @

ElER Jo Alan||ap jBlu) au) 10}
_._nmuﬂﬂ slossasoid ugamiaq painba; 5] uapesjuonysuls i ®

‘sassacosd jo ood B woy)
Bupnsaxe siosssaoad Jo joed e ySnoay) paulBigo §) wsjajeiey

(AWIW 120 NOLLISOJMOD-20 ONIWH YA

NOILISOdINOD3ad 1311VHYd

[——

B3 JEQ JED JBI

LI {,
. 2

_vnusx._w:
B — {Jealysijod
DU (sma)hap
—— (sea)edim
e e {1ealysem
Hsoig) ap
i
ATdWNY X3

auad|d eyj u) juswe|S 1SAMBIE BYI S J0198) DHILINGET @
pasn Enaunuﬁ:_w jo # oy o1 jevoiuedosd sdn-peads siag @
doo| © u] Appapade: pauwtopad pue oidws ele S431S @

sda)s JB|JEWS Olu)
WHLHOS9Y eyl Bujsedwos-ap Ag paujeige 5| Wsife|eled 8

{@SIW 13 NOTLISOd 0220 JIWHLINODTY

NOILISOdWO23d 13 711VHvYd

— 24

2nd Joint ICOT/DTI-SERC Workshop Tokyo Oct. 1980

NUMERIC PROCESSING SYSTEMS

CHARACTERISTICS

* Highly regular data structures -> geometric parallelism
* Highly regular operations -> algorithmic paralielism

* Static de-composition
==
static processes
static control structures
static languages (Fortran, Occam, Parle, etc)

ESIN3D21TYSIY Dbulsssoolgd OTI2wWnN TII I278V.L
i [
50 TYLOL B LS|0ET LL°0E ITYLOL
SOWMNI {vows)
P'ES|ZL'S TLTOT| SOUTYIBW QWIW gsodand Teaauey OWIWD
A8D-NOSWOHL
gucTilearidde TeTIISNpUT UT {(BEZT)
0'0 |(0"0 0" 1 @anjoe3zryore Buyssesoxd teorado YIdOWN
(8z¥1) 1INng suofieafrdde
OMTER 303UUCDISIUT OHTH TESTIswnU Icy Iosndwos radng (LPPT)
S0 LAY aWIW/aWIs pesds ybTH| /JoWIs £°69|82°9 lgo's TetTeaed Aicweu PIINQTIISTA| SISINID
W3 N ONISSII0Ed (QWIS) JIWEWAN (¥ng!| AN | nNoaEwW SRINJOBITYDIY ONISSIDOHd ITHIAWNN
TUALOFLIHIEY TIACH TITIVUYL avLr FJUNILIILIHDUN TIDNYAQY LIddssd

2nd Joint ICOT/DTI-SERC Workshop Tokyo Oct. 1990

SYMBOLIC PROCESSING SYSTEMS

CHARACTERISTICS

LANGUAGES
* are VHL mostly with IMPLICIT Parallelism
* notable tends towards explicit Parallelism to restrict |[ism
to manageble levels.

ARCHITECTURES

* higly (micro) programmed control flow devices
* need to support dynamic control structures (stacks, etc)

PARALLELISM

* mainly farming de-composition (reduction systems)
* also some geometric paralielism in logic (unification)

ESPRIT SYMBEOLIC PROCESSING ARCHITECTURES I ITAE
MECU | UK qil.n.qt UK EM
EDS Superssar te Flagship, and 28.5| 3.36[11.7 Parallel processing within IDnd.ur'.-_' a.5
(2025) FAVLADA But turning into & PPEIKL IKBS ive
database project ICL (L1547} System
MEIKD T5E
TROFPICS Parallel object-orlented 10, 68 2.9] ©.0) Enploltation of parallel IC5TH 0.3
[2427) multiprocesgor System 5 EXHFL hardware using functienal |
PHILIPS [1674U) |lamguages program transformation
PEPHA Parallel Prolocg on multi- 2.19| l.1452.1 Functional Programeling for ICSTH (0.2
[24T1) processor systems BIM (B} FAST Transputes Arrays
f {1702u)
1
!
TOTAL 1-1.3'? 4.5 :D.i TOTAL 1.0
TABLE IV: Symbolic Processing Architecture
03
ESPRIT ADVANCED ARCHITECTURE ITAE PARALLEL: I'ﬂ]‘.-'l'.l_.- ARCEITECTURE
Bagic Systom Tools MECU| UK |%UK| Dasic System Tools UK £H
SAFHIRE FCTE portablility 9.9 2.6 |§.7| FImMs Fault Stolersant multi=- RERE 1.3
(1277) CAP {1:01) ProCESSOr Systams
Maiko Flessey Perihellion
PAVE PCTE and VMS envicenment 1.0 Q.55|535
{1z62) GEC SAFEMOL |Totally verifisd systess IMMOS (1.5
(10386} ERI
HERMAID HMatrification and rescurce J.44| L.Z23[(A5.7% o
{2044) modelling aid SIMD/C |SIMD extensions to the 0.2
VOLMAC (ML) programaing language C©
SUPEANODE |Operating systems and 11.9] 1.77f14.89
I1 programming envircnments f£or
{2528) parallel computers,.Thorn EML
COMPARE Compliler Ceneratisn far 6.41) 1.17|18.3
(5399) Farmllel Machines
TOTAL 52,65 T.32{13.% TOTAL 3.0
| 1
TABLE V: Bagslic Systems Tools

— 28

EEF.RIT ADWVAMCED ARCHITECTURE ITAB PARALLEL & MOVEL AMRCHITECTURE |
PARALLEL APPLICATION DEVELDPMENT TOOLS |HECW | UK YU | APPLICATION DEVELOPHMEMT TOOLE UE 3]
IESE Integrated Modelling Support 3.0 1.07(35.57 object Orientated Languages |RSRE [1.1
(2143) Environment STC COOTS on Parallel Transputer - INMOS
(105%) |Arrays THORN
EMI
REX Reconfligurable and Extensiblae (§.99 1L.7|17.02 Frogramsming Work Banch for a |AMT 0.5
{2080) parallel and distribuated DR Massively Parallel Computer |QOMW
gyatems. STOLLMAN [L438) [(DaAP) Inter-
S e e e —— o ERRE
FALST Fault-Tolerant Architecture 6.56| 0.22[3.3|FSFF Fareran for Scalably parsllal |MEIKO (0.6
(5212} Hiwdorff [1452) FroCEsSors
FLARE Furctional Lenguages Applied |BT 0.&
(2117} to Realistic Examples Loglca
GRAS- Graphical Environmantal for NAG 0.9
PARC Supporting Parallal Computing|Quin=
(2173} til
- o |
TOTAL 1'§I.5-'I Z.99115.3 TOTAL a.0
L S—
TABLE VI Parallal Application Develsphent Tools
ESPRIT ADVANCED ARCHITECTURES ITAB PARALLEL MOVEL ARCHITECTURE
HEURAL COMPUTING HECL) UK WK HEURAL COMPUTING UE LM
PYGMALLION | Hauzocomputing: ..ccoaveean 2.5] 0.45%|16.0 Heural MNatwark LOGICA 0.2
(2059 Dagic tools, Application tools GANHET |generation sdoptation HEIKD
and Applicetions THOMSON CSF [1B86) |using evolutlonary technigues
ANNIE Industrial applicetion of 2.5 L.L16|4%, 4 Heural Metwsck Awareness Club|Locica
{2092) Artificial Heural Natworks LINHET =0
UK AEA { H
HLT Machine Lesrning Toalkit. 6.99) 1.68|24.03 Sprach recognition technigues [SIwtex|i.1
{2154) and Industrial Applications SRT using Harket Chains Meura CAL
HIXDORF {1057} |Hetworks : PARSYS
I -
GALATHEA |Continatieon of PYGMALION B.5) 0.84(9.9 Logice Beuraml Nets BRUMEL|0.2
(5293) OH. Architecturas, tools and LHHCI Chnarasteristics and
ppplications THOMSON CSF {10050) | implesentation
HHF Haursl network systems for L.% 0.@| 0.0 Heural Mgtworks for cantrol DOWTY (0.5
[B433) forcasting end diagnosis (B) CONNET |of real-time systems LOGICA
{2163)
EX-STATIC Simulaticn of dynamic CAM a,2
{21670) | ezchitecture for neural BRIDGE
networks
TOTAL 22.3*:r 4.13 I.E.T- TOTAL 1.2
TABLE WVII: NEURDCOMPUTING

2nd Joint ICOT/DTI-SERC Workshop Tokyo Oct. 1990

PARALLEL APPLICATION CENTRES PROGRAMME

AllM:

To establish 4-5 centres to support the tools and methods for
the development of parallel applications.

ACTORS:
Universities ;- hosts for the centres

Parallel systems (software & hardware) vendors:- joint projects for
further systems development

End Users :- collaborative projects for technology transfer and
demonstrators

TOTAL COST:

up to 40m PS.

PIM Architectures and R & D Status

Keji Hirata
Institute for New Generation Computer Technology
hirata@icot.or.jp

1 Introduction

We have been developing parallel inference machines (PTMs) and its firmware in the Japanese
FGCS project [Gotoe 89a), [Goto 89a]. Our research goal is to prove that a logic programming
framework is most effective for knowledge processing. In the first step, we would show that
application programs and the operating system (PIMOS), that are all written in KL1, can
work efficiently on 2 KL1 engine. The PIM hardware, the firmware, and KL1 language pro-
cessor make the KIL1 engine. My presentation reports the current status of the development
of the L1 engine.

When starting the PIM development, we did not have enongh experience to select one of
several alternative PIM architectures which can give the best performance for executing K11
programs. Thus, the purpose of the development of more than one PIM was to examine and
compare the technical issues for different architectures. First, the machine architectures and
the features of each PIM are presented. Then, the implementation of the (L1 enginc on the
PIMs is reviewed. Next, the current status of the development of the hardware is reported.
Last, how each module of the firmware works to execute KL1 programs is deseribed. Then,
the progress report on the firmware is made.

2 Comparison of Five PIMs

Five PIMs are now being manufactured; PIM/p, PIM/e, PIM/m, PIM/i, and PIM/k. We
will compare the specifications of these PIMs to each other with respect to the [aclors listed
below. The following four tables show the comparison (lables 1, 2, 3 and 4). The technical
factors which are concerned with the PIM architectures are:

¢ intra-cluster configuration
We classify the PIMs with respect to the configuration within 2 cluster (Tab. 1). Here,
a cluster is part of the machine structure, and consists of 10 or so processing elements
and a shared memory connected by a bus. In PIM/p, every four NIs are connecied Lo
a router, which works as a node in a global network.

¢ inter-cluster configu ration
There are many possible methods and topologies of the networks which connect the
clusters to cach other: bus, hypercube, crossbar, mesh, omega, tree, and so on (Tab.

2.

. YKL1 is a concorrent logic programming language and was developed in ICOT.

- 31

Table 1: Intra-cluster Configuration

Number of PEs | Number of NIs | Comment
PIM/p 8 8 each PE has NI
PIM/e 8 1 NI is connected fo a bus
PIM/m] 1
PIM/i |l 8 1 N1 is connected Lo a bus
PIM/k 16 1 | one of 16 PEs has NI
(PE = processing element, NI = network interface)
Table 2 Inter-cluster Configuration
Topology | Number of Clusters | Total number of PEs

PIM/p | hypercube fi4 512

PIM/c crosshar 32 256

PIM/m | mesh : 750

PIM/i 2 16

PIM/k ? 32

Notice that the PIM/m architecture does not include 2 part named “cluster” in fact.
In the table 1, one PE with a NI is regarded as a cluster for comparison. Actually,
each PE of PIM/m has its own private memory and there is no shared memory over
the entire machine.

« KLIl-oricnted instruction set and processor confi guration (Tab. 3)
Whether a processor is a RISC or a CISC is one of major concerns. If a processor is
a RISC, its compiler must generale efficient machine codes in particular. In case of a
CISC, we have to support micro programming, With respect to its architecture, a tag
architecturc may make a symbolic manipulation efficient.

¢ coherent cache
An architecture which can exploit the data locality is possibly effective to the KL1

Table 3: Specification on Processing Elemnent

Instruction set Cycle time | LSI fabrication | Line interval
PIM/p RISC + macro mstruction 60 ns stancard-cell 0.96 yem
PIM/c || CISC (micro programmable) 50 ns gatearrays 0.8 pm
PIM/m || CISC (micro programmable) 60 ns standard-cell 0.8 pm
PIM/i RISC 100 ns standard-cell 1.2 pm
PIM/lk RISC 100 ns custom 1.2 ym

Table 4: Specification on Coherent Cache

[Protocol Number of states
PIM/p || invalidation {Ilinois) 4
PIM/e | invalidation {modified Illinois) a5 J
PIM/m |) ' B) o .
PIM/i || broadcasting 0
PIM/E | invalidation (modified Berkeley) i
hierarchical

execution. So, we suppose an architecture which can keep the locality high; there are
ten processing elements, which are connected to a shared memory through coherent
caches and a bus. The coherent caches i1z necessary to decrease the bus traffic. All of
the PIMs adopt the write-back coherent cache method (Tab. 4]

Motice that P'IM /K has the hierarchical cache: a PE of PIM /k has its first cache, the
four ’Es share a second cache, and the four second caches share a global memory.

« I/0O channe!

Input and ontput to storage devices make the PTMs maore practical. We have the two
extremes; each processor has its own I/0 channel, and an entire system has one 1/0
channel. The former configuration can obtain more disk throughput but the amount
of the hardware increases and the control 1s more difficult.

A plan of how much disk capacity the PIM experimental versions provide is as follows.
A cluster of PIM/p (8 PEs) has twe SCSI channels and 2.32GB disks totally. In
PIM/m, everv § PEs have a SCSI channel and a 600ME disk.

3 Current Status on IHardware Development

We report the current status concerned with the PIM/p hardware. Currently we are assem-
bling the experimental version and are checking the operations on the hardware level. The
next refined version of this experimental one which consists of 1 clusters (8 PLEs) will first
start working at ICOT in March of 1991. We hope that PIMOS on PIM/p (128 PLs) will
start running in the latter half of that vear.

As for the production model of PIM/m, two sets of 16PE system will arrive at ICOT in
April of 1901, We hope that PIMOS on PIM /i (256 PEs) will be able to run before the
end of that year.

The experimental systems of PIM/c, PIM/i and PIM/k are now being fabricated by each
manufacturer.

4 How to Implement KL1 Engine on PIMs

In this section, we describe how to compile KL1 programs into the PIM machine codes.
First, a KL1 program is compiled into an intermediate code, NLI-B, which corresponds to
the WAM instruction of Prolog. Here, we have three execution methods (Fig. 1). The first

33 -

KL1

compilation

T

KL1-13 (intermediate code)

(1) (2) (3)]
' LIACTO- HACTO-
eXpansion expansion
Interpreter
Interpreter

micro program native code micro program

Figure 1: Three Methods for Executing KLI-B Instructions

method {Fig. 1 (1]} is to interpret the KI.1-B codes directly as a high-level machine language
by using a micro programming technique. Methad (2) is to macro-expand (or compile) the
KLI1-B instructions inte native codes 2. After that, the native codes are linked with run-time
libraries and, then, can be executed. Method (1] is suitable for PIM/m and PIM/c, and {2)
for PIM/1 and PIM/k. Method {4} is located in the middle position; a KL1-D instruction is
further macro-expanded (or compiled) to yet another intermediate codes lower than KL1-B.
PIM/p adopts a mixed way of these three methods (1}, (!} and {3).

Next we show the organization of software modules of the KLl engine (Iig. 2). To
write the firmware for the five PIMs efficiently and commonly as possible, we introduce a
virtual PIM hardware which is an abstraction of the five PIMs, and design a language for
describing the firmware on the virtual hardware. We call the firmware VPIM (Virtual PIM)
and the language FSL (PIM System Descriptive Language). VPIM is an abstract machine
for KL1-B. P5L is an extension of the C language. Statements of PSL can be source codes
to be compiled and, i the same [orm, macro-definitions as well. Thus, the KL1-B expander
does macro-expansion of KL1-B instructions with regarding VPIM (firmware in P5SL) as
the macro-definitions (Yig. 2 (a)). Actually, some KL1-B instructions are fully macro-
expanded or compiled, and others are macro-expanded down to another intermediate level
lower than KL1-B (Fig. 2 (c¢)). Depending on each PIM archilecture, we have to [ind out
the appropriate intermediate level and to use the KL1-B expander and the PSL compiler
properly. On the other hand, the PSL compiler compiles the VPIM source codes (not macro-
cxpanded) to the real-machine codes for the KL1-B interpreler (Fig. 2 (b)), In detail, a

?Indeed, the language KL1-B is designed so that the macro-expansion of KL1-B codes generates a sequence

of machine codes,

KL1

KL1 compiler |

KLI1-B

AVRININ ARG R AR E R R A DR PR B A AN E NI EY VNI IETFENT AN HEN IIlIIlI||||l|T|‘||I[|| L3

| macro definition (a) i l
' KL1-B expander |
VPIM
11l o (c)
SOUTEE . R R R R N F TR F AR RE ALY
FSL code PSI:’
« compiler -
(b) Interpreter
Rfll‘tual—ﬂlat:hlﬂe (-G'd? ANE R T T R R {(ﬂ

real-machine code

Figure 2: KL1 Language Processors

segment of VPIM codes corresponding to the intermediate-level instructions (¢} is compiled
to the native codes for the virtual PIM hardware once. The native codes of the virtual
hardware can be translated to real-machine codes with little effort (Fig. 2 (d)).

Furthermore, VPIM has a useful feature; VPIM itself can be compiled as a C program
with slight modification. Thus, we can easily prove the correctness of VPIM on conventional
computers (the SUN workstation, Sequent Symmetry, and so on).

Actually, in order to implement the KL1-B expander easily, the part of VPIM which
corresponds to macro-definition for the KL1-B expander is written in KLI1, not in PSL.
Thus, the KL1-B expander can be used as a self-expander also.

5 Current Status on Software Development

We show the current status on the PIM software development as follows.

» VPIM: Now we have just released version 0.5, which does not only implements almest
all the basic intra-cluster functions (goal reduction, goal management, garbage collec-
tion, and so on) but also includes the fallowing new features: paclketized inter-cluster
communication, and distributed resource management. Version 1.0 will be released in
Dec. of thie year which will include the SCSI device driver.

¢ KIL1 compiler, PSL compiler and KL1-B expander: Prototyping of these com-
pilers and expander is almost finished. These compilers can be used as self-compilers
on the real PIM hardware as well. Their performance will be improved.

« Miscellaneous: Bootstrap routines and software for service processors are being de-
veloped. The bootstrap routines include the systern initializer, IPL, and so on. The
software for service processors includes debuggers, tracers, and statislic measurers.

The compiled code of the append program can run on a PIM/p hardware simulater,
actually. Thus, our linker and loader work well, too.

6 Concluding Remarks

Our future plan is as follows: assembling and testing the machine hardware, and improving,
performance of the KL1 engines. We also would like to explore the possibility of aother
methods for efficient 1.1 parallel implementation.

Acknowledgement:

We would like to thank the researchers who have been working on the PIMs and the Multi-
PSILL

References

[Goto 89a] A. Goto: Research and Development of the Parallel Inference Machine in the
FGCS Project, In Parallel Processing and Artilicial [ntelligence, Eds. M. Reeve and 5.
. Zenith, pp.63 96, John Wiley & Sons (1989).

[Coto 83b] A. Goto: Developing the Parallel Inference Machine, In Proc. of Joiut Japanese-
American Workshop on Future Trends in Logic Programming. ANL-89/43, Argonne
National Laboratory, pp.51-55 (Oct. 1989).

_36 —

lusido|aaa 2JemMJOS UO SNIRIS Jualind '§

s|100] @2benbuen pue aiemullld AIMIOUHU
uoijeunbiyod alemyos ‘g mwu.m._ _ I :s_wvx_

H:mrc_uc_w}mﬁ_ AEMPDIEH UO snlels u_.:mt:U e b=
SWId 9nld snijels A7y

S9.4njesd lidyl puB SaUN1093iudly auiydew I
pue Soinloa1iydiay INId
SUIIINO

AJl|EaQ| SSa30e flOWall acueyug

QULBLT UCIIEZIUNWILLOD INPEY

_ca:u:nm,__ jeCE fajjesed ul o] mm.:mu_uq_

BANIIDYPYIIY NI

Wweawabeusw 204nosa) palngllsi
ucIngulsip peo] pue ‘Bulnpayss |eob |ajjeled
BaJe AJOWIW BSNaM <

UGIIAUINSUCD AIOLUZW BABGE
juswzbeurw AlOWawl JU2121J2 UM

(suo|ied)3un) volianpal [gob T

SaNSS] UdIeassy

-

|BS =

2AMIIBTIY DA
alempley

WId

b —

uoioniisur -

DIM S DILM =

uo|iejuswaz|duwg

21eded T
0D gdWw —
g-T71A4 =
SOWId
[03U0D Allolid —+
usgys — 1A

swelibold 12sn

1043U0D
painglaasig
uoizeziwido
UL BdwoD
2D usiayig

SUOIIDUNS 219N

W335AS INId 4O uoneinbyucd |BQo|D

® © @
ﬁnl@

mﬂLPm

191sn[D
V_Lca,ﬁz

121sn1O

4 N
®]
|gelien paieys

r@imT@Wm

Y

S | |

..._mm.._u.

WId Ul 5|e0S T [9ljeied

-

A205N|D

-

ﬁ&oEwE UEE@

~

1@1snD

N
@oEmE Umt_m:w

-

MlomiapN v

INId S0 uoneinbyuod 13e13sqy

._35_.

Si4a3s1baas 1oa41pur 4+
Alowowl jeoo] ul Apog-oudew +
SUOIIDNIISUL ||BD-04DBIAL [BUOITIPUOD Ullm
198 Uononngsul aXN-DSIy
— DSID/DIMH + DSsId

‘Buisssed usjpweled Ul SpeEayIIAD g@

a

) — g - n _Dm..w,u_DLn__u

Uinlzd pue |[e3 sUnalgns Ul spesydsad (Ztecb=ananbua) |2ob e Usng iecb & d T)
"UoIIonaIsuy| g-171 UDED UL uecisuadsns

SUQIDNJISUI S4I[-DSIH Ul SBUIInoIqns __m._.\cm.,n.h‘.m.u

Aloud ynam
s eaB-Ar UCLIEDUIUN BAIIDE gie0b papuadsn
Hoels |eob-Apeay A9 o dWNSay | pap 5

_mom jualing

MEmm:Lm}ﬁ Udlal 2p0D +
"185 UOI1INJISUI (da1n2axa) uoionpal snonuILoD

SXI|-DSId Ul 3p0o paldWod pspuedxg e
(z3 "GN AQ UEIID3||00 s6eqieb |ejuswaIIUl

) 25 |eob 3 Asng-
.WCD_HU_._L“_.mE_,LG_._U_E m_.-_.__ﬂ_n.m_z | UL EAN g-uop) »

01 speaydano Buiysjedsiq «— “iz3sibas Aq uollonpas 20D e
_AUmHURUHl_Iu T4 J4G) UCiIoNJAIsuUl sulysew 1o0e13sqy (g9-171M
welboidosoiw Ag uoiielsddialul g-T1M e
(P

uoljejuawiajdwl g-T71M Ul SanllP ualy

— 40 —

KL1

compilation
T

KL1-B (intermediate code)

(1) (2) (3)

MAacro- ma.cm-
PIM /m F?”v}/ expansion PJ' H’é expansion
v coqulﬂ]m_ WP,“I"M
Interpreter

PIM/. Prm/h

Interpreter

w

micro program native code micro program

Three Methods For Executing KL1-B Instructions

4 Clusters 32 PE Pll"‘t/p

1400

[ERT LR Tes,

$¥ar 1 T_.E,i

FOU

A

\

.

// ><
!

T
"

[raemt ; ==
7 LR LIS 5t = ==
! =0 =
i \?‘“’?; = ==
X >< 8 - == c=
2
; Fl 1Y ;F
st N r — I
7

RTE +32
5C51 :id
LRC 125
RE232C: §
THlk 2

P(M/p (:UJOLETSLA

P(M/m Mitsubrsht
P{ M/Q Hitacht

PIM /2 Ok

°[M/, Toshiba

1uewsle Bupssesold @ o4

5 ———
19)|DIU00 WIOMIBH I DMN - 3d 9t

ad 3d 3d

OMN OMN . DM

rosseoosd
pue-juold: 434

JM M — 1S0S

]
S
39 957
o | 453/ d34 WreR
*ddC%
— _ _ T ._ _] A_] 4 __ 1593
c 1 [
A ._u_ mgwm%m Eq‘w;m%__m _Emwu%m m%.m..m%u d3d 8AES d3d RIS
o 5718 5|3 S|
1 i I | i __ i [
510 = s 5 = R 5 5 rv
#3510 | m&.r m_Lrw wn_w#w u%m __ELW 348 w_ m_amm.“a..__.m 1505

55 \ d34 BARE FEFLLS
7777

44 —

pasinbal aiaym sabessowl anladal
PUB puss 01 34 yo2es uo Lod HIOMIBU W <=

m.SmﬁEU Tmum:_u Osaisnn

lllll I et

sebessaw Buo| pue 140Ys 10y 4104 uspylg <=
Alowsay palteys

sNng

I

]

I

" |

_” Buse yzed| pused|

V143ad || vad | | Eadgl

LN AN || F

||||| - l.—llllll.l.l.-l - } |
_ 1]

[481noy

g2 B

HIOMIBN =qnaiadAH spdiyna

A40MIBU J1B]SN|3-Ja3ul BouRWIOLSd UGIH »

420] 2IBMPIRY 350D MOT] <=

1
|
1
i
i
H
]
|
I
I
I
1
1
1
1
1
LY

L e N e
L e T

1
1
i
i
I
I
!
1
1
|
1
1
1
H
]
1
9

491SN1D B UlyIIM UOIIBDIUNWWOD UYL <=

]
1
—
i
I
1
——
1
e

T4 101 2Uded |EDO] JUBIBYOD)

SUD[IDNJISUI ||BD-0JDBL [BUOJIPUCT) <«

AR
11| @214 pUB DO YN Joj 10ddns 1081 <= (1230} U1 s34 823)
‘31242 Dasupg] Dot
(SUQS / uojIonaisul T AllnyadoH) -BUaqno-ladAy a(dinw AQ pa1dsuLOD S4a35n 0 g
suljedid sbeis + Agq 2242 sulydew 1ous <=
714 40} 395 UCIIDNIISUl BUIYDIE[A Alowsw paJeys + s34 g :Jsisn|d) e

2IN3291UDIV eIempieH d/NIg d/WId 2u3 Jo uoreinbyuod |eqoin

45 —

PIM/p Global Specification

Processing Elements

Execution

One cycle pipeline by 4 stages.

General Registers

40 bit x 32 W

Internal Instruction
Memory

50 bit x 8 K W

Cache Capacity
(each for code
and data)

64 KB | |
256 column, 4 set, 32 B/block,

2 block/sector

Cache Protocol

Write back, Invalidation,
Special commands for KL1

Cluster
Number of PE 8
Shared Memory 256 MB

Network

Topology

Doubled Hyper-cube
(Max 6 dimension)

Throughput

Max 20 MB/sec in each link
(40 MB/sec for cluster)

.46_

Inter-cluster Configuration

Topology | Number of Clusters Total number of PEs
PIM/p | hypercube 64 512
| PIM/c [crossbar 32 256
PIM/m mesh - i 256
PIM/i . 2 16
PIM /K - : 2 32

Intra-cluster Configuration

Number of PEs | Number of NIz | Comment
| PIM/p 8 B each PE has NI
| PIM/c] 1 NI is connected to the bus
PIM/m 1 1
| PIM /i 8 1 NI is connected to the bus
PIM K 16 1 one of 16 PEs has N[

(PE = processing element, NI = network interface)

Specification on Processing Element

Instruction set

| Cvele time

L5I fabrication device

Line interval

|

FIM/p RISC 4+ macro instruckion 60 ns standard cells 0.96 pm
PIM /e || CISC (micro programmable) 50 ne pate arrays 0.8 um
PIM/m || CISC {micro p-mgranu‘na_,ble] B0ns | cell base | 08 pm
FIM /i RISC 100 ns standard cells 1.2 pm
FPIM/k RISC 100 ns custom cells 1.2 pm
Specification on Coherent Cache
Frotocol Mumber of states
FIM/p | invalidation (Illineis) 4
FIM/e invalidation [modified I']'linai.x-:l 5
PO/ | ' 3
PIM/i | broadcasting &
PIM/k Lin\ra]idat‘inn {modified Berkeley), hierarchical 4]

—

Specification on Disk Channel

Number of PEs J Channel

GB / Channe] |

FIM/p

4

1.1E0

PIM /e

FIM/m

0.6

PIM/i

Ll R vl RS

PIM [k

PIM Arcival Schedule

FG(S92
90 91 92
7 . J n !
t ARNAAA b N Alrrtr St
We'te heve P[M/F SPE P[H/F H12PE
PIMj 16PE PIM/un 2567
PIM /,: 256PE

- ,15_

(as of O 'f0)

IDALID BDIABP [SDG

110ddns Wa1sAS-)|5S e

SUOIIDUN) UB0US (N} e

Jexoediynu e

SOWId 404 bulpuey uocndasxa e

(o

-

(ol

'08Q) 0'T UOISian

WIdA

(1c43u02 uoIIN2aXa pa1nquIsIp)
SUO1oUN) uaoYs 2Iseq e

(8dA10304d) UOIIEIIUNWWOD Jaisno-laiul e

09 |EGOIE e
DD gYIN e

043002 Auond e

]

Buiinpayss |06 e
UOI3anNpal (eob e

(06, "3d3S) G0 UOISIaA

(abenbBue anndussag WId) 1Sd Ul Usiilim
CA ISHIININ 40 sanbluysa) uocileiuaws|dw
SAEMDIBY NI |BNJJIA UO 2JBALLILY
auibus g-17y buljuswaidu
(WId [BNIA) INTAA

50 —

Miscellaneous

e KL1 compiler, PSL compiler, KL1-B expander

e self-linker, self-loader

e bootstrap routines

Service processor software

e debuggers, tracers (firmware level)

SI0SS22014 abenbueT TIM

TPOY TYooW
wrerdord orom

TRRINER RN R RE NI AL

19ga1disyuy

FWMpoy el Sqo
—SET RS S R

ATIIIDRNEETIRENANEERRITNRNNNDNE

_ Tonidurod
{ . M..HuGU_
SRR ETTR) LR IY E HHW&H 20IN0%

epuedxs g-1TY

TOIIUYSp OIDEUI

Iﬁindﬂ.ﬁ_\.‘_
Hut....,.ﬁrwﬁd m_ lxﬂldww_ e asisit)

q-1Ty

%

| TeTtduroo 1T

|

17TA

1Sd
ul
LA

|

Je
iAldAN
. quimj

1
h.’

5

I

(/0

Evaluation of the KL1 Implementation on the Multi-PSI

¥ Inamura Katsuto Nakajima

I““S::; %trey%:;]ﬁﬁiﬁgﬁﬂn MMitsubishi Eleciric Corporation
1-4-28 Mita, Tokyo, 108, Japan §-1-1 Ofuna, Kamakura, 247, Japan
! ¥, » JBP nak@isl.melco.co.jp

inamura@icot.orjp

Abstract) i
The Multi-P51, a loosely-coupled multiprocessor running the concurrent logic programming language

KL {kernel language version 1), has been developed for conducting parallel nen-numeric soft ware research
and for testing various new implementation techniques for coneurront logic languages.

This paper reports some measurement results in terms of mntra- and inter-processor operations of the
Multi-PSI systerm, and they show the basic performance of the distributed implementation of KL1

We also measured performance and eommunication overbemls in benchimark programs, and it was
ascertained that the overall communication averheads were acceplably snall.

1 Introduction

The Multi-F5] has been developed in the Japanese FGCS project as a testbed for the implementation of
the concurrent logic language KL1 [2]. Up to 64 processing elements {PEs), eacl of whicl is ideatical to the
CEU of the personal sequential inference {PSI) machine [8], are connected by an & x 8 mesh network having
automatic routing capability.

A distributed KL1 system [6] on the Multi-PSI is not only the language system bul also an operaling
system kernel. The design goal was to obtain averall high performance mncluding Earhagu collection overhead.,
The task and resource managements are both decenlralized.

This paper gives the measurement results of the costs of intra- and inler-processor primitive operations
in the system. It is rare to implement concurrent languages on the actual parallel machines, so we think
these measurement results are useful as the basic data for designing parallel wechine hardware and the
implementation of concurrent languages.

In terms of intra-processor operations, we measured some primitive operation costs such ns goal fork,
untficaiion, and suspension. We also measured the effectiveness of sume optimigation technigues, which were
devised to get rid of some disadvantages of logic programming languages as compared with conventional
procedural languages.

In terms of inter-processor operations, actnal commupication overheads in two benchmark programs are
also measured, in addition to the analysis of the inter-processor message handling costs[7).

2 Intra-processor Operation Costs

2.1 Append Speed

An append (list concalenation) program is often used as a benchmark program for logic programming
languages. Append program writden in KL1 [ollows:

append([XiX1],Y,Z) :- true | Z=[X1Z1], append(X1,Y,Z1).
append ([1,Y,2) :- true | ZsY.

goal stack
(e-1) M 0.7 enqueue and dequeue

guard unification
(g-1) | o.05 SUCCESS 0N atomic
(2) | 03 success on list

suspension (hook + re-enqueue + degueue)
=) 1 single
=2) T 2-way multiple wait
(s-3) I ¢ c 4-way multiple wait
(s-4) I built-in

body unification
(b-1} B o2 V-B bind value to var
{b-2) 03 V- make ref to var

(b-3) 0.1 atomic-atomic pattern match
o-4) N 25 list-list pattern match
0 1 2 3 4 5 G 7 B 9 10

(Append-LI}

Figure 1: Cost of Typical Intra-processor Operations

The cost of one reduction (iteration) of the first clause is 39 steps of the micro instructions in the best
case {no suspension, etc), and the speed turns out 128 KRPS (Kilo Reduction Per Second) assuming ne
cache miss.

In this paper, we define the cost above {about Bpsec) as one append-LI{ Logical Inference) ar ane LI to
normalize our measurement results in the following sections for comnparing each items.

2.2 Basic Operation Costs

Figure | shows the costs of typical primilive operations in KL1 programs.

The cost of enqueuing a goal to the goal stack and dequening it is about 0.7 append-LI. As the append
loop is performed in tail recursion optimization (TRO), the gain of TRO in append is (0.7/1.7) »x 100 = 40
%.

There are four typical cases in a guard enification: success to tesl an atemic data (g-1) or an structure
data such as a list (g-2), and non-success because the caller variable is not instantiated (g-3) or the valueis
mismatched {g-4). (g-3) causes suspension of the goal if there is no alternative clause for the call. We can
avoid most of (g-4) by clause indexing compilation,

Non-busy wait mechanism is used for goal suspension. The goal is connected to the causal variable and
waits for its instantiation. We call this operation goal hooking. Suspensien in Figure 1 includes the sum

of the costs for hooking, resuming {re-enquening) and dequening the goal (s-1). If there are two unbound
variables each of which may allow to commit a clause, the goal is hooked to both variables to construct an

Table 1: Performance improvement with structure reuse

Mo reuse (KRP'S) | Frame reuse (KRPS} | Element reuse (RKRFPS)
Append 114 128 146
Qo 958 ERLE 113
Primes 55.9 508 61.2

RFPS: reductions per second

O R-wait suspension (5-2). (5-3) is the case of an OR-wait suspension of four variables. KL1 body built-in
predicates also suspend if one of their input arguments is uninstantiated {s-4).

Most body unifications in K11 are; (b-1) binding a value to an unbound variable or (b-2} making a
reference pointer from an wunbound variable to another. Note that (b-1} does not include the cost for
re-epnguening goals hooked to the instantiated variahle.

t is rare to perform a patlern matching between atoms (b-3) or structures (b-1), and the latter is not

optimized in the current implementation,

2.2 Effcctivenecss of Optimization Techniques

In this section, we give measurement results in terms of some optimization techniques, intending to get rid
of the disadvantages of lagic programming languapes, as compared with conventional procedural languages.

The techniques are (1) destructive update of struciure data, and (2} built-in stream merger, each of
whirh is based on the multiple reference bit (MEB) management scheme(1]. The reader is referred to [3] for
details of thess technigues,

2.3.1 Destructive Update of Structure

The effect of the structure reuse was measured with several small benchmark programs, such as Append,
Guick-sort, and Prime numeber generator. Each program was compiled in three ways and the execution
speed of each Is weasured. The three ways are:

1. Without anv structure rewse;
2. With structure frame rense;

30 With structure element ranse.

Table 1 shows the measurement results.

The performance improves by 10% to 30% with structure element reuse in these small benchmarks. This
improverment is mainly brought about by the decrease of the number of jnstruction steps when running these
small bench-marks. However, structure rewse can also reduce the frequency of memory access, and this can
increase the performance particularly on shared memory machines such as the parallel inference machines
(PInde)[4].

2.3.2 Built-in Stream Merger

The cost of the huilt-in merge procedure is compared with the merger defined with KL1, to find out how
the built-ln merger improves the performance.

Figure 2 shows the cost of merging one element, with the input list’s MED both on and off.

The difference between the KL1 merger and the built-in merger with MEB on can be regarded as the
effect of the built-in merger representation, which can be realized even in the implementation without the
MEB mechanism. The four times performance was attained by the introduection of the built-in merger.

The difference between the built-in merger with the MRB off and on is the effect of the MRB. Execution
with the MEB off is twice as fast as that with it on. i

LB : KL1 merger with MHEE on
KW KL merger with MRB off
EB : Built-in merger with MRE on
BW : Built-in merger with MER ol

=F=Tty T F. L - Fo]
—
=
;

e =1

(LI}

o N I i

[N E] RW Bo Bw
Figure 2: Performance of the merge operation

Although the performance improvemment with the built-in merger without MREB scheme seems to be
sufficient, we are conviuced that MRB mechanism is necessary, since merge operation is used guite frequently
in KL1 programs, and inftuences the overall system performance.

3 Inter-processor Operation Costs

3.1 Message Handling Costs

Figure 3 shows the costs for handling typical messages.

A Ythrow message is used for load distribution, and a goal (process) is transferred to another processor
by this messaze,

A Yread message s sent to refer the data object existing in another processor. The value of the data
object is transferred by an Yanswer_value message as the response Lo Lthe fread message. More details

Shihirow 10.7
al EII'II.EKREF. EXAE ‘_-r_'v-v -rv‘v*v‘r'v‘r+r'v’r‘v‘v'v’f R o o o o] 16.3

Gl Fl e e NN N N N 0

65 bytes
%read [] sendingcast

EXREF

14 byles m Receiving cos!

Yeanswer_value - Metwork cost
[atam | EXREF)
24 bylas
14 186 18
(Append-LI}

Figure 3: Cost of Typical Inter-processor Operations

.55_

Table 2: Message Frequercy and Reductions

Pentomino (393 KREPS on 1 FE)
[Num of PEs | 4 PEs [16 PEs | 64 I'Es |
excculion time (msec) | 54,60 14,62 4,33
total reductions {x1000) | 8317 | &332 §.340
reductions/ser (RRPS) | 152.2 | 570.1 | 1,010.4
reductions/msg 221 108 58
msg, bytes [see (% 1000} 4.5 § 108.1 4105

Bestpath (23.4 KRPS on | PE)
[Num of PEs | 4 PEs | 16 PEs | 61 PEs |
execution time [msec) 10,655 4,062 1,691
total reductions (= 1000) | 987.7 { 12136 | 1,505.2
reductions/sec {KRPS) 027 | 2988 B9, 1
reductions/msg 21.49 1.7 6.2
| msg bytes/sec (x1000) 114.0 | 6325 3.854.3 |

about inter-processor eperations are found in [6].
The measurement condition follows:

s The costs of sending and receiving a 65-hyte Ythrow message whose theee arguments are an atonn and
two external poiniers, which point to the data ehjects existing in other processors, as in a typical

sitoalion.

* The costs of sending and receiving a 14-byte Yread message requesting the contents of an external
pointer and a 24-byte Jansver value message answering the request. The returned data is a list
whose CAll is an atomic data and the CDR is an external pointer.

The rouling hardware have 5M bytes /sec of the bandwidth for transmitting messages. Compared with
the network costs (hardware capability: 1.67/0.36/0.62 append-LI for 65/14/24-byte), the sending and
receiving costs of the microprogram execution are guite large. They include the costs of address translation.
encoding and decoding messages, and distributed goal management and other resource management.

3.2 Measurements with Benchmark Programs

We took measurements for two different types of benchmark programs.

* Pentomino: A program to find out all solutions of a packing piece puzzle (Pentomine) by exploring the
whole OR-tree. Two-level dynamic load balancing is employed [3].

+ Bestpath: A 160 x 160 grid grapl is given together with won-negative edge costs. The program deter-
mines the lowest cost paths from a given vertex to all the other vertices of the graph by performing a
distributed shortest path algorithm. The vertices are represented as KLI processes, and they commu-
nicate with each other to determine the shortest paths.

3.2.1 DMessage and Reduction Profile

Table 2 shows the execution time, the total reductions and the message frequency, ete, The message sending
rates om G4 PFs are: one message per 88 reductions in Pentoming, and one per § reductions in Bestpath,
The average network traflic can be calculated from these figures. Relative to the 5 Mbytes/sec processor-
processor channel bandwidth of the Multi-PS] network hardware, the average traffic on a processor-processor
channel is very small; 0.02% (Pentoming) and 0.3% (Bestpath} of the bandwidth, We expect that the

network hardware will not be a bottleneck in inter-processor communication even if the system scales up to
1K processors.

3.2.2 Huntime Analysis and Speed-up

Figure 4 shows the average breakdown of execution steps of all processors and speed-up ratio with both
benchmarks.

In the case of Bestpath problem, the idling ratio 1s not worse than that of Pentomino, however, the
compuling ratio is much worse becawse large inter- processor communication overheads and large cache miss
penalty exist. Thus the speed.up ratio of Bestpath problam is worse than that of Pentomine, as shown in

figure 4.

4 Conclusions

We reported some measurement results of intra- and inter-processor operation costs of the Mulii-P51 ma-
chine.

With regard to intra-processor operations, it was known that some primitive operations, such as typical
guard unification, are performed very fast, wsing tagged architecture of the hardware. [t was also known
that some measurement results prove the effectiveness of the optimization technigues we devised.

Concerning inter-processor communications, it was ascertained that the network hardware is not fully
used, and most communication overheads are brought about by the micro steps for message handling, We
now have plan to optimize these operations by re-writing the micro codes relating to message handling. and
expect thal the execution steps will be reduced much.

However, even now, Lthe dynamic characteristics ol two benchmarks show that inter-processor commu-
nication can be hmited without affecting the workrate of processors by contemplating the load balancing
strategy. We think both language implementations and application softwares cooperate together in order to
accumulate much more experiences concerning concurrent logic programming languages.

Relerences

[1] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In Proceedings of the
Fourth International Conference en Logic Progmmming, Vol. 2, pp.276-293, 1957,

[2] T. Chikayawna, H. Sato and T. Miyazaki. QOverview of the Parallel Inlerence Machine Operating System
(PIMOS). In Proceedings of the International Conference on Fifth Generation Compuler Systems,
pp-230-2a1, ICOT, Tokyo, 1988,

[3] M. Furuichi, K. Taki and N. Ichivoshi. A Multi-Level Load Balancing Scheme for O Parallel Ex-
haustive Search Programs on the Multi-I'SL In Proc. of the Second ACM SIGPLAN Sympesium on
Frinciples and Fractice of Farallel Programomang (PPalPP), 1990.

[] A. Golo, M. Salo, K. Nakajima, K. Taki and A. Matsumoto. Overview of the Parallel Inference Machine
Architecture (PIM). In Proceedings of the Internationa! Conference on Fifth (eneration Computer
Systems, pp 208-228, [COT, Tokyo, 1988

[5] Y Inamura, N, lehivoshi, K, Reokusawa, K, Nakajima, Optimization Techniques Using the MRT} and
Their Evaluation on the Multi-PSI/V2. In Proceedings of the North American Conference an Logic
Frogramming 1959, pp.007-921, 15589,

[6] K. Nakajima, Y. Inamura, N, Ichiyoshi, K. Rokusawa, T. Chikayama. Distributed Implementation of
KEL1 on the Multi-PST/V2. Tn Promeedings af the Sisth Interationel Conference an Logic Progranaming,
pp-436-451, 1989,

Work rate

Work rate

I 2 4 8 16 32 o4

Mum of PEs O e

B Cache misa
B8 Msg handling
B Computing

Num of PEs

a T T ' o))
o an 1] &0 o 20 40
Num of PEs Num of PES
o Spead-up
=+ |deal
Pentomino Bestpath

Fjguju 4: Runtime Analysis and Speed-up

59

[7] K. Nakajima, N. Ichivoshi. Evaluation of Inter-processor Communication in the KL1 Implementation
on the Multi-PS1. In Proceedings of the 1990 Infernntional Conference on Parallel Frocessing, Vol. I,
1950,

[8] H. Nakashima and K. Nakajima. Hardware arclitectere of the sequential inference machine @ PSL-IL
In Proceedings of 1987 Symposive on Logic Frogrmieing, pp 104-113, 1087,

1. Overview of the Multi-PSI

Froni-end
Processor

Fronl-end
Processo

Evaluation of the KLL1
Implementation on the

Multi-PSI

Yu Inamura
ICOT

Katsuto Nakajima
Mitsubishi Electric Corp.

s Loosely-coupled Multi-Processor

e Max. Ex 8

64 Processors

dd/puadde/(puoosag 324 wonanpay) SIUM 0ET -
Ad/24g W 08 "xep = Alowapy urep -
ainysyyary dey, .

(23su 0 = 2w, 9PAY) 14D 1IISd s© 2weg

¢ (juswag Buissaserg) A d

Jsuneqafoas/afg W o -
Funnoy onEwony

: (391]033u0D I0M AN} DMN

SOUBLIWNS

SuoiiesadO 3d-seiu] Jo uonenieas {(q)

sanbiuysa
uoneziwildo Jo ssausalloayly (e)

UOIIBN|BAS 22UBWICLIDS '€

uoneluswajdwi
S PUE T71M 8U1 JO malABAQ ¢

[SA-1INN 24l JO M3IARAQ 'T

1BbIa Weals #
juswubissy a3)buls —
ei1eq

SINJ2NITS 10 Blepdn aalloniisaq =
UOIIBZIUOIYDUAS mojleleq —
(sabenBueT |iNpa20Iyg
|[EUOIIUBALOD Ulim paledwod sy) . o e .
g tig | o 9 -1 H

sabejueapesiqg syl Jo pIy 18D 0 <«

abenbuen

sanbiuyose) Uoieziwndo e
21B07 JUSINDUDD) <= T

(T)uoizeiuawadiu]

al 0 S3siIN}Ea
171> 2ul 4 1E95 obenbueT 171X 24l 10 M3IIAIDAD

— (3 —

PaduaJisjal-sdilniy aqheln <= NO —
peouaLljal-2buls & 440 —

J0U U0 151%3
SI91uod 19Ul Jaylaysn Guliesipuy e

SJajuIog
0} Payoe1ly UOIIBWIOMU] 1Ig 3UQ »

(Mg eouasayey BIdIINN) 9YIN By

2WaYns
g4 3yl JO MalnIanO a9y

aiepdn
SAllONILSaq saldeuld d4W =4 L —

abien
111§ 248 SpeayIsAQ 2yl ybnoy L

Aedly 3|gqeINN
AQ speaysand Jueisuod yim auog —

uolnjejuswa|duw]
anleN Ul bulAdoD Ag au0o(—

2IN1DNJ1S JO dlepdn o

=24Nionils
40 91epdn sAldNIISag (T)

SNIBIS GHIN 9Y} JO SUONIPUOY B|qISSO

55

“(Zanpzurtiur)edrsw ‘[zing|x] = ang

| ®nIz -: (amg .mNnHqu ‘ITul)sBiauw

“(CInpzurttur)efisu ‘[gang|y] = ang

“Tur

“gul

| ®0I1 -1 (3ng ‘gur ‘[TuI|¥])efrew

g | eni3 -: (3ng ‘(] ‘rur)edrsw

I

A0 | enIg -i (anpg ‘zur ‘[])eSzew

19bi3iN weslls swil-1ueIsuos (2)

(AMaN ‘WM ‘UTHPTO ‘N A)JuswaTas IoqoaAa~qas

“(Fz*A* y)puedde “(1Z|7X] = Z
| eni3 - (Z'A°[¥|TX])pusdde
"A=2 | anxy - (Z°'A ‘[]1)puadde

66

Tree of Binary Merger Processes

MHV MR Merger Qutput
VAR
3 RC
MHV

’: RC : Reference Count

ﬁ? —

«G)-

|ecd

BunyeaBiL

sajgelien
1221607 J0 ADU31SISU0D) dasy O <=

JUBLWabeUR|Y 92Ul |BUIRIXT —

(eob

(N)J0ssad0udpie0b <=

e be.d
MoJyl AQ uo1Inglilsig peo —

uonesad Jossanoud

(z)uonejuawajdwug
T 343 JO sainieay

-J2]U] »

68 —

iy E

e IamsuRe, _m_.___.m:-_{

A

ﬁg.

A
| 3d wjep
= jeab A - e
...JF \ ﬁJ L
- mu:xm Lﬂ_m
A o] —
T -— WL I 3d
| 3d [3d
.E eob
Eﬂf .ME | wv
‘dx2 ey R
dWL (Mrdmipwore)d * -
| 3d [3d

“(1Z°R° ¥)puadde aﬁﬁM_HHu =7

| anxy -1 (ZA°[¥|T¥]))puadde
Mg 99 MM g3

3 : - .,D "k =2 | enI1 -t (Z°K “[1)puadde
(oasn)
5 pucdag I1aJ uononpay : U
10s I TT9 |3 865 [665 | seurug
[&L M ELT | 180T (M 866| oD
HO M Tvm 2o82ew urgpmg N | MH @ﬂw._“ VH mNH v.H D._”H ﬁﬂmnﬂ_ﬂ..{
o A o sohse pod 8 A osnay | esney | esney
uo g qien 1afeu [Ty 1 g S
d JuaWaly | awrel | ON
B
[
Gl
2dNJjoNI}S
12310 wreaayg () Jo m-..ﬁm.mummb OATINILSI(] AHV

SIMNSOY JUSWINSEITA

[3s5v) 0wl ogL i} og 0

‘oi@

uannoara Joj ek Gujo)g
abessaw jarxs ssEaa; Suipuas
saunna: Bugpuey sBessaw aiseg
B¥dd 01 Adog

EN

w
=]
-
=]
o
=

! 1
I]

(sdais 26g) ses og | EEINNNNSN [

[savfaeg] | l43ugxs | woEl) BN|BA IIMEUE BEaaY

(sdars go) 035 gy | Y

Lsafapz | (l43ux3iwom] | anes samsue puag

(sdassi) vosise [Pl ¢

[saifg vl] [43ux3) pess amacay

[saidapr | (49ux3l peapusg

(sdais o)

ZE NN\ I

[smfa5 | ((d9x3'93ux3' woield) souy an@aey

(sCals 61y) o9s gy [Ry ()

[safasg | ((23Wx3y3ux3woeld) moy puag

SisAleuy 150D uolledunwwon

(stsdpeuy snueui(]) <

sisA[euy pRalIaa() uoljestununue’) Aq <=

jusuraaordw] sourwlola] Jo
1oyow,] UONEIWIT 343 no puly of g€

(sisdeuy 2nig) <

sis{peay 1507 wonyedtunwe) £q <«

wonpeyuaws|diu] % srempIvy Jo uolyen[RAT I'¢

150 uoljedlUNWIWOY § 4-131u] 381e] <= pajdne)-ijasco]

UOIleN[eA);] sadUBWIOIIZ] €

213G Yred 15330YS

(s1zzeg s991g Bunpey) cuiutojuag e

o1 :_ Le

6 ij._”

swwiBorg Supjreunpuag °zg

(swexlorg Sunjrewyoueyg Suisn syuswransesyy)
SisA[euy peaylIaA(UOIJEIUNWUIOS) Z'E

9p07) Jo uoljE|sURIT, —
quauI

-UOIIAUF UOLMIANY PU® JFNQUIIY UICYS JO UOHR[SURI], -
(s0uarsjay

[eusajxg 0 uotye|suel], Sutpniaul) uctje[suel], sjuswndiy —

(uongesadg 173) 12po2sp / 1eposug 1T

(Lrowsp oy
alempiey jiomjay woly sdessapy Suaeg)gydu-Adon -
uoIyIppy 2], afessapy -
(s3dg s1empieyy) voteisueay, 319 § «— ¥d o¢ -
uolIppy 13peay Bessap —

(uorjesad(y asempiey) J9|puey 28essaw oseg

Lpedisag CUILLIDLS S

£34 J0 WON 340 wny
o A S P N JU SN
Fraamw] [0 1sol | 3 oF1 (s/214g) ‘baij ‘dspy °§
e 301 122 “Bsur/uonanpay o em
WP ETET | MT0LS WETST Sdd .
M Ope's | Maee's | M LIg'S uerINpSY (210, = ¥
SUL GPE'p | SW CTG'H] | swr pgg'yg SWILY, UONNIaXF
.|m|.n_m oz Efl__ 1z &_,_mm_.:_‘_u,._..”mu ..:m:ug unI .
%ol % v'g % 691 P wom ows e e o et
% 61 A % e Teo3-Aoxy3y
% L'TT % LG % £'9 Lzvuny
% ¥R | % 6CT % 281 asealaly H g
w.m__ AN n._nm_ RIE w...m LL7 anea deasuey w M
% VL % 618 % L'LE peal) :)
0SL'%6 | 90%'LL cze'Le Iaquiny adessajy [e10],
ad¥ | 449t | @dr | oFussajy
_ (Ed 1/ SdUI £6€) oumuojusg | PEIYISAO UOIIEDIUNLULWOD

seadessaja] Jo Aousnbaig snweud(7'z

73—

(Fd 1 uos/gy gg) =
Pod
[xs/gy #as's
‘dd P8 U0 yjeg 1saytoyg

/AN % %E°0=s/g) 711 =

PeE

S/HIV § X %8070 = s/ay §¢ =
% faree & X S/E 1

=

(1quiny Jauveyy re07,)
(713127 uvereaununuoy ugaga) % ({s/234g) iaquiny aBessajy [ero])

‘dd ¥9 U0 ounuojua g

sHivWILoUSE uo QRLT, HI0Map] T'E'E

SIEMPIEH }IOMIBN] JO UOI}Rn[BAf £'f

MGZ6 [M OFIL | (s/:Ag) ‘oaig Bspy
LT 612 “3sut/uonyonpay
AT068 | N9'e6z | MIT6 Sdy
MTC0S'T [M 9€18'T | 3 L'L86 uorpPNpIy [ei0],
SUTE0°T | SW zop'y | sw 609'01 W], uoljndaxy
0Lz LT 042 | (Fsu/214g) wyFua uea |
[%6z | %9% | %e¢c 232
% EET | % 6¢CT % §'ET Teod-noxysyy
% 6'ET % 6Ll % 2ET aseayaly
% 081 % 9781 % 8§31 £3tumy
ﬁ_m. _mmw onm‘. NmN wm mmﬁ ﬂn._”._m_.rzhm.:m.:._m“__"
W LLE | %8LT| %SLT pealy |
| POF'TPG | FTF'E0T | G00'SH BQuIn a8essajy [¢10]
dd ¥4 Hd 91 dd ¥ 28essagy
B (gd 1/ sdu ¥ez) yred 1593304g]

T4 —

"510SS9204d QQ0T 03 2|qe|eas <=
MO] S1 DIIJEIT HIOMIDN e

% 0¢€
UBY) S53| S| PESYISAC UOI1EDIUNLIWLIOD

‘(abessaw /uo|i1onpal 9) Aouanbady
UOIIEDIUNWWOD IBybiy Ul uaag e

Wwslqodd yoless 91 -y Ul |1BWs
AIDA S| PRBYIBAO UOIIRDIUNWILLOD

ssnbiuy2a} uoeziuldo ayl Ag sswil
g 01 dn peaaoidull sie suollelado diseg

1SN 3yl uo uolleuswe|dil T
241 JO UOIIBN|eAD DUl PBIB3ARS DABY BN

SoueLLLUNS

mmeanm,mHnm e = 8O6'¢C _
a1 o¥¢ £12 X /€3 000'€9

(raquumgy [guueysy myng)

(438ua woryeaunwwcy) ueagy) x ((sfe314g) 1oquiny aFessay [e3ar,)

(€12 y18ua uonyestuwioy weayy) UCIeAUUTIOS) WOPUEY] »

"Bt fuony
npeYy g9 = (yyedissg = Lowenbayg sEussupy jurelsy aurg ‘s

(z€ = g€) ad 0001 »

uotpuoy
weysAg aedg sadie] 105 uonednuy zigg

Benchmarking and Evaluation of Software Systems

the EDS and Flagship Projects
Paul Townsend, Brian Proctor and Paul Watson

ICL,
Wenlock Way, West Gorlon,
MANCHESTER, M12 5DR.

Abstract.

In this position paper we briefly review the role of the Banchmarking and Evalua-
tion of Software Systems, with particular reference to two of the parallel computer
system projecis in which ICL has recently been involved: Flagship (1985-83) and

EDS (1988-).

Benchmarking and Evaluation has an important role to play in the design of all computer sys-
tems, but this is particularly true of parallel architectures, whose performance characteristics are
currently far less well understood than are those of conventional serial architectures. There are

two reasons for this:

« Computer designers have accumulated 40 years cf experience in the behaviour of serial
computers, whose basic design has changed little during that time. Parallel computer de-
signers have only a few years experience to draw on, and the range of architectures has
been far more diverse, making it difficult to apply the experience gained from one parallel

machine to the design of anather.

« The exploitation of parallelism adds an extra dimension of complaxity to the behaviour of a
computer system.

For these reasons great stress has been placed on benchmarking and performance evaluation
in the Flagship and EDS projects.

The Place of Benchmarking and Evaluation in the Development Process

A benchmark provides a method of exercising an interface in a computer system for one of 4
reasons [1]:)

« Performance Evaluation. Benchmarking Is one part of the wider aclivity of performance
evaluation, which also includes measurement and tuning of existing systems, and the mod-
elling, by simulation or analytical techniques, of systems yet to be implemented. Six different
types of Performance Evaluation activity have been identified [2]:

— Simple Primitive Performance Tests to measure the fastest achievable execution
rate for a particular primitive operation in order to verify that the implementation satisfies

the design requirement.

— Synthetic Primitive Performance Tests to measure the variability of primitive perfor-
mance with variation in the environment, to ensure that when system overheads are

taken into account, the imp]amentation satisfies the design requirement.

— Application Developmeant Benchmarks to compare the performance of different sys-
tems when performing a particular type of work in order to validate that the system
under development is likely to satisfy user requirements.

— Exemplar Demonstrations to demonstrate the system in the best possible light, so
that performance measures made are those on which the project wishes the system
to be judged externally. An example of this is the use of nfib to measure function calls

per second in a functional programming systam.

- Synthetic Workload Benchmarks to compare the performance of different systems
when performing work which simulates a real customer workload.

— Real Workload Benchmarks to compare the performance of different systems when
performing a real customer workload.

« Verification and Validation of the system components and the integrated system at each
stage of the development.

« The Demonstration of System Capabilities at appropriate points in the project davelop-
ment.

« System Tuning to achieve optimum performance of the integrated system. In order o
assist this, both the Flagship and EDS systems include performance monitors which provide
a graphical display of user selected measures, for example the processor utilisation of each

PE in the system.

The Flagship Project

The Flagship project [3] [4], supported by the UK Alvey programme, designed and implemented
a paraliel computer system aimed mainly at the execution of declarative languages. The lack of
widespread use of these languages by application writers created benchmarking and performance
analysis problems as there were no application development or real workload benchmarks. This
made 1t difficult to judge the performance of the system relative fo both other declarative language
implementations, and to conventional serial language implementations.

The project had to creats its own application benchmarks mainly by receding a selection of the
Gabriel LISP benchmarks in HOPE+. However, these are still relatively small and do not represent

commercial applications.

The EDS Project

The ESPRIT Il European Declarative System (EDS) project has the aim of developing a parallel
system to provide an evolutionary upgrade to existing (sequential) business/ commercial IT areas.
The application to Felational Database Management Systems (RDBMS) has been chesen as
the prime focus of the project because it is a key component of the IT business of the project

participants.
In order to appear 1o customers as an evolutionary upgrade, il is a requirement that the parallel
RDBMS must run existing database applications. This has been achieved by supporting the

standard database languages, for example SQL. Therefore the most important benchmarks are
those in the RDBMS area, and these will be used to compare the performance of the EDS RDBMS

with other systems.

Because of the commercial importance of on-line transaction processing (OLTP) and database
management systems (DBMS), 34 IT organisations set up the Transaction Processing Council

— 77

with the aim of defining standard, scalable OLTP/ DBMS benchmarks. Their first output TPC “4*
was a standardized low complexity transaction processing “Debit-Credit” benchmark. They are
now in the final stages of standardizing TPC "B", a batch version of TPC "A". Work Is currently
proceeding on two new benchmarks, one 1o measure commercial On-Line Transaction Processing
performanca, the other for high complexity management information systems.

The selection of application and workload benchmarks for the EDS RDBMS is therefore made
straightforward by the presence of these TPC benchmarks, which will be used to measure the
system. One early experiment which gave confidence in the EDS design was to measure the
performance of a version of Debit-Credit on a prototype RDBMS implementation on the Flagship
system. Its performance could then be compared with that of several conventional serial systems,
and this showed that a parallel system like Flagship or EDS could perform RDBMS computations
with a better performance to cost ratio. This experiment is reported in reference [5)].

Synthetic workload benchmarks, however carefully designed cannot completely characterize all
applications, and so within EDS thereis a !arge activity in porting commercially important database

applications onto the EDS system.

One example of an EDS application is the Planes Geographic Information System. This was orig-
inally written in Cobol with embedded calls to ICL IDMSX and TPMS to provide the user interface
and database handling. The system is currently being medified to utilise the EDS RDBMS. It is

considered to be a good example application because:

» The user dalabases are large, typically several Gigabytes.
« |t is an existing, wldely used commercial application.

« It needs more processing power, paricularly to cope with a range of interactions from simple
data retrieval to complex queries.

References

(1] A.D. Kitto, The Role of Benchmarking in the Development Environment, ICL Flag-
ship Project Internal Document FLAG/WP/BPE.S00, (1987).

[2] A.D. Kitto, Performance Evaluation Strategy Definition, ICL Flagship Project In-
ternal Document FLAG/SD/8PE.001, (1987).

[3] . Watson, J. Sargeant, P. Watson and V. Woods. The FLAGSHIP Paralle! Ma-
chine, CONPAR 88, BCS Workshop Series, CUP, pp. 125-133, (1988),

(4] P. Townsend. Flagship Hardware and Implementation, ICL Technical Journal,
5(3), (1887}.

[5] S.. Cockroft, M. Ward. Performance Aspects of the EDS Parallel Processing
Machine, Proc. of UKCMG Conf., Glasgow (1990).

Performance Aspects of the EDS
Parallel Processing Machine

S.J. Cockroft, M. Ward
5G Systems, ICL
Wenlock Way, Manchester. M12 5RA

3rd January 1990

Abstract

Conventional computer systems® architectures and programming
technigues place inherent limitations on performance. Such systems
cannot process ever-increasing amounts of data and information with.
out reaching a 'saturation point’, when demand exceeds system capa-
bility. This paper outlines the ED'S (European Declarative System)
parallel machine architecture that has been designed to support the
needs of the database-related business application areas of the 1990s.
Results are given for a database benchinark executed on a 15 node par-
allel machine (Flagship), and a method of abtaining and presenting
performance data from the machine is shown.

CONTENTS

1

INTRODUCTION

1.1 Background
1.2 Objectives
1.3 Machine Architecture: An Overview

APPLICATIONS AND PERFORMANCE
EDS ARCHITECTURE

3.1 Target System
3.2 Parallelism
3.3 Diagnostics

DEBIT-CREDIT BENCHMARIK

4.1 Requirements
4.2 F]a,gship]_m]::lenienlatiun

PERFORMANCE MEASUREMENT

5.1 On-line Measurement
9.2 Post-run Measurement

PERFORMANCE METRICS
CONCLUSIONS
BIELIOGRAPHY
APPENDIX

A.1 EDS System Diagram
A.2 Diagnostics Interface Display
A.3 DebitCredit Runtime Display

A.4 Meters Runtime Display
A.5 ‘DebitCredit’ Performance Metrics

1 INTRODUCTION

1.1 BACKGROUND

The Flagship! parallel processing machine has been built by ICL in con-
junction with UK universities under an Alvey contract and has been used
extensively to obtain performance information. This information has been
used to design its successor, the EDS machine, which is being developed to
respond to the needs of leading commercial users of Information Technolagy.
ICL is the lead contractor in the EDS project (ESPRIT II EP2025), and
is supported by partners in France (Bull), Germany (Siemens and ECRC),
Italy, Spain, Portugal, Greece and the UK.

1.2 OBJECTIVES

The current growth in advanced database-related business applications is
approximately 30% per annum. If this trend continues then it is anticipated
that in the mid 1990s, conventional (sequential) computer systems will have
insufficient capability to process the vast amounts of data and information
that this will involve.

The project is concerned with developing a form of parallel computing
which will be appropriate to the information system needs of the partners’
business customers through the 1990s. In order to meet this requirement the
technology must be competitive with alternative approaches, must conform
to prevailing standards and must be capable of being an integral part of
contemporary systems. Parallel techniques are therefore being developed
and applied within the fields of advanced database management systems and
application systems for business professionals.

By the end. of 1990, the first protoype EDS machine comprising ¢ Pro-
cessing Elements (PEs) will be available for experimental work, During 1991,
an EDS machine containing 64 PEs will become available. The EDS project
comes ends in 1992, at which time system integration will have been com-
pleted with applications demonstrated on the machine.

The EDS project is influenced by experience gained from the Flagship
project. A prototype Flagship machine has been used to exccute a transac-
tion processing benchmark (the results of which are presented in appendix

1An Alvey project resulting in a 15 element parallel machine [6] to suppart Hope* [7).

- B1 —

A.5) at a rate of 43 tps (at 30% PE utilisation). The performance target for
a 256 PE EDS machine is 12,000 tps (at 30% PE utilisation).

1.3 MACHINE ARCHITECTURE: AN OVERVIEW

The very nature of conventional systems prevents the exploitation of par-
allelism; they are not efficiently extensible, and the complexities and costs
involved usually restrict such configurations to duals or quads.

There are several factors to be considered in parallel systems development:
portability, extensibility, security, performance, cost/performance, availabil-
ity and integrity. Of these, performance is the most important parameter
and is usually the focus of interest.

The trend in microprocessor development is towards very high perfor-
mance rates (33 - 50 MIPS). The trend in semiconductor store is towards
increased volume with little improvement in access time. Store bandwidih is
therefore rapidly becoming a system bottleneck, even with wide data buses,
especially when multiple users share access to common data areas. We have
therefore chosen to have distributed store architecture. This architecture
is defined by the Process Control Language (PCL) [5], which is the com-
mon interface through which all subsystems utilise the parallel features of
the machine. It also provides a multi-level context model with light-weight
threads, efficient and reliable message passing, and mechanisms for exception
handling, scheduling and load-balancing in a highly parallel system.

PCL is the main interface to the EDS Machine Executive (EMEX). By
having a common PCL and EMEX which controls parallelism for the exe-
cution models of the various subsystems, some major benefits are achieved.
Firstly, it simplifies communication and synchronisation between multiple
language subsystems (i.e. subsystems implemented in different program-
ming languages) within a single application. Secondly, it dictates overall
machine contrel (scheduling resources as necessary between the separate sub-
systems, and in a multi-user environment, between individual instances of a
subsystem), and thirdly, a single set of mechanisms allows opportunities for
optimisation between the EMEX and the supporting hardware.

The EDS database subsystem, EDS language subsystems and a UNIX
subsystem run on top of the PCL interface. The language subsystems being
developed are parallel versions of Common Lisp, Prolog and C/C++. Lisp
and Prolog have some implicit parallelism and, by building on the features

_EE.

of PCL, further parallelism may be explicitly defined (in a declarative style),
within the language subsystems. These two languages are used to build the
advanced applications with C/C++ being used as the system implementation
languages.

Within the chosen market-place, the relational database management sys-
temn is a major consumer of processing power. SQL is the interface to the
relational database management system (rdbms). The parallelismn in the im-
plementation of the rdbrns is transparent to the application using SQL. Also,
the size of the work involved in satisfying the SQL query is sufliciently large
to make an SQL server architecture viable. The EDS machine is therefore
a server for SQL which receives requests from the host system. Initially,
the focus of the applications will be towards medium concurrency, medium

complexity transactions.

2 APPLICATIONS AND PERFORMANCE

A set of industrial and exemplar applications have been chosen to provide
a realistic test-bed to assess the implications of porting applications, appli-
cation development and operational performance. The work is centred on
database application areas and includes a Geographic Information System, a
public network management system, a language translator and a behavioural
logic simulator,

The typical unit of performance used in conventional systems is MIPS
(Millions of Instructions Per Second), which is related to the speed of exe-
cution of the system instruction set. However, it is only partly related to
performance, since a raw MIPS figure does not take into account the capa-
bility of the instruction set nor the system hardware. Benchmarks are more
realistic performance indicators, but these can lead to yet more problems.
For example, the resources required to execute the benchmark in full may
not be available due to the prototype nature of the system under test. Also,
if the benchmark is scaled down to fit prototype resources, the potential
to exploit parallelism may be severly restricted. The benchmark used on
Flagship is an adaptation of TPC BENCHMARK'" A [2] (derived from [1])
called TPC-A [3] which involves debiting and crediting bank accounts in a
transaction processing environment. A more detailed description of TPC
BENCHMARK'™ A and TPC-A is presented in section 4.

A4

3 EDS ARCHITECTURE
3.1 TARGET SYSTEM

The EDS machine is a multiprocessor with an initial design target of up to
256 Processing Elements (PEs) as shown in figure 1 (appendix A.1). Each PE
uses an advanced commercially available RISC chip-set (Fujitsu H40) driving
a local store (from 64 Mbytes to 2 Gbytes) using Mbus at 142 Mbytes/sec.
The PEs communicate over a custom designed delta-network.

In the prototype machine there will be up to 64 PEs each having 64
Mbytes of storage representing 4096 Mbytes in total. Some of these elements
are used to support diagnostic, host system and 1/O connections. An entire
data-base may be store resident (volatile) and distributed across the available
local stores. The route to disc store is via the I/O element (which is also
used to establish the data-base, perform updates, etc.).

3.2 PARALLELISM

Data and processing activities are distributed across the PEs which can co-
operate with cach other by sending messages across the delta network [8].
Whilst this may appear to be a ‘bottleneck’, the message protocols are very
simple, requiring only a destination PE number to establish a route. Full
availability (i.e. the abilty for PE(x) to connect to an available PE(y) regard-
less of any other established connection) across the network would present
an horrific interconnect problem for 256 PEs. A delta-network configuration
is therefore used, which affords a practical compromise, enabling concurrent
message passing when routes are not blocked.

Flagship was based on the ‘fine to medium grain’ approach to processing
units of work. This resulted in significant overheads when scheduling such
umts, thus restricting performance, Although Flagship has disc store access,
there is no backing store implementation which is a further restriction in
the execution of benchmarks. The EDS machine architecture is based on a
‘coarse grain’ approach to processing, which embodies the performance and
efficiency of conventional processing but retains the ability to distribute work
dependent on the prevailing conditions.

85 —

There are still issues to be resolved concerning work distribution which
require further development. On Flagship, work can be exported from busy
PEs (when a certain activity level is reached) to the least busy PE (each PE
propogating its activity level back through the network). This algorithm can
be modified using a ‘strength of feeling’ (sof) parameter. Exporting work
toward specific data held on a remote PE (static routing) requires maxi-
mum sof. A minimum sof results in work being exported to the least busy
PE (dynamic routing). Intermediate values specify an activity threshold,
below which static routing occurrs and when reached, dynamic routing is
employed [9].

With data-base applications, simple searches/queries can probably be
directed toward specific PEs (static routing), however, more complex queries
present other difficulties. These queries may include searches, inferences,
further searches, etc., resulting in highly dynamic forms of parallelism. This
will inevitably result in computatjons being physically separated from the
required data structures. Some work In this area is being carried out at
Manchester University [4].

3.3 DIAGNOSTICS

The DE (Diagnostic Element, Figure 1, appendix A.1) provides facilities for
a variety of activities, from commissioning hardware and kernel, to machine
support. In the early versions of the EDS machine, all input/output will be
via the DE. The facilities provided will include bootstrap, error reporting and
handling, basic engineers’ facilities and simple input/output. Each PE has
local diagnostic facilities to support the element. Comununication between
the DE and PEs is via the Network and an R5232 Diagnostic and Control
Interface (DCI). The Network is the main communications path, with the
DCI being used for the low level functions such as reset and bootstrap.

The single engineer’s console provides access to all the diagnostic facilities
of the machine. Access for multiple users is provided via the host connection,
which has only a subset of the diagnostic facilities for security reasons.

The diagnostics also support machine simulation. The user interface to
the real machine or a machine simulator is very similar and is depicted for
Flagship in Figure 2 (appendix A.2). Input is a combination of keystrokes
(bottom window) and function-select ‘push-button’ icons. Responses are
displayed in the middle window and system status information in the top

window.
The more difficult aspects of diagnostics are in the application domain

at the execution model level. The longer an application executes before
errors are manifested, the more complex the diagnostics becomes due to
the dynamic nature of the processing. In this situation, the expertise of
the application writer is required. Diagnostic facilities require ‘break-point’
setting to enable the user to specify conditions to stop the processing and
halt the machine. The strategy used on Flagship is to stop at a point prior
to an error condition, then single step through function execution with the
machine displaying monitored informnation. At each step the user is able to
access machine stale information. This approach will, however, require some
refinement for EDS, due to the coarser function granularity.

BT

4 DEBIT-CREDIT BENCHMARK

TPC BENCHMARK"'" A is a benchmark agreed by major concerns in the
computing industry (i.e. ICL, Bull, IBM, DEC, RTI, Oracle etc.). At the
time experiments were being carried out on Flagship the benchmark was
essentially as follows, but has since been superceeded.

41 REQUIREMENTS

These are essentially as follows.
A single transaction is as follows :-

¢ Begin transaction

— Read 100 bytes from the terminal
— Update account X:
* set new balance = balance + delta
* test new balance is greater or equal to zero
* write new balance to account X
- Write to history file
* account id, teller id, branch id, delta, time stamp
— Update teller T
* set new balance = balance + delta
— Update branch B
* set new balance = balance + delta
— Write 200 bytes to the terminal

» Commit transaction

— AR —

The Database requirements are as follows.

s Account records : 10,000,000

¢ Teller records : 10,000

¢ Branch records : 1,000

o History records : 2,590,000 of transactions

Response time requirements are that 95% of transactions completed must

have a response time of less than one second.
At least 15% of transactions should be carried out at a different branch

from where the account resides.

4.2 FLAGSHIP IMPLEMENTATION

There are essentially two problems concerning the implementation of TPC
BENCHMARK" A. The first is the protoype nature of the Flagship ma-
chine and the storage size for the above database. If account records are
typically 100 bytes, then this alone represents 1000 Mbytes of storage. We
can scale down the store size and maintain the same Account/Teller/Branch
ratios correspondingly. The second problem is that to achieve a high level
of concurrency and parallelism, we need a large number of branch records to
avoid contention and deadlock situations, i.e. access contention for the same
branch record.

The EDS architecture does not place any restrictions on applications but
in this instance, greater concurrency for experimentation purposes can be
achieved by increasing the proportion of teller and branch records by at least

an order. :
The implementation for Flagship (called DebitCredit) is as follows :-

o Account records : 200,000
s Teller records : 3,000

» Branch records : 3,000

The history records are ommitted because of store limitations and the ab-
sense of a backing store implementation. However, the process of creating
such a record would be relatively trivial requiring the creation of a local
pointer reference to the transaction data which is appended to a list of such
references.

Most of the transactions are remote from the data, the requirement be-
ing at least 15% of such transactions. Flagship performance can thus be
improved since directing more transactions toward the data would reduce
the ammount of network traffic per transaction. Also, Flagship store man-
agement and packet formats have restricted the maximum width of B-trees
to 80 entries whereas extra width would reduce the depth of the tree data

and the corresponding access time.

5 PERFORMANCE MEASUREMENT

Performance measurement is a function of the Diagnostic Element (DE) using
information periodically received from each PE. The following tools exist to
extract the performance dynamics of applications.

5.1 ON-LINE MEASUREMENT

Figure 3 (Appendix A.3) depicts the Flagship DebitCredit tool. This 1s
invoked prior to execution of DebitCredit. It shows total number of trans-
actions so far and the current average transactions per second. The various
icons are displayed dynamically for demonstration purposes to give the ob-
server an impression of the DebitCredit transaction activity.

Figure 4 (Appendix A.4) depicts the Flagship meters tool. This is in-
voked via the DE and is configurable to include monitoring of the various
units within each Processing Element. These include store usage, work load
(units of work still to do), work done so far (number of rewrites), network
traffic, function call trace (user defined), PE idle time (no work to do) and
locality (the proportion of store accesses local to the PE). Part of the activity
within each PE is to maintain statistical information which is periodically
transmitted to the DE (the period is user defined). Expertise in the applica-
tion domain is required to interpret the graphs against application activity.
The user will analyse work distribution, network utilisation, store utilisation
etc, with a view to improving overall application performance when behaviour
is not as anticipated.

Execution can be suspended at any point to enable monotoring as de-

scribed in the following section.

5.2 POST-RUN MEASUREMENT

The DE can extract information from each PE whilst an application is ex-
ecuting. The information can then be displayed when convenient using the
meters tool, as if the application were currently executing.

There are also statistical display facilities used for the analysis of perfor-

mance attributes.

a1

6 PERFORMANCE METRICS

DebitCredit metrics extracted from the 15 Processing Element Flagship ma-
chine are presented in Appendix A.5. They show response times and trans-
actions per second obtained with varying degrees of concurrency (number of
concurrent transactions) up to the maximum obtained with 15 Processing
Elements.

Any work exported by a Processing Element is sent to the least busy
Processing Element. In this example, this is not the best strategy, hence

some optimisation is required.

7 CONCLUSIONS

The DebitCredit results obtained with the Flagship machine of 43 tps (at
30% PE utilisation), have encouraging implications for the EDS project.
The inclusion of history records will obviously degrade this performance,
however, the results were obtained under ‘worst-case’ conditions and the

following optimisations are possible.

¢ Most transactions were carried out remotely from where the data was
actually held resulting in large amounts of network traffic to both read

and then update data.

e The distribution of global access data can be improved to restrict data
scarches, although this would involve some duplication of information.

¢ ‘Intelligent’ search algorithms can be used, since these are currently

sequential.

* The granularity is too fine, resulting in the unecessary exporting of
small units of work away from the associated data, again increasing
network traffic.

Customised hardware to assist with PE communication will give further

performance benefits over the firmware based model of Flagship.

The performance target for a 256 PE EDS machine of 12,000 tps (at 30%
PE utilisation) is a consequence of the high performance of each individual
PE. The architecture does not place any restrictions on applications but some
will derive more benefit than others when executed on an EDS machine.
For example, an application such as TPC BENCHMARK'™ A will derive
less benefit than the class of applications used to process vast ammounts of
data and information which bave far more potential to exploit the parallel
resources of the machine.

1]

(2]

3]

(4]

(sl

6]

(7]

BIBLIOGRAPHY

Tom Sawyer & Omri Serlin
DebitCredit Benchmark - Minimum Reguirements and Compliance List

Codd & Date Consulting Group, 22/Jun/88

TPC BENCHMARK'™ A
Draft 6-PR Proposed Standard, Transaction Performance Couneil

21/Aug/89 (latest version is 10/Nov/89)

5.M. Kellet, ICL
Definition Of The EDS TPC-A Benchmark
Flagship project internal document: EDS.DD.111.0004, 08/Nov/89

I. Watson, Manchester University
Simulation of a Physical EDS Machine Architecture
EDS project internal document: EDS.WP.81.iw01, 13/Nov/89

P. Istavrinos, Siemens
Specification of the Process Control Language (PCL)
EDS project internal document: EDS.DD.15.0007, 11/Dec/89

P. Townsend, ICL
Flagship Hardware and Implementation

ICL Technical Journal, May/87

N. Perry, Imperial College, London

Hope*
Flagship project internal document: IC/FPR/LANG/2.5.1/7, Feb /88

8] T. Hall, ICL

(9

Flagship Network Functional Overview
Flagship project internal document: FLAG/DD/{NE01{, Jan/89

I. Watson, V. Woods, P. Watson, R. Banach

M. Greenberg, J. Sargeant, Manchester University

A parallel Architecture for Declarative Programming

Proc 15th Annual Int. Symp. on Computer Arch., Honolulu, Hawaii,

May/89

9 APPENDIX

Al

EDS SYSTEM DIAGRAM

1

Processing
Element

Diagnostic
Element

Host
Element

I
Element

DELTA

NETWORK

]

Figure 1: EDS System Diagram

— 05 —

A.2 DIAGNOSTICS INTERFACE DISPLAY
FLAGSHIP GOM 2.19 09/11/81 COPR. ICL 1987 wodel.r3bSmon

Hode] 1 2 3 d 5 3] 7
232 meg meg conn
kg] + + - an - - - =
Stat halt halt
(ka4 cont cont
Stap %] 4]
ST0 E B
EPY <] B
HS B g
HET 3] g
REWR B B
Tot Revr:B , Current PID:FFFFFFFF
- - 2" . " B . e s e, T g A N A LR .'|'4p.

Dpen complete steve on sc75 as user steve for Application using
rig em2.

Resetting the Emulator, please wait.
Sending resets

Resetting serial Tines

Soft reset complete

gfeffcpg

gfeffeid

Loading net loader

Leading via Met, model.r3bSmen

Services Mode 84988 bytes loaded.
IFL complete, Initialising PE’s.

[wait | stop [start]again] help]abert] leg Ju irp] gquit |

mr open rigl
m» ipl model.r3bSmon
m» init

m> []

Figure 2: Diagnostics Interface Display

A.3 DEBITCREDIT RUNTIME DISPLAY

status Running transactions 117
average (tps) B.d ﬂutstand1ng
ﬁ

Resaal |_=

Figure 3: DebitCredit Runtime Display

— g7 —

A.4 METERS RUNTIME DISPLAY

|

e 512

;E:::':;::'

- Sy Lot Rewr

= T2

£ totidtore

timer: [1]
pix/tick: [1]

i et LA sy W W R A T SR A o

i |

) 66 (seTect)

o |

| 18 (summary) [redraw]) 96

B4 X} B4 -1} g4 I
1 1
4 § 2 L] - & "} Fi &] 2 'l;] 1;
B LiRewr FRLE T JiEewr LTIt g
&4 LL] E4 L 1] (1]

| r]’—
40 a8 2k b 8 28 8 @ 28 +B @ 2B ETROEET
@i1ftore 1iftore 2idtere Jistore 4:itore
148 16 i6 16 16

-

:_-—"_ 1_\—‘;]:
o E
[N 48 8 4B % @ ZB DR 40§ 2
BIHE 1iHE 21HE JiHE §LHE

Figure 4: Meters Runtime Display

— 48

A.5 ‘DEBITCREDIT’ PERFORMANCE METRICS

Steady state is achieved after 1 minute approx.

Average run time is 3 minutes approx.
The last table has accounts set to 3000 to compare with results obtained

using Flagship processing elements having minimum store configuration.
Changing the number of tellers and branches does not affect performance
as much as increasing the number of accounts. The latter increases the depth

of the B-trees accessed during each transaction.

- g4 —

Accounts | Tellers | Branches | Transactions | Concurrency
200,000 | 3,000 | 3,000 19,030 31
_ Average t.p.s. = 855 L]
Transaction Response Times T
[Time range Transactions Perceutage
0 - 199ms 4593 24.14
200 - 359ms 9653 50.73
400 - 5399ms 2762 14.51
600 - 799ms 264 4.54
800 - 899ms 388 2.04
1000 - 1199%ms 152 0.80
1200 - 1399ms 146 077
1400 - 1599ms 106 0.56
1600 - 17%9ms 101 0.53
1800 - 1999ms B4 0.44
2000 and more 181 0.95

Average = 85.5 ms | Maximum = 4400 ms

Percent < 1 sec = 95.95

Accounts | Tellers | Branches | Transactions | Concurrency
200,000 | 3,000 | 3,000 19,679 50
| Average t.p.5s. = 96

Transaction Response Times

Time range Transactions | Percentage
0 - 199ms 3857 19.60

200 - 399ms B6TT 44.08

400 - 599ms 3116 15.83

600 - T99ms 1108 5.63

BOD - 999ms 501 2.58

1000 - 1199ms 292 1.48

1200 - 1399ms 306 1.55

1400 - 1598ms 238 1.21

1600 - 1799ms 237 1.20

1800 - 1999ms 89 0.45

2000 and more 1258 6.39

ﬁv&ra.ge = 527 ms [Maximum = 4580 ms

Percent < 1 sec = 87.70

- 100—

Accounts | Tellers | Branches | Transactions | Concurrency
200,000 | 3,000 3,000 19,478 101
Average t.p.s. = 113.0
Transaction Response Times
Time range Transactions Percentage
0 - 19%ms 2576 13.23
200 - 399ms 6739 34.60
400 - 599ms 2630 13.50
600 - 799ms 1111 5.70
800 - 95%ms 454 2.33
1000 - 1199ms 260 1.33
1200 - 1399ms 221 1.13
1400 - 1599ms 417 2.14
1600 - 1799ms 623 3.20
1800 - 1999ms 799 4.10
2000 and more 3648 18.73
Average = 904 ms | Maximum = 6300 ms | Percent < 1 sec = 69.36

Accounts | Tellers | Branches | Transactions | Concurrency
200,000 3,000 3,000 19,870 150
Average t.p.s. = 130.5
Transaction Response Times =
Time range Transactions | Percentage
0 - 199ms 1335 6.72
200 - 399ms 5062 25.48
400 - 599ms 2458 12.37
600 - T99ms 1201 6.04
ROO - 959ms 891 4.48
1000 - 1199ms 706 3.55
1200 - 1399ms 708 3.56
1400 - 1598ms 745 3.75
1600 - 1799ms 941 4.74
1800 - 1999ms 971 4.89
2000 and more 4852 24.42

Average = 1161 ms | Maximum = 5900 ms

Percent < 1 sec = 55.09

—101—

Accounts | Tellers | Branches | Transactions | Conecurrency
200,000 | 3,000 | 3,000 29,191 251
Average {.p.s. = 1380
Transaction Response limes T _ T
Time range Transactions | Percentage
0 - 199ms 212 0.73
200 - 399ms 3391 11.62
400 - 599ms 3145 10,77
600 - 799ms 2037 6.98 T
800 - 999ms 1340 4.59
1000 - 119%ms 1169 4.00
1200 - 1399ms 1141 391
1400 - 1599ms 1251 4.29
1600 - 179%9ms 1354 4.64
1800 - 1999ms 1342 4.60
2000 and more 12809 43.88

Average = 1836 ms | Maximum = 9480 ms

Percent < I sec = 34.69

Accounts | Tellers | Branches | Transactions | Concurrency
* 3,000 3,000 3,000 21,564 150
Average t.p.s. = 144.5

Transaction Response Times
[Time range Transactions | Percentage
0 - 199ms 2801 12,98

200 - 399ms 5206 24.14

400 - 599ms 2141 9.93

600 - 799ms 1098 5.09

BOO - 999ms 939 4.35

1000 - 1199ms 2805 3.73

1200 - 1399ms 837 3.88

1400 - 1599%ms 920 4.27

1600 - 1799ms 1163 5.39

1800 - 1999ms 1193 3.53

2000 and more 4461 20.69

Average = 1069 ms | Maximum = 5560 ms

Percent < 1 sec = 56.51

—102—

i e R) g) R
L g | g 1 g o

uonenjea e Bu
ﬂ o _ [EAT pUE DuiyIewyouag h— o‘ uojienieag pue Bupjiewyauag
/

M 481sayouepy
UOISIAI S1onpold semndwos 19}
SWwasAs [ajjeiey jabeueyy
puasumoj |neq

suoisnjauon
Bupjiewyouag 503

mE%mElﬂuﬂm diysbe]4
s)oaloid

uoenens ple Buniewysueg jo aoed Q:_W_mm_nm pue $g3 @yi 104
SWwalsAg alemyos 10
uoljenjeAag pue bumiewiyouag

sjuaugrdoanap 19| fo mawmusAn

uollenjea3 pue Bupjieuwryousg

e e

h— 0- uoneneag pue Buiyiewyouag
'

2d0H W uaplm stedwaxe pue swelboud 158
WVYOO0 ui pawwesboiy
uofjonpal-ydeib-uodn peseq ainjoaliyoly
paseq Jaindsued]

Takie Jing pue padojaasqg

abapon [Euadu) Ag ainjoauyaiy

uopuon '‘abajjo) reredil i vosunfucs u Ying

8861 — 2861 301V

i 1 gy g) s i e

h— o - uonenfeas pue Buiewyosusg
4

MOU - B6BE1L sad

g86L—5861L diysbe|4

G861 — 2861 *NY

saulyoe aniin [alleded psinqlisiq 120I

104

¥ gy o W o e | i

h— 0 — uonenjeaz pue Bunyiewyouag
d

oHOd (sfsdi3) Bojoug

suawag 'dsii

Ing 191 ‘85eqejep |euocljelal |9]|eted

suawalg

191 ‘snioyQ uodn peseq weysAs Bujeladp [a)|eieyg
suswalg 19 ‘BUIyoeW |a)|BlRg
suoljeoi|dde Jusuiny 1o} amol AIBUCIIN|OAT
2injoaliydie [9||eied

ling pue suswa)s 19

awwesBord juidsgy

— 6861 S43

g !l:.-...l-‘. ¥ gl i

h— 0 - uojjeniea3z pue bupieliyouag
d

3 10 + adoH u) uzjiim siejdwexa pue swelboid }say
O Ul uayum |spouwt jeuoiieindwon

uoljonpay ydero uodn paseg

+adoy U uapum walshs Bunesadg

PoSEQq 02089 B|OJOlOH

121 Aq 111ng pue padojanag

Ayisisalun Jaisayouey Aq sinjoelyssy

Alsianiun Ja1sayauey yim uonounluos ul png

awwesbo.id AsAly N

8861 — G861 diysbe|4

105—

D D e s i T T y—

A o‘ uonenteA3 pue bupiewyousg A o w uojjenjeAaz pue Bupiewysusg
d A

‘Pawiopiad si

PEOYIOM Jawolsno |eal e Bugeinuns yiom aloH
SHIBLIYDUIG peoyiom J1jayIuis ‘3

aleadsayeysg

JO S}I0M 8y) woly |eaaldial 1xa] ‘Bra
sSuonedisuowap tejdwaxy ‘P

souewsopad asjwndo o} pasn
:Buun] waysAs ¥

uoneaydiynw xujew 6a ANNQIs|A 10} pooB
SHBWLOUSG Juswidorarep uojeayddy o :salljiqedes waysAg jo uoelisuoweg ‘g
‘uoijebiisaau)
1apun jou sainjes) woishs woiy Jdualapsiul uoljeaijloads 0} s1 ubisep sanoud
[ELLIUIW y)lm vaijoaljies abeq.eb sinseaw :Uoljepl|ep puB uoiiedljlIan 4
158q 0} yaiym w papnoesd S| jusliUOIIAUS
|BIolIUE Uy "uoafjoo abeqiey b-a swajsAs usamlag uospedwos sa|qeua
IS8} adueuwopad sanwig onjayiuig q :UOIIEN[EAT 9OUBLLIONAY 1
yolums
Yse) 0] awl}) walsAs Bunesado ainseaw '6a =:SABM ¢ Ul pasSN 1B SYJeNNOUDE

159} souewiopad aanjwnd apdang B

uoljen|eAy aguew oSy "L

S$S3001d Juswdojaaaq
| —uoljenjea3 soduew.opiad 8y} ul uoijenieay pue Buppewyosuag

—106—

i b) g 1 i

1 g | o S |

L— 0_ uonenteAg pue Bupjieuijoueg J o- uoENiEAT pue BupUeLIyoUsg
d

‘Slojluow eouewsopad apiacid

01 wajsAs ay) sasnbau sy "waysAs pajesbau)
8} jo souewiopad wnwpdo aasiyoe o)
Buiunj] wajshg

juepodw)] aoeI9)Ul UOlRIUBSAI “JUD wdojansp
108foad ayy ug sjujod ejendosdde je
saniqedes wa)sig Jo uojjelisuowag

-a1ins

UCLEPIEA B} Ul PAPN|aU| 3Q PINOYS Xrewyousg
‘Juswdojaaep jo abeys yoes 1e waysks ayl JO
LO{IEPIfeA Pue WONEDIJIIo

107

*Sa)sAs Jayjo Yyum uospiedwon
JOJ Unt S| PEO|YIOM JAWOISND |EDI B 3laH

¢ — uoljenjeA3 aduewioplad S)lewyduaq peojjiom |esy '}

Software Benchmarking for the Flagship
and EDS projects

FLAGSHIP

Initially simple performance test, exemplar
demonstrations

e.g. Nfib, Nqueens, Triangle, Boyer

L/
Benchmarking and Evaluation ‘Clr

TOTOSSE ; aeblae | T80 | Page ; 1

—108—

H-.

w.
;
i

PA

s

109

B g o | s 1 i

uonenjeaz pue bu
L—O_ jenjea3 p PEUIyoUSg vojljenjeas pue Buiyiewyousg

10!

JielWyouaq |euo|ieulsiUl UR JIpalniigag

ABojouyoe) eseqejeq uo asjuadxa jajjeled Jno yojdx3g
uojjeajldde sy} wouj wsijejeied sapiy 1OSI

muEmEth@ﬂ L LA L -v“”p._ulnn LI L -..M.r.....__.—_ iy iE -n”:n..m ¥ _._.“_a.__"__"_vu :

aJow a4nbas suojsusixe ABojouyoss) swaaH

gouewopad
SWEAQH wajens apiaoid Jouueo saweljuiepy

swalsis
[BISJ2WWOD INO JO JSOL JO 81jusd ay) S| aseqeleq

suojjealdde o) Jueaa|as g 0] paau syewWyouag

4 SJBWOISND 1IN0 0} UESLW S|Y} S80P JBUM

ilng
AjuUnwiwon yaleasal ujym
uospedwos Joj ybuje aje sjbuell] ‘suaanpN'gI4N

gy i
- TTTE Y

}oeduwi sswolsny
Aejdsiqg swi-uny siaja|

110

Debit-Credit Run-time Display

(@) Gop) (5p) (i) (paran) (o) (hsh)

status: Halted Outstanding 8 Total trans 1596
average (tps) 44.5 waighted (ips) 41 long (tps) 35
HHHMHE

Hlﬁlii['n’i‘ti%‘_'Ij

BRHK |
L%
|

Al

Benchmarking and Evaluation

1010805 : slides | pl10.90 1 page 1

S531d3N0 SteDILIVINVHL
MOS0 I0NI LT D0 O LIO03Zr e300

HIAHSES V.Iva SO3

BIEMYOS WESAS Ag
IS8 BIR Y VIBIS) 9516070

11a34o/1193d

112

P | =y | afe—

h— 0— wa)sAs eAneseoeg uesdoing
d
r__u_“_I_ N
LSOH Hsouse|g
HY _.
W \A
Uy
1oy
_ | spmoubng
I
YO MLIN ¥ 1L 134
1 MYE 359D Loy IuawNg
o aw ¥a Yim U2eg
&34 952 o1 dn) BUEEa00.L4
—._i reue| do
|

I
=

21N}09]1421y Uiy Sa3

) | -

A o - wasAs eAjjeseioa ueadoing
|

SosIp |e20 jeuopdp -
3d/selign | o) dn :240)s pyY abile -
0SIH souewlopad ybiy -

ABojouyoa) .

Buissed abessajpy —
sjuawa|e Bu|ssedsoid g5z o} dn —
dossaooidnw el0}s paingls|qg .

SO 1soy Aejeudosd —
XINN =
sjuawuoliaua uoljedlddy .

QD
Bujwwe.Boid weysis .

Bujpuey juiesysuos + Bojo.id
ds|
suoedjdde poddns uojsjasqg -
TOS pepualxy ;eseqejeq -
saoepaiul Buiwwelboad uotjes)dde jane| ybiH N

8Seqeje(Q [EUC)IE|aY :SN204 Ulep .

yoeoiddy sq3 syl

113

DR | e | b

B sl | o s ek

- wajsAs eajeieioag ueadoinzy
o- uoHenEAF pue BuiyIewyauag A
10!
I HI HI3 V¥V A T3 7 7TY¥ 4 ¥ 4
‘|oAd] walsAs ay) wd
1e Buissed sbessaw yiewyouaq o) ‘sabessaw 13 N ¥ 3 N
SX
Buialeoas pue Bujpuas speaiy) aiduns Auepy
sadary i
b e] ;
1159] 2aUBLLIOMLAd AW MHIayIuAs q 124 n 150U L
uncdy ehEg isfsgn BURIUg
. ' rouad sAsdys dzr saBey sl
mc__n:m: :n:amu.xm aoueW oM 30 ___ Bouoy e | W
Buissed abBessaw mel ‘uolEUIWIR] fUD{jear)Rsel 5 [worcew || |[uorcae]] | [[wmess
‘UoNBUIWIR) /UONIEDID PEAIYL |oula)y Sl e
B3| A anuEd [i .mnm.ﬁx
“HieM muﬂtﬁ.r;i:ﬁxm“_.ou__zmm -.mm oense
o .
aai] ‘syo07 Bupje) ‘uoneal) 103[qo ‘eseqeleq b3e11 21015 19000 AT ISOH | uitnars
FHELI XU N ‘FEEqElED
mm»:u:ﬂ. m.ﬂm“..qﬁu BRI J0d [+ Il
1159} asuewuoped aawd a|dwis ‘B -) .ﬂwaiﬁﬂﬁJ
sl

1S)}JelWyouag UOIIEN|EAT 20UBLIIOLS L

L — Bupjiewyosuag a3l FHNLOILIHOYY TVNHILNI 8a3

114--

01 ey g L B 1 84

h— o ‘ uonenjeA3 pue bupyieluysuag
4

‘ubisep ayj jo souewsopad pue
Aulqiseay sy yjoq sajedisucwsp Jeydwaxa ayy

‘subisep Jeindwoo
SWeljuieLw ale[nwis o} pesn s| Jojeinuns

“loleinwis
|lednojaeyaq |eljuanbas e Jo uoisiaA [aljeied

Misd

suclRIsUoluaqg fedwaxy

¢ — Bupjiewyousg sa3

2 g i | g T il 1

h— o- uonenjeaz pue bupuewyoueg
4

115—

‘18])1} ‘ujol se yons siojesado |euoijejal ‘B
"Al1]108) Yoea)s@) 0] pasn aseqelep a|duys

‘(fopow jejuawadx3 qn|D oljojuod) Wad

'sylewyouag juawdojaraq uoljeaiddy "2

¢ — Bupjrewyouag sqa3

17 S | A

h— 0 J uoneneAs pue Bupjiewyouag
Y

‘sugljaesue.) o} sebueyo
[BIN12N4}S INOYIM pajnguisip Ajjeinjeu aq uep

sJapso Buibeuew :peoyiopm

"SQ661
ay) w1 suonjesijdde |eloJewwod sjuasaiday

laiddns ajesatoym
(uonoesuel) ajam pead Jybam-piw)

(03qQ)
‘uopeayjioads Fyiewyousg Asju3-18pi0 -Idl

:(panunuos) yJewysuag PROIOM 2119YIUAS

G — Bbupjiewyouag sa3

1 gt | W) e il

h— 0 — ueiienjeAg pue Bupjrewyouag
d

1PaI2Iqap JO SIUBLIBA 81 §-DdL PUB ¥-OdL

Anpe3-190100dL

06AET ‘LIreIp ‘SS@-erepeRLi-OdL
oekepn ‘cuesp g-0dL

¥-2dlL

) Buuuny

10} sSuojIpuo auy) sulsp Aluedf sHieunouag
sylewyouaq Bulbeillis puespIepUeE]s SHoLep
7191 BuipRjo ‘siseall He

(oo

aoueLLIOed Blijssoooiyitoioesuel]) 2dl

ylewyouag peo oy oHaptifs

]

p — Bueiijaleg sg3

116—

7 g | e | e @ g

h— 0 — vopeniensy pue Buiewiysuag
y/

‘SuO[je)SHIOM pUB SalleljuleLW
131 1u8Lnd yum paiedwod aujyosew |ofjesed

"0)a A|ddns [eowyoale
‘sj@auis * Auadold uo uoljewIOjUl SaPIADL

uonedydde sann angnd v

‘walsAs uonewouy siyderbosn

'S1aWoIsno Auew y)im uoneaydde o) Juskun ¢
uonedrddy ‘SINY1d

AFEWYIUSE pEo i eay

g — Bupyrewyoueg sq3

o | |

h_o- uoyienjeAz pue buppiewyouag
4

‘aseqejep
[ea1sAyd uowwoo suo Japun Jayiabo) palteylen

satlisnpul

SUONEI|UNWWOY pue 'sjexnedew.jeyd
‘Bupjueq ‘soueinsu| ‘sajes |jejal ajeiodiooy|
‘suonejuawsajdun jo seseg

ssaunjasn ap[m-Aisnpui 118y} suapeo.g
-:9buel a)AqebB-moj a1} 0] pezisumoq
‘suoljes)|dde JawolsnN2 [EN}IE WO} UINEL

sauenb poddns-uojs|oap aoejduowiios jo apng

(sauanb xajdwos JyBremineay)
SSa-ejepelal -Odl

(Panujjuoo) peopjiom FFUILAS

‘a

¢ — Buppiewnyouag Sa3y

117~

B] B wan | s - | P
En |l i

l— 0 _- uopjjenjeny pue bupiiewyouag. l— 0 .- uonenierg pue Buppewyouag
4 Y/
sabueyo wajsis
la}je uojep|leasas 1o} 8]Ins yiewyouog e pling . ‘paubisep
S1 U Y2IYm 10} wajshs ayj jo joadse ay)
uewop wenesdde 2UN} 0] pasn aq ueod payjdads ewysuag Yyoesy
Pauue|d ay} 0} JueA|sl SHIBWIYIUDQ 1095 . Buwny weyshs v
waYy) "Slamainel pue sisbeuew o) suopeiysuciIop
aAj0A8 0} djay 1o spiepue)s jetioelyajul a5 . Pauued ino uj papniau e Koy

“Juawdojaaap 1no u| sauo}sa|jw se mxﬁﬁﬁ&mﬁ
aA0qe ay) jo Auew Buisn axe o widBe bl

100foud sy w Apred syueiuydliag ey .
‘sallliqedes weishs jo weReNslioileg €

Wielliyouag . -
Yoes jo asodind st Moty Pie Ayissen . g-0d1 Ajlenoiued sunsisal S U SHUBWI | Slroq
aAoqe ay) jo Auels apnifaw [{im am auoH

UoIfEpIfel pue uofedljien 2

suoisnjouo)n Bunprewyouag sgs

Research on Parallel Inference Systems
in the Fifth Generation Computer Systems Project

Takashi Chikayama
Institute for New Generation Computer Technology

Abstract

This paper descrilves the outline and the current stalus of the paralle]l inference
system research and development in the fifth generation computer systems (FGCS)
project of Japan, mainly focusing on ils basic soflware part.

The fifth gencration computer systems praject is aiming at establishing the ba-
sic technology required for knowledge information processing systems. The parallel
inference systern 13 & part of the project to cstablish parallel processing hardware
technology for providing massive processing power and basic soltware Lechnology for
effectively utilizing such hardware for knowledge information processing systems.

The nature of software cannot but change drastically when the underlying com-
putation mechanism changes from sequential (o parallel. From this viewpoint, the
approach conventionally taken to establish parallel software techinology has problems
in trying to continucusly enhance the technology for sequential processing. Although
such continuity has its own merits, a completely different approach should be taken
for m,a.ssi\re!:,' pnra.]]e.] compuiter sysheins available in near future.

We analyze the problems of the conventional approach and present how such prob-
lemns has been (and are planned to be) solved in the parallel inference systems of the
FGCS project. The corrent status of the research and development is also reported.

1 Introduction

The fifth generation computer systems project is a national project of Japan, aiming
gl establishing lhe basic lechnology required for realization of knowledge information
processing systems. The following two are most important to achieve the final objective

of the project.
Problem salving methods for intelligent processing
s Processing power for implementation of the above methods

The parallel inference system, as a part of the project, is aiming at establishing both
hardware and software tachnologies for the latter.

Recent evolution of the hardware technology shows around 4 times increase in imple-
mentation density every J years. Extrapolating the recent density increase, moderately
estimating it as 10 times in 6 years, 100 processors can co-reside in one chip in 2008. As
the design cost is getting more and more crucial in total cost, the repeatability in such
one-chip multi-processor will have great cost advantage to a complicated processor system
occupying one whole chip or more, even if the both systems Liad the same performance.
Thus, in early 21st century, multi-processor systems will be advantageouns, not only in
absolule processing power, but also in cost effecliveness even in small systems such as
palm-top computers.

—119—

1990 1996 2002 2008
1 proc./board | proc.fchip 10 proc. fchip 100 proe./chip

[
e

I

W i O s i e i o i
L -

e Yo T T i T Y i U T

) O

Figure 1: Expected Evolution of Parallel Processing Hardware Technology

The software technology for parallel processing, however, still remains premature. Es-
pecially, technology for building parallel software to solve complicated problems in the
area of knowledge processing is far from satisfactory. This, we think, is at least partly due
to the problems in the approach to parallel processing software technology conventionally
taken, that is, trying to augmeat already available sequential processing technology. We
thus propose an approach to establish soflware technology totally redesigned for parallel
processing, including algorithms, programming langnages and operating systems.

2 Problems of Conventional Approach

With the conventional approach, already available sequential technology is expected to he
more smoothly converted to parallel technology. This approach might really be appropri-
ate for small scale parallel processing systems, but it is not adequate for highly paralle]
systems.

Problems in trying to naively convert sequential technology for highly parallel process-
ing are described below.

2.1 Algorithm

Most of the sequential algorithms depend too much on globally accessible memory with
constant time access overhead. In the highly parallel environment, it is impossible to pro-
vide memory globally accessible in constant-time with reasonably small constant. Such
algorithms cannot be easily tailored to a parallel version. The best algorithms for sequen-
tial systems are often not even decent algorithms for parallel systems, especially, for highly

Table 1: Two Approaches to Parallel Software Technology

Approach Conventional Required
b i nove !

Technology ann_:l::tt.rieartstj.ggllgilcgf ten;n[:::;a:irﬂ
Execution

concurrent when specified default

sequential default when specified
Resultant system artificial & awkward natural
Technological continuity better worse

— 1240

parallel systems.
The algorithms for parallel systems should be designed from scratch. The design must

always take parallelism and, often more importantly, communication locality inte account.

2.2 Language

In the conventional approach, programming languages originally designed for sequential
processing are angmented with several additional features for use in parallel systems. Con-
current execution is explicitly specified by certain additional language constructs or, often,
such features arc not a part of the language but are merely provided as library routines,
Such explicit specification often makes programs awkward and, more importantly, makes it
more difficult for later reorganization for hetter load distribution and lower communication
overhead.

Another problem in using such languages is in frequent bugs in synchronization as it
is also explicitly specified. It is error-prone human beings who are responsible for proper
use of such features.

Programming languages for parallel systems should be designed from scratch so that
it suits best for concurrent execution. The language constructs should imply concurrent
execution in principle and sequentiality should be specified only when needed. Synchro-
nization should also be implicitly embedded in the language construct.

2.3 Operating System

In the conventional approach, the operating systems designed for sequential systems are
augmented with certain primitives for parallel execution, leaving its basic design left un-
changed. This was possible because, even for sequential systems, the operating system is
designed Lo run processes concurrently.

There are two major problems, however, with this approach. Oneis that the interface of
the operating system with the user programs is still hased on sequencing, such as notifying
the completion of requested operations by the completion of an operation, typically a
supervisor call. In parallel systems where application software also has internal currency,
this ofien canses synchronization problems. Another problem is that the management
policy of the sequential operating systems is highly optimized for sequential processing,
such as centralizing all the required management information, which is far from optimal
for highly parallel systems. If the problem were confined to the internals, the user interface
could have been preserved. Unfortunately, the interface specification is strongly influenced
by the management algorithm. Expressing processes by an integer called process number
is a typical example.

Operating systems for parallel systems should be designed for parallel systems from
scrateh. The user interface should also be designed anew o be consistent with the design
of the concurrent programming language; Sequentiality should not be a part of the design
of the interface. Distribution of management, as far as possible, is required to aveid
bottlenecks. Such consideration will also affect the design of user interface.

3 Design Issues of Parallel Inference Systems

Based on the comparison of two approaches to establish parallel software technology, an
effot to reconstruct all the required technology is taken in the design of parallel inference
systems iu the FGCS project. This section describes several characteristic design issues

of the parallel inference system project.

121

3.1 Algorithm

When designing practical parallel algorithms, we shounld not forget that we have only finite
number of processors. Assume that an algorithm has sequential computational complexity
¢{n) and average parallelism p{n), where n being the size of the problem. The total
execulion time {(n) by this algorithm, excluding communication overhead and with ideal
distribution, might be roughly given as #(n) = ¢{n)/p{n). This {(n) provides a criterion
to compare various algorithms., With this criterion, an algorithm with higher complexity
but with still higher parallelismu is considered to be a better algorithm.

This, however, is only valid when p(n) is smaller than the physically available paral-
lelism p,. When p(n} becomes significantly larger than p,, the criterion becomes {(n) =
e(n)/pp. With limited physical parallelism, algorithms with more rapidly increasing e(n)
can never be a better algorithm for large n regardless of p(n).

This leads to a conclusion that a sequential algorithm can beal any paralle]l algorithms,
if the latter has slight increase in total computational complexity. Thus, when designing
a parallel algorithm, we must often consider a hvbrid strategy, nsing a parallel algorithm
in higher levels but switching to a seguential algorithm when the physically available

parallelism is nsed up.

3.2 Language: KL1

We have designed a concurrent logic programming language named KIL1 as the kernel
language of the system [2]. The KLI1 language is based on the flat version of GHC [7]
with various extensions. As the GHC language is a concurrent language in its nature with
implicit synchronization and without side-effects, it gives an ideal basis for designing a

language for the parallel processing system.
The principal extensions to Flat GHC made in KL1 are as follows,

Meta-level Control: The meta-level control features are mandatory for describing an
operating system in KL1. It is also heneficial for sophisticated program control for ap-
plication software. The features provided by KL1 include, the “shoen™ mechanism which
controls a group of processes as a whole, the priority mechanism for controlling speculative
computation.

Efficient Execution: The fundamental source of inefficiency in most “pure” languages
is that they do not allow destructive assignment, excluding the possibility of fully utilizing
the merit of random access memory. KL1 provides arrays with constant time update
without disturbing its pure semantics[1]. This means that any imperative algorithms can
be expressed in KL1 retaining the same computational complexity.

3.3 Operating System: PIMOS

A parallel inference machine operating system called PIMOS (2] is developed based on
the policy described above. PIMOS is written in KL1 language as a collection of many
dynamically created processes communicating one another via streams [5]. The interface
between PIMOS and user programs is also streams.

The unit of resource management is called task, which is implemented using the shoen
mechanism of KL1 described above. Tasks can nest arbitrarily many levels, forming a tree
structure distributed to multiple processor, avoiding the management bottleneck prohlem.

—122—

Table 2: Available and Planned Parallel Inference Systems

System Hardware | # of proc. | Peak speed
1987 PDSS conventional 1] ~10 Krrs
1988 | PIMOS/S PSII 1| ~150 kres
1988 | PIMOS/M | Multi-PSI | 64 | ~10 MrPS
1991 | PIMOS/P | PIM ~512 | >100 MRPS

RPs: reductions per second

4 Current R&D Status and Plans

Immediately after the experimental model of the parallel inference machine Mult; P5I[6],
RL1 language implementation [4] and PIMOS running on it became available, several
experimental application software projects started, some of which will be reported in other
presentations in this workshap. Some of the programs resulted in almost linear speed-up,
and same has yot to achieve good speed-up.

Several sets of the Multi-PSI systems with the newest version of the kL1 language
implementation and PIMOS are currenily in use at ICOT and several other related researcl
mnstitutes. The KL1 implementation on Multi-PSI with its maximum configuraion of 64
processors has the peak performance of about 10 million reductions per second.

Newer versions of the parallel inference hardware PIM [3] is currently under develop-
ment. A version with maximum configuration is expected to have up to 512 processors
and more than ten times the performance of the Multi-P5] systeti.

5 Conclusion

In the research and development of the parallel inference system in the Japanese FGCS
project, we Look the approach to reconstruct the whole paralle]l processing software tech-
nology {rom scratch, rather than gradually modifying conventional sequential technology.
Experimental versions of hardware, language implementation and operatin g system have
been made available to application software research and several application projects are
nowW FOINE O,

From our rescarch and development experience, we can say that describing concurrent
software for parallel hardware is not difficult when an appropriate programming language is
used. Almost no synchronization problems are found during even during the development
of the operating system,

On the other hand, making programs run efficiently on parallel hardware is another
thing. No universally applicable efficient lnad distribution method is found so far. We
have to accumulate much more experience with various application software to'establish
the basis of practical parallel processing software technology.

References

[1] T. Chikayama and Y. Kimura. Multiple reference management in flat GHC. In Pro-
ceedings of {ih International Conference on Logic Programming, 1957,

[2] T. Chikayama, H. Sato, and T. Miyazaki. Overview of the parallel inference machine
operating system (PIMOS). In Proceedings of FCCS'SS, Tokyo, Japan, 1938,

—123

[3] A. Goto, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto. Overview of the parallel

[1]

inference machine architecture (PIM). In Proceedings of FGOS'88. Tokyo, Japan. 1988,

K. Nakajima, Y. inamura, N. [chivoshi, K. Rokusawa, and T. Chikayama. Distributed
Implementation of KL1 on the Multi-PSI/V2. In Proceedings of the Sixth International
Conference on Logic FProgramming, 1989,

E. Shapiro and A. Takeuchi. Object oriented programming in Concurrent Prolog.
ICOT Technical Report TR-004, ICOT, 1983, Also in New Generation Computing,
Springer-Verlag Vol.1 No.1,1983.

Y. Takeda, H. Nakashima, K. Masuda, T. Chikayama and k. Taki. A load balancing
mechanism for large scale multiprocessor systems and its implementation. In Proceed-
ings af F(7CS'88, 1988,

K. Ueda. Guarded Horn Clauses: A parallel logic programming language with the
concept of a guard. ICOT Technical Report TR-208, [COT. 1956.

124--

Research on Parallel Inference Systems
in
the FGCS Project

- What we are aiming at
- Why a new language or an operating system
- What we have achieved so far
- What R&D plan we have
Takashi Chikayama

Institute for New Generation Computer Technology

Structure of the Parallel Inference System

Application Systems

Application Software

Software Development Environment

PIMOS

KL1 Language Processor

Concurrent Logic Language KL1

Parallel Inference Mechanism

Parallel Inference Machine

Evolution of Parallel Processing Technology

Hardware Technology: 4 times more density every 3 years

— estimating it as 10 times in 6 years. ..
1990 1996 2002 2008

1 proc./board 1 proc./chip 10 proc./chip 100 proc./chip

Im imim|alslsinlsslals
E
|

[[O

s

— Parallel processing will become advantageous, not only in abso-
lute processing power, but also in cost effectiveness

Software Technology: Parallel processing technology for compli-
cated software is quite premature

Two Approaches to Parallel Software Technology

Approach Conventional Required
Extension of MNovel parallel
Technology
sequential tech. technology
Algorithm Seq., modified | Newly designed
Language Seq., modified | Newly designed
Concurrency When specified Default
Sequentiality Default When specified
Resultant Artificial &
Natural
system Awkward
Technological
€c n_ D?I Better Worse
continuity

Comparing Two Approaches (1) — Language

Approach Conventional Required
Language Sequential, modified | Born concurrent
Synchronization Explicit Implicit
Program | Fkgh]
structure <I>4
S
L__¥ |
n
] C
Sync. bug Frequent Almost Never

Concurrent Logic Language KL1: its base language, GHC

Head

Guard |

synchronization & condition

e Born to be a concurrent language
— Basic features are designed for concurrent execution

« Data flow language
Conditioning and synchronization are indivisible
— Can never make erroneous decision due to sync. failure

No side-effects

— Can never lose data by overwriting

* Processes as tail-recursive goals
External devices as processes running unknown programs

—127—

-Body.

execution

Concurrent Logic Language KL1: Extensions to GHC

Priority: Parallel processing requires two forms of ordering
¢ Strict ordering forced by data dependency — Data-flow
» Preferred ordering for efficiency — FPriority
“In any order or in parallel, but preferably...”
Meta-level: Monitoring and c_ontrolling computation
» Mandatory for an operating system

¢ Beneficial for describing sophisticated problem solving strat-
egy

Concurrent Logic Language KL1: Efficient Implementation

Efficiency drawbacks of “pure” languages

« Cannot "update" structure elements
— Increased computational "complexity"

e Cannot use the same memory area by overwriting
— Larger working set size

Optimized implementation
to be competitive with procedural lang uages
» New memory management scheme (MRB):
— Efficient incremental garbage collection
— Arrays with constant-time element updating

Software Development Environment for KL1

Synchronization problems: — Inreprcduci'ble anomalies
- Much less frequent — Pure concurrent language

» Deadlock detection:
- Automatic detection — Data-flow language
- Detection (in part) by static analysis (under development)

Tracing parallel processes:
- Selective tracing based on control flow
- Selective tracing based on data flow (planned)

Performance debugging:
- Visualization of program behavior (under development)

Comparing Two Approaches (2) — Algorithm

Good balance of load and reduction of communication are hard to
realize at a time.

« Not enough distribution — Many idling processors

L] -
- - L] " .] ™ - LR

—129—

Comparing Two Approaches (2) — Algorithm (continued)

¢ For higher parallelism
— Divide the problem into small parts and distribute them

¢ FoOr lower communication rate
— Do not distribute computation requiring the same data

Approach Conventional Required

Algorithm Seq., modified | Newly designed

Trade-off between Often conflict Can be made
Paralielism & Locality each other optimal

A good sequential algorithm is often
not even a decent parallel algorithm

Algorithm: Automatic Load Distribution?

¢ Additional burden to algorithm designers
— Automation of load distribution is desirable

» Appropriate distribution principle depends heavily on problems
— General purpose automatic distribution is very difficult

= Load distribution libraries:
Collection of load distribution algorithms found to be effective
through experiences with various application software

—130-

Comparing Two Approaches (3) — Operating System

Conventional Required
Management Centralized Distributed
Example Task table Tree of tasks
Small scale
systems

Large scale
systems

eI

5L
son o

Parallelism in
management

Communication

Small — bottleneck

Frequent

Large

Less frequent

Operating System: Problems of Conventional Schemes

Optimized for sequential processing

¢ Basic notions based on sequential processing
Large-grain processes as the unit of management
— Processes with large inertia
Controlling dependency by execution order
— Limitation on parallelism

« Operating system itself optimized for sequential processing
Centralized management
— More communication
— OS can be the bottleneck

—131—

Operating System: Redesigning for Parallel Processing

PIMOS employs schemes optimized for parallel execution

+ Basic notions suited to parallel execution
Group of fine-grain processes as the management unit
—+ Processes can be light-weighted
Data flow dependency
— Better parallelism

« Operating system itself optimized for parallel processing
Hierarchical management
— Distributed processing avoiding bottleneck
— Reduced amount of communication

PIMOS: Hierarchical Resource Management

[t M

M
L naa
T D T
Lr\.ﬂl—«l\.ﬂ*| LM—*M'—*MJ
L4 S I
D D D D D

Task management process
Resource monitoring process
Device handler process

0=

132

Parallel Inference Systems of FGCS

System Hardware # of proc. | Peak speed

1987 PDSS Conventionai 1 ~10 KRPS
1988 | PIMOS/S PSI-II 1| ~130 KRPS
1988 | PIMOS/M | Multi-PSI 64| ~ 8 MRPS

" 1991 | PIMOS/P PIM ~512 | >100 MRPS

RPS: reductions per second

From Our R&D Experience...

« Describing concurrent systems is easy in KL1
Almost no synchronization bugs

Describing parallel systems is difficult even in KL1
No universally applicable load distribution method
— Trial and errors with various problems

“Patching” won't work with concurrent systems
If designed properly, programs can be clean
If designed poorly, programs will never work

Social systems provide good models mf parallel processing
< Natural systems are optimized for higher parallelism

—133—

KL1 Programming Environment

— PIMOS —

Hiroshi Yashirot, Koichi Nakaof, Ryozo Kiyoharaf,
Kumiko Wadat and Takashi Chikayamat

t Institute for New Generation Computer Technology
t Applied Technology Co., Lid.

Abstract

In the Japanese fifth generation computer systems project, the parallel inference
machines 'lMs and the operating system PIMOS are being developed to provide the
computational power required for high performance kmowledge information systems.
They are designed to run a concurrent logic programming language KL1 which is

based on a fiat version of GHC.
This paper gives an overview of the KL1 programming environment provided by

PIMOS.

1 Introduction

In the Japanese fifth generation computer systems project, the parallel inference machines,
PIMs[1], are being developed to provide the computational power required for high per-
formance knowledge information systems.

Several models of PIMs are currently under development. The execution speed of the
largest systems is expected to be between 100 MRPS(reductions per second) to 1 GRPS
for practical applications.

As an cxperimental version of the parallel inference machine, Multi-PSI[2] has been
developed to promote software research and development for parallel inference systems.
One Multi-PSI system consists of up to 4 processing elements with separate local memory,
connected by a two-dimensional mesh network.

In total, one Multi-PSI system has about 5 GID of memory and up to 10 MRPS of
processing speed far simple programs. Currently, about 10 systems are being used in
development of the operating system and experimental parallel application software.

The Multi-PSI and PIMs are designed to run a concurrent logic programming lan-
guage KL1 efficiently. The KL1 language is based on a flat version of GIIC[4] and has
extensions that allow a meta-level execution control mechanism (the Shaen feature) and
a priority specification mechanism|3]. The language is planned to be used in both system
and application software of the machines.

The parallel inference machine operating system, PIMOS[3], is designed to control
highly parallel programs efficiently on PIMs and to provide a comfortable software devel-
opment environment for the KLl language. A preliminary version of PIMOS has been
developed and is currently in use on the experimental machine, Multi-P5L

—1l34—

2 PIMOS and KL1

2.1 The KL1 Language

The KL1 language is a concurrent logic programming language based on a flat version of
GHC which allows only unification and built-in predicates in the guard part of a clause.
This eliminates the need for nested binding environments and management of tree struc-
tured control information, which makes efficient implementation considerably casier. How-
ever, the GHC language itself does not have enough power for efficient implementation
of operating systems or application programs that require sophisticated control mecha-
nism. Thus several extensions are made to the language, mainly for enabling meta-level
‘execution control mechanism (the Shien feature).

2.2 Communication Mechanism

In a parallel environment, it is not simple to manage various resources, such as CPU time
or inputfoutpul devices. For example, the status of particular set of data can not he
changed at a time when the operating system processes the data in parallel with user
programs. '

[n such 2 case, conventional operating systems on sequential computers simply suspend
the execution of the user program while the operating system processes the dala. However,
in a parallel computing environment where PIMOS runs, such a control of stopping all the
user programs cannot be implemented without losing the advantages of parallel computing.

To sclve this problem, we have introduced a programming style in which a process is
considered as an object[G]. The process has an internal data and variables for interprocess
communication. We call such variables strearms. When a user wants to read or write the
data internal to the operating system, that data can be accessed only through the streams.
PIMOS employs this communication style with user programs.

In the KL1 language, interprocess communication where a message is sent and received
through the streams can be implemented by means of instantiation of a shared variable.
For example, in a casc of reading a character string from keyboard, the KL1 program for
PIMOS and the user can be written as follows.

7- pimos(Req), user(Req).

user{Req) :-
true |
Req = [getb(N,String) |Reql],

-pimos([getb(N,String) |[ReqT]):~
true |
readFromibd (N,KBDString),
KEDString=String,
pimos(ReqT) .

Figure 1: Interprocess communication between user and PIMOS

—135—

The user and PIMOS can communicate using a shared variable Req as a stream. First,
the user sends a message geth/2 that requests for reading N characters, When the FI
MOS receives the getb/2 message, it reads N characters from the keyboard to KBDString
{readFromKBD/2). Then, the user receives the String instantiated to the KBDString. In
the succeeding request, ReqT is used as shared variable for communication.

We call this programming style such as pimos/1 “process”. PIMOS allows the user
to access resources that PIMOS manages, such as keyboard, file and so on, in this way

through streams.

2.3 The Shaen

Elements of K11 programs in a system, which are called goals, form one logical conjunc-
tion. Therefore, the whole system may fail becanse of a failure in a user program. This
problem tomes from the fact that the PIMOS runs in the same level as the user programs.
We provide the meta-contrel mechanism to simplify the management of the user programs
in the KL1 language. We call this mechanism Shoen.

Shéen is a grouping construct for KL1 goals and a meta-logical unit to control and
monitor the KL1 goals in it. It has a pair of streams, named control stream and repori
stream. The control stream is used to start, stop or abort the goals from outside the
shoen. Termination of execution or events that occurred inside the shoen, such as a failure,
deadlocks, or an exception, are reported on the report stream from inside the shoen. The
shoen feature is similar to the meta-call feature of Parlog{5], and can be considered to be a
lanpuage-embedded version of the meta interpreters seen in systems based on Concurrent
Prolog[7]. (Figure 2) Shéen can be nested by arhitrary levels..

Control Repart
Stream Stream
Shien £

®

Figure 2: Shen

PIMOS supervises user programs using the shfen facility. The exception reporting
mechanism is also used for establishing the communications path from the user to PIMOS.
Monitoring the report stream, PIMOS can recognize the users’ request for a communica-
tion stream.

2.4 Hierarchy of Resource Management

KL1 provides only the control mechanism of the computational behavior. In the computer
system, we also have other kinds of resources to manage, such as inputfoutput devices.
PIMOS provides hierarchical management for such resonrces using nested shens.

—136—

PIMOS provides the notion of fask as resource management unit. The task is a shden
with a corresponding supervisor process inside PIMOS, which controls the utilization of
resources within the programs running in the task, PIMOS currently provides functions
to access resources, such as files and display windows, provided by the operating sys-
tem (SIMPOS) on the front-end-processor (PSI-IT). A file system for disk drives directly
connected to PIM is also under development.

3 Programming Environment

In a programming system, we generally need the following.
o Language processor (e.g. compiler, interpreter)
+ Debugping system (e.z. debbuger, tracer)
& Analyzer (e.g. profiler, system monitor)

PIMOS provides all of these functions on a physically parallel computer Multi-PSL
This section describes each of these functions,

3.1 Shell

The shell is the top level interface of the KL1 program execution. The shell handles a
chunk of user programs so that they can be controlled. We call it a job. The shell provides
a communication method called pipe between tasks belonging to a job. (Figure 3)

Job

Inter-task communicalion

npul/oulpul device input/output device

Shoen Shden

language language
specified specified
behavior behavior

Figure 3: Hierarchy of Resource Management

—137—

3.2 KL1 Compiler

PIMOS provides the resident KL1 compiler on Multi-PSI. KL1 programs are compiled
into abstract machine instructions, which are executed by the microcode. The object code

modules are registered to the program database of PIMOS.

3.3 KL1 Listener

The KLI Listener is also a top level interface of the KL1 program execution, similar to the
top level of interactive Prolog systems. The functions provided are as follows focusing on
the debugging functions.

"Goal Execution: The user can execute goals consisting of user-defined predicates and
built-in predicates from the listener top level.

Tracing Function: The KL1 stepping tracer described below can be called from the
listener.

Execution Profiler: The listener can collect profiling information as described below.

Detection of Perpetual Suspensions: The listener reports the perpetual suspen-
sions (suspensions that will be never resolved, such as deadlock) that are detected
during the garbage collection[8]. The detected goal is the goal that is the “cause” of
the causality relationship of perpetual suspension.

Inspecting and Monitoring Functions: The inspector and the variable monitor (see
below) can be called from the listener top level or from the tracer.

3.3.1 Tracing Mechanism

In ordinary execution of KL1 programs, when a goal is picked up from the goal pool and
reduced to its children, the resultant goals are put back into the goal pool. On the other
hand, when a traced goal is reduced, the resultant goals are not put back to the goal pool
immediately; instead, information of the reduction is reported to the tracer. The reported
information includes subgoals and the identifier of the traced parent roal. (Figure 4)

This identifier is unique corresponding to each traced goal. Keeping the correspondence
of the identifier aud the goal {predicate and arguments), the tracer can report which goal
is redueced. '

The tracer presents the parent goal, the subgoals and their arguments to the unser.
The user can specify for cach subgoals whether to trace or not. The goals specified to be
iraced are given a new identifier and marked for tracing, and all subgoals are put back
into the goal pool again. As the goals not specified to be traced are executed ordinarily,
the overhead of tracing iz minimized.

3.4 Inspector

The inspector is a tool to debug the KL1 program; it analyzes data structures and displays
them interactively. Any KL1 data item can be inspected. With the help of the inspector,
the user can analyze the contents of complicated data structures and analyze the state of
the arguments of the goal during tracing. (Figure 5)

—138—

trace
{t When traced

Cf\)r-(@j@,@

When not traced

The Goal Pool

Figure 4: KL1 Goal Execution

3.5 Variable Monitor

For inspecting the future value of a currently uninstantiated variable, a data-driven moni-
toring process can be initiated from the inspector or the tracer. The value of the monitored
variable is reported on its instantiation. It is also possible to incrementally monitor the
instantiation of a list structure, which is useful for tracing communication streams.

3.6 Performance Analyzer

PIMOS has two kinds of performance analyzer. Each of these programs displays the
program behavior by means of graphic interface.

Performance Meter: The performance meter displays work rate of each processors dy-
namically. It is useful for gross performance debugging.

Shen Profiler: In the listener, more detailed information of dynamic analysis for perfor-
mance can be obtained. It provides numbers of reductions and suspensions of goals
in 2 certain shden in a certain period of time on a certain processor. In addition,
PIMOS provides the graphic interface of this information.

4 Conclusion and Future Plans

The programming environment provided by the PIMOS for KL1 language programs are
described. These facilities are currently used on the Multi-PSI systems for development
of experimental programs and PIMOS itself.

— 139

20V4096 29 layered: filter([& , & [E1],1,1,W)

41 = (1) filter([& , & |E1],1,1,W)7? inspect 1 <« inspecting subgoal 1
filter([3#°[* & 17,4+ V1 |T1],1,1,W)> me +— list elements

0 : filter

1 : [3+'[" & ']",4% V1 [T1]

2:1

3 : 1

4 : W

filter([3='[* & *]7,4*% V1 ITi],1,1,W)> 1 «— go down elements 1
03[& Q1]

1 : 4% Vi

tail : T1

Figure 5: Example of Inspector

Design and implementation of more suy-histicated software development facilities are
planned. Currently planned extensions include the following features.

Static analyze function: In KLI, the execution of a program can be suspended unex-
pectedly because of some mistakes in the programs. Currently, there is a simple
analyzer such as variable checker, which examines the number of appearances of
each variable in one clause, but it is not enough. A static analyzing method, which
examines arguments relation of input/ontput in all clauses, is proposed[9].

Processor Profiler: We are developing the performance debugging facility which ex-
amines the behavior of each processor, for example the numbers of communication
packets with other processors. It will provide another viewpoint for understanding
the behavior of program execution.

References

[1] A. Goto, M. Sate, K. Nakajima, K. Taki and A. Matsumeoto. Overview of the Parallel
Inference Machine Architecture (PIM). In Proceedings of ihe International Conference
on Fifth Generation Computer Systems, pp.208-229, ICOT, Tokyo, 1988

[2] K. Nakajima, Y. Inamura, N. Ichiyoshi, K. Rekusawa, T. Chikayama. Distributed Im-
plementation-of KL1 on the Multi-PSI/V2. In Proceedings of the Sizth International
Conference on Logic Programming, pp.436-451, 1989,

[3] T. Chikayama, 1. Sato and T. Miyazaki. Overview of the Parallel Inference Machine
Operating System (PIMOS). In Proceedings of the International Cornference on Fifth
Generation Computer Systems, pp.230-251, ICOT, Tokyo, 1988,

[4] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Language with the
Concept of a Guard. Technical Report TR-208, ICOT, 1986.

[5] 1. Foster. Parlog as a Systems Programming Language. Ph. D. Thesis, Imperial
College, London, 1988, ’

{6] E. Shapiro and A. Takeuchi. Object Oriented Programming in Concurrent Prolog.
In New Generation Compuiing, Vol.1, No.1, pp.25-48, 1983.

{7] E. Shapiro. Systems FProgramming in Concurrent Prolog. In Proceedings of the 11th
ACM Symposium on Principles of Programming Languages, 1984.

{8] Y. Inamura and S. Onishi. A Detection Algorithm of Perpetual Suspension in KL1.
In Froceedings of Tth International Conference on Logic Programming, 1990.

[9] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In Pro-
ceedings of Tth International Conference on Logic Progrurnming, 1990.

—141

KL1 Programming Environment

— PIMOS —

Hiroshi Yashiro*, Koichi Nakao**, Ryozo Kiyohara®,
Kumiko Wada* and Takashi Chikayama*

*:Insitute for New Generation Computer Technology

**: Applied Technology

Contents

1. Introduction
2. KL1 and PIMOS

2.1 The KL1 Language

2.2 Resource Management

2.3 Hierarchical Resource Management
3. Programming Environment

3.1 Compiler

3.2 Debugger

3.3 Analyzer

4. Conclusions

—142—

Introduction

ﬂ——

Fifth Generation Computer Systems Project (1982-1992)

—» R&D of Parallel Computer System

Application 1

Operating System] <4— PIMOS in KL1

{Language Processor | KL1 language processor in firmware

1988:Multi-PSI (prototype of PIM)
{ Hardware } 1992:PIM
PIMOS

Parallel Inference Machine Operating System

- To control highly parallel programs efficiently.

- To provide a comfortable programming
environment for the KL1 langage.

Currently, PIMOS is running on the Multi-PSI.

143 —

e — -

e e e

The KL1 Language

The KL1 language is based on Flat GHC.
(cf. Prolog, Dijkstra's Guarded Command)

- syncronization mechanism using logical variables.

- "pragma'’. (priority, goal distribution)

,_‘ Execution model of the KL1 program I_

Subgoals I
@ - guard iP1 P2, 5’3.

IGmal Pool

§

//

Resource Management(1)

Conventional approach '

|User Processes

[_1—

Hesource}'

,

Reqguest

"]

critical region

s

Files

critical region

R

%

Fal

< = pOOAN.

T ot

L

wfh] =

[T

SuSPand

—144—

Resource Management(2)

PIMOS' approach | Distribution of Management

f User Processes 0S | { Resources
Request

(Brocess DE==
§m management
7 N processy,

Files

Windows

= F'I:-x}lq [T:I'

24

Communication Mechanism
h - - I

Stream Interface between User and PIMOS.

—» KL1 programming style

user(Req) :- pimos([getb(N,String)|ReqT]):-
Req = readFromKbd(N,KBDString),
Lg_e_tb(N,String_)l_Heq'l’],

KBDString=String,

pimos(ReqT).

@ et string) B

For succeeding request — Req |

—~145—

Shoen(1)

Meta-control mechanism

fermination - -
@ failure,
frace,

deadlock,

etfc.

Stream

Shoen(2)

Shoen can be arbitrarily nested.

‘9uid) SOWId Aq papinold g
S991Aap IndinQ/induyj : ysej -

'10ss8004d abenbBue| |7y Ag papiroid <=

10IABYDQ pauljsp abenbue| : usoysg -

L T R ———
(L)sel

] <<oJrvsef
(WTT73503<3U0<EAS<, (02 '08) 4eY0 (082 '009) 3©) 48UBYST] BUTULNL <—=]

[124s Burtuund <-- 2
m.—_lgh ﬂﬁ (wgor,)ydeub sy Buruunyg <-- g
Ih snie}s <<odatyseh
0S ‘0000000002 ‘Butuung ¢ oB:8y, ¢ g
20.E ‘0000000007 ‘Butuuna ¢ y=gop, ‘¢ gp
66GLT 0000000008 FBUTUUNT ¥ 00 :dadb,, ¥ 27
TOSPT ‘0000000002 ‘Butuuna ¢ oB:s53, ! g
BES0S 00000 ‘fButuung ¢ “qo ‘
BIOYE f0000000002 ‘BuTtuuna ¢ [[{eyS:[(ays, ¢ g

S98LE 0000000007 fBuTuung
2692+ ‘0000000002 *Buruunu

¢ wo"aor, ' g

faoB:iproys, ' @
Q549 1000000000T ‘Butuuny ¢ =-gop, 02
BST9¥ 0000000002 TBUTUUNS ¥ OB :J0u03s1],, [
S200S 0000000007 ‘Butuuna ¢ ,y-qop, ¢ 27
E02T0¥ '0000000002 FBUTUUNT T , [[(84YS:[1a4s, G
e e e —— e ——— o ———— +

148

Snjuls ysey b P e it

s <<oJtysef pyf
BSB8LE F0000000007 ‘Butuunag ¢ ,p-gor, ' 9

B UL
eI ‘0000000007 ‘Butuuna ¢ z-qop, ' gz Loaur
GT00S ‘0000000007 ‘Butuunag ¢ ,1~qopr, * 27 G ouUTT

(w0l) deal] 5} <<ourysufi

OJFYsehi- O} [lOYS

~afffu Hp3

W

Juswuoaiaug Buiwwelbold

azAleuy < h

CEEQE walsAg “la[ljoid se yons) JazAjeuy -
(4801 “19bbBngeq se yons) waisAg Buibbngaq -

(181a4disiu] “1ej1dwo) se yons) 10Ss320.1d abenbue- -

g
luswiuodiaug Buiwmwesbo.ig

=149

TrryseapRoia™dIdd]l [iSOWId¢osiTyseficiesn{sRs(:ip215d01 ¢ (14 o[1duoy
{EWALSAS |
(HILSAS Po L papeeIong 8]1dwon
{410 ISdWd [7 seBesnind
C0017S0M1d [T /oBesn
CS0WId & AMeeya
T773seopedlgqmyIng | £ /Buriygouweuyiedyof
AwvD g suleuw
<H10°¢34 [/o8
€53 [2 /06
T awnd |, P2t @npoy 9] Tdusy)
L5952
i19'0) geweuyjedpuedse el g T TTH POCHNYNHLYLACTIOOL™
(7% "%) oweuyjedezR|eue T b Ll isoHIdeod TuseRcdesngshsgiggpi1sdar @ a1 g7 1dwog
=R B 8 T % <Z71d4W00
jeuyledpuedxe ;oweuyjed ;isowrd Z 950F808
g'T L{V'TrarserTdiurad iy £ r JoTdwo] TN £
(B'. % %,)ouwey e[rducs ¢¢oiiysaR
iYiedpuedxs :eweuyyed iscwid () Z wAHVHHLYSCI00 LTS 0M [deoat
(y'ircTp3sT3a iyseR¢dasngshsg, §7 RJIDJ0BJITR 1WSE] 10 Bn[eA oyl
I6'pEEGTIBSTEL tUBOYS :isOWTd N 1 - IWYNHLYACI00LTS0MId. PO (<04 TYsER
0B :(s[yrisourd @ Spdvaed CRT ST IM 40 onpea |y
‘0B B] =i L CEOdTYsER | 51 3dwold Jo anfua ay)
{3ze4)) QBT ST Y JOo anpes eyl
BITUTIUT FT DUTIES o en(ea ay]
BIRS} = L €4, 1 jdwosd o enfea ey)f]

03d e TdDd wes) uncdyi oaen coluccepy puoa g

OoILI0S QoS04 1L20-°5LT0-0T1E

A T VS e

000aC300D 00 (9 LH] 1o=3d o (00] 603
FENENRELEETLRTER dAILUHLS HIDDT 2] 4 (00} andd
{DE:0DT = 186340 b= E43d 10 JRamng

1w e g
202 Gompdsolg

SILOPSd § oY o TIBTIG)- IS |

o IEJdOA

Juswuodolaug buiwwelbold SONI

150—

Compiler(1)
“
translating from KL1 to KL1-B*

(*Abstract Machine Code)
Registration to PIMOS Module Database (In core)

(In core)

PIMOS Module Database

KL1 | KL1 KL1-B|KL1-B

KL1-B

\U/é

Listener

. KL1 language-oriented debugger.
Functions:

Goal Execution

Interactive Tracing

Execution Profiler

Deadlock Detection

Inspecting and Monitoring Variables

151

KL1 Goal Execution

p :-pl, p2, p3.
p1:-p1i, pi2.
p2 :- p21, p22.

®/

A e

:‘l:'l: o -:. T iy :
o _, A :?:_kjf}
.__; Qb et
; | Pt J
- v
Al !

=2

Inspector

0 ————_———,—

Examiner for nested data structures.

- Examination of the arguments of the traced goals.

- The specified part of the inspected structure can
be kept in named variable.

- Data-driven monitoring process can be initiated.

—152-

(1218 @oURWIOLIRY

)

l8zAjeuy

153

LA S I T R R R A N T

f
i ” (13 EFelsbimi e p T] pean e ¥ o
f/ff[llll!l - |l1l\1rlik\ﬁ
—— [TT1E
I 1] i Liie gy] L
sEle 5 /l/’\/l\l/l\l(l\ F_..._.__._
PRI EMBSIT B O I 1) i] L L T LT R L L T e O T L
yidep~dimag:iesnu[c § =
A8 Rd .
_..:..._v_uln_.u_..ﬂh"-_}u-n. » 1T
Ajrun ¢ e
ETRL [ImedT 800) e)
Yidep~diwattennge g

AT jImEd™de) |
YidepTdimatieanie |

T At L L T e T T LT LY

FEIEE "N

un¥IdNpay BJEYH X JeyM [2] uoTjanpey

(18]1j01d)10zZAlRUY

2

sisAjeuy mojjejeq 21e1s g

(10ssa00.d 18y1o yum uonesunwwiod o Aousnbaiy ‘H-9)
10ssa20.d yoea Jo 10iABYa(9] SOUIWEXS

19]1J01d 10SS320.1d |
:sue|d aining

'SM euosaud
Uo [Sd-IHNA 9yl o Jo1enwis ay) paljedald aney os|e ap -

‘886] @oUIS Woa)sAs siy} uo paddojanap
ueaq aAey j19sil SOINId pue sweiboid uoneosiddy -

‘PaqIIdsap usaq sey SONid Agq papinoad
JUSWUOJIAUD Butwwesboid |7y syl 1o maIAIaN0 Uy

f
suoIsn|ouo0n

133

PROGRESS IN THE DEVELOPMENT OF THE DATA DIFFUSION MACHINE

David H. D, Warren
Department of Computer Science
University of Briatol

Tha Data Diffusiof Machine (DDM) i3 a novel scalable multipruni:uar
architecture. It has the coherent shared addresa space of a shared-memory
machine in combination with the distributed physical memory of a
message-passing machina, The location of a datum in the machine ia
completely decoupled from its addreas, 1In particular, thare i3 np
diatinguished home location where a datum muat normally reside. Inatead,
data migrate automatically to where they are needed, reducing access times

and traffic,

The DDM consists of a hierarchy of busea (or notworks), with a data
directory at each level in the hierarchy. At the tips of the hierarchy are
the procesaors, each having a large aat-asscciative memory storing data and

tag bits.

Thias talk will describe current progress in developing the architecture,
which ils being carried out by the Swedish Inatitute of Computer Science
{SICS) and the Univeraity of Bristol in association with Meiko Limited as

part of the Esprit project PEPMA,

A detailed simulator of the DDM data access protecel has been implemented
by $ICS in C++. This has verified the protocol on simulated traces of data
accessas., A full-scale emulation of the architecture on transputers is
Lbeing implemented by Bristol on the Meiko Computing Surface. The parallel
Prolog system Aurcra is being ported to this emulator to serve as & test
vehicle. In parallel with these activities, SICS has atarted building a
firat hardware prototype of a l-level DDM using commercial boards based on
the BB,000 processcr, A first working vecsion is acheduled for late 1990,

m,..nEEdm

Qaum.imu s4eqndsuoi] Uo
.”__.ﬁ__m.u_,..bu wWdaa mn Ln..ﬁ.n___d_.tm

”mu_Wu Homp.vY adhjojoud Jo soqommig
ﬁmu_wp mmmuﬂﬂt& 2UpaTy Waa
Jdadued WaQ aut Jo manuseaQ

wuf EDLQV_‘UGm

s3ido]

oYY 4o 22hodug ,

“.m_,u IS} 20UIIDg Lagndio)
Jo TS uf ysipamg jo3sug Jo hprsaaa

UIpU0T Siepuly
Uagssabop yu3 Louroy hofuog

PUYH Jig UeuoM QH piAR(<

rssacoud . vyop Pasoys, o/9o|0Is 0)

SUYdo\y uoisnidi] wio(]

Y4 fo Juewdopna(] 2yt Ul ssaibouy

—158—

[s@yge + "1mg ‘susuars 1)]
(2u03) #u1id) yioanay hysipu) sarduery weedon3

m30000%9 Swah 4

G2 , .
nm:a._ﬁm__lﬁ_d panueApe .Euﬁ m__?ﬁ&mmu (02) <d3

LWEEdLmEL a4yt S43YJOo +
o) Juandsuni] nabao) s 0wy - (SDIS) Pz Lapnchud) fo°3SU] YsTPIMG
hovi v ul swouboud dn paads o) Pa71uUI7 OB/
AEHMu uﬂmgmmd:dw: Jo Js8U| uvibag

UM
T2 000089 smah ¢
o | (1h2) WYWd3id -
ShssPod) ammf puv Juaaumd U0
suwo.ibaid u___mb;__ mn_ Uo1gnigxa 13Ieie
. ToUN SwEShS bumareibaid S1bo] EIE IR

j01Sidg o m.uum.ﬂo.t 119453

 Flourw paroyg , Mdwi jou paau ogep pawug,

Saimaayiyio
faowEw

(roaishud)
Sein{Fa} o paioys

D70p

Pasoys \

SamaaYy24o

Bu 15 sed
abossaw

M3 2OMI{05 ORI BLOMPATL]

SIUNIITJIHY2MY o399 PIoYG

| (3190058)
fuowaw Josisfyd paroys nougim
vJop Pasoys

QUYIOINS uoish) i e .

WsHa)osvd-puo + wsia)fosod 10
DACPUY «

wis lj@)roxod -u0
VI0IT -

SJuUz U4 do [@Ne(] Ulo)y)

— 160

d - sng

U013031UDbA() 240M PIOH

s pUe4 syl SOUO IPAW St vIop 50w

‘SEpOW Uomaaxa q7 Jo saijiadaid auy
Jo sbmquenpo >y pmoys 3.m3oa3 iy

50dTE OIS0 2q pmouys @inoe) ouy

Afeso; parfsizos auv

£2§S3570 VIUP suossaotud o o 3soy

“pepERU S} 31 Prym op $3IMYP oqoQ

" PoFooTanD aq

Fow puv * SHUMATo apisal fow wnqep o .

SSEPPO [CIAA 531 hg payfquep! s) wnjop v

.1.Mﬁuﬁ-ﬁﬁﬁ_ ...ﬁmxﬂ..“. .ﬂln.-h..r W.G__L__ Eﬂ#ﬁ_ﬂ_ .q_ "

" Foue DYt BUF0) 0I0p U0YyS S10SS3004] .

“hydesoy] — surysoy besnfic] eIeg

161—

JPISIN0 ogmp puo
:bwmﬂmﬂsu Yy Wypm 5)six3a n.m,u Pasoyg .

3pIsgno jou Ing
ua3shisgqne uﬁw Wypm s3sixa : (J) FASIPXY .

_ wagshsqns a3
LUnypim 3sixa jou s3op - Cu PROAU| -

TWInJUp v {0 $370]s S|qissog

. woe3shsgng

R R B I
W hjﬂﬂduﬂ_w

sados fie s
o sandad joao)

ﬁﬁ_g o waul)
AiogEaap

3 smg Togelb §

“3)|aue) vyo(] By |

paroysun so., Mouw -

s91dod Layjo |TP asaus -
Wnyop parys © Pum .

PaJousS SO S4owd -
Rdoo Jsatuau 03 JsVIPLOsq. —

wWNop 1000)-Uou w0 poal -

UOIJOIIUNUWWG]) 0307 -UON]

Wmop paoysun uwo mum .
Wwmivp Jojo) o poas -

LOQOIMMUWOY (0207

$3sSa0y hiOWB\Y 0007 -UoN PUo Joo0]

—162—

QUi WS IFYF SSI0-BLOW D wm jop
suwros oy} 404 Qsanbes Fdiuwi 3a0 Iy
waym s poau Buriquios © s I

sopho sng NZ 3sow Jo SENV} AWVU3 UL
sopha sng Z-N+ ISOW Yo Sayol Pvad v
LPUNDOW B3| -N o u|

paL4aIuUcD washsagns 33U
U 1M * pasijol0] 240 SUDIITDSULAL 30Way

oj0wzd hjpoi3un s1 your ogop
0f SS800 PPwms pajoadas tof pEIU Op

FP2383200 Js5w] 40 pPajoaud
Ser 3! 34eym sepisas hjoIiowoine vyor]

S213514332040Y7) 2UIYd Y

“puodsas oy
Pef22[af gq | 1im J43])1043ud] Fup m_:D *

(X) Prosul - (Jasvia mojaq (X)) proa

(3) paroys m”xuﬁuw._ : zs_m,i (X)) proA
’ *

(x)3ansnpaxa (x)asva2 ‘anoqo (%) pasoys

(Qensm (x)aspia :anoqo (%) paroys

(x) paoys (x)poat :anoqo (%) piroaui

FI0TE .._wm:w.»m u:mu.ﬂnﬂ

._ﬁﬂ.._.r.m___..m fﬁ.,;..ﬂcc.u

(X)os043 an0qu
(X) pras 2rogo
(x)35042 :mojaqg

(XJapum :mojaq
(x)poas :mojaq

3sanbay ndu|

.w[.g__.*uq Sidajjosuc) o ‘DEEE:m.

—163—

el g iy iR
| T T T
el) FysEl | eyoel) | auteD, @
a0 |_..|_. e |n|.. == G
-]
! I
NG HI0

$$370 "Wl Foway

M.J__m Y
sU 000G ~ $EIID "W (0307
sU QG v §$230 IYILD)

s uvunofsad papadxy .

washs bugoedo yoww -
s lbbl _ut.nm _uﬁ. Wagshe (3Fpou-g) Jossaroud-0z -
(vas/mhqw 08 -0 ‘su0g)
paunadid < sng uoyzosuny Jidg
(Fosm 2b fq) Laesqum spou waq -
S| 'suog) sahqw g +
NI i 000'] VesioW x+; pavoq ajedpy .

(s21s) "edhigqaid ewmpioy WQd

dIH soopuad ‘49 \dsutal
uossaroud sad sassavosd qubremquby ajd1 M
sse0 vyop Aowax Jo FweroT buFEsHg -

Ppo/\ uasa

Syduajeq 3nAR) 0} Sesng 4aybiy butuispuoig s

2144043 smq bunvisuab
Jroypm pawitefied a3g Uy oo} v uo amsw:zimw
“bupa) Juoddns 03 spuayx? 10303014

am:.__xu.Ul_ -

“abuioys Rdnioo 3sm Jenjoo ul sassauppo hjug

SoT| DA 1NN Puv Shodiy esiodg .

164 —

sanss{eu0 — Wad

'1-vA0pUy pue
DIUTNY 0} pUD (47 -UoU) Suoywinddy
9eand 43yjo’ O3 pazud4drur aq 1pm
(bojaid Tprod-10) IsMpy 03 pasul Fguasiny

Swssaroid Jo oU =\ dsaym)
MU x N Q00 7= QW] Uoigemuig
(buuny ai o} ixouddo 4= Buriafing)
sadid xwun hq

sassai04d uoiyegdde oy payun

arompavy on3ao {o bunuy sppop .

AUE{&Wv f7-UNg Uo suny .

Amu_wv sompiu[{ sdhjojoig 4o JOJ5 AT

SHG $+G “HId
S p+/L JAY

‘%9 | ‘S10SS820.(9GcZ-8c !

SUG v+ AV
'%9°S108S80014 zZE-91|

SIg 82) = wall
SlAAIN 8 ‘“ABM 2 = NV

peaysanQ Alowopy

165

g0+32°1 gl+aT LO+2EB LO+=D

LO+®p LO+=E 0

: i T

-—— ,Tud,
- __._M__“.“_._:.L_.__.

1 ! H

D_HG.L. 1Y ﬂhnEmE
G,HGL I ..mrdﬁ.u

o

-

z

__

PR RETTITE T) r:_.-...r.r..r-_m.ruu|-|.‘_.$__.1_

0t

0e

Ot

OF

00T

uny uoiyenuig WA

— 1686

swiajshs pase
Jazuuoousl juiod-ol-juio
jopeapipoobe jou - sjoocyoud Adocus 'Ing
'sng e Jo uopdwnsse ey uo seie) -

[coojoud Adoous & - |eociord rRUIBLO.

joaoiold syl Alpoy uolnjos pryg

ronuagy LALTETETH PR

Lomang

|0JJU0D SNg PEINGUISK] "2

7 facway [Ao FucHeragag

|[oUCT) SNE pasIeNuUan ‘|

IsuQnas oMl - sidurapye (e

snq WQQ 8yl Bunustus|du)

L SYun Lmﬂim:ﬂv ﬂg:n
UM sng Wwdadg 2y J9pow o) moy

W[qolq oy

Uoigoquawsidu srompioy 31 nads
© {0 AoJoMuLe Vv sv o of
paquauwmasul puv umop pamojs 239 uo)
Sasng {9 Peaisul SyU| 40 Syiomiau
Gusn b3\ waq Jo suemejuamadw
SADMpIOY dATouEITT 0JL “_r_.m__mc._ §3A16)

Se5Nq 13013 L,E._mE vo 1oy b3 mﬂﬁm un)

¢ 0§-02 = Umpme)s Suo)jedunwwes
pads nod X) 4 x = Umopmols 10ss3r04d
Jsed 2jmy

m_.ﬂd.ﬂﬂ.ﬁ_ﬂ_\x,ﬂ ﬂ.hDE.W_:_r____..

SU013ua1ddo FpIs -1} butuuny

waa (1ene)-1muw)

P|vIs-|nf v Jo 18powl QoIS 1y

L]

P

L]

*

3 TIM

(0fmg buimdwe) oxpiayy)
Siandsuvdy ue 3lqissod so MIueniffz so

Jdaaued WaQ auj Juaaduy o) ;3

(¥l / esug fo)

BEEETY

SryNdSUDA] U0 J3U0) Waq 40 foyonig

167

sieaddesip sapou A10j0alig JO sjaas) au Jo BuD

M W W M

Waa paseq yuy + sng paulquios e jo AIqissod

"UDHELLCIU] 8ADGE U]
woy) paatap aq Ued jocoand [euifiuo ay) jo saEls Bl Iy 1aloN

Wreg Aem sy uo mojeql waisfsgns o)

PepiesJD) 3gisnw asuodsal ey) jas s1Vg 1 UCIBaA-)g 1S uBIsuR |

“wajsAsgns i)
BPISING SI51Xa wall uay) jes s g)|

WOEG WelsAsqns

Ul 5)5EEa wWa)| usy) 1es sthg) Jopan-lq BiE1s HOe1S

T

‘g | fg| Tdl™g

UDI28A-q BoussEsd Wall B JO LWI0| 3Y) U) PRICIS SI UCHEWIONL 3]ES

Jsanbal) Buipueisino yoes
L pieisosse (jooojoud puibuo jo) VOTBLUOJLY SIS JUSISUBE]
"Wl YIRS Ljm paRIn0ssE LGl LD SIBIS 35815 I

"UDREILLGIUL 81815 |0 sadd] om) LBjuo Seuciaang

‘pabueysun siossasoud (jeea)) Alolwaw

SU} 1B NOMEYE] [esoioud puR uoRBLLOIL 1R
JUBIEYIP BB SIUBLDEW BY) Ajuo

‘|2aojeud euiblo sy jo Afeuoiouny ay) Jo 150 SUIEA)

‘BADgR 10 MO|Eq
siessa0.d 8yl jo 8UD o) SUNTESURY (8D O}
B[O W UChELLOjL) 81E}S | Bnous wEuoD seLcioap

ISEIPEQN] UBY] JBYRS DS/0840 818 SUODESUR)

— 168 —

ISaUBYIap

-

(SEInEay

Qg aul 1o} (o0jold peseq-yul v

ECIRINELER IO A TRl PUE giie teaany Fepiew 3 Fuig p wjqup

EIS00S™S | OED'EGL'OE 1renn GO'ET %=
gbrisa't | ore'sze'c REEOC CLy's e
IL=ews it o1 w7 [s mag | goa g | reaa 1Feiny || grenijoneg

4 LG Juanbag) wieiny iadow s(iurn puw (pan T sa og/e wng) FMYENS §9 Saumaien g
S00'EE 01571 || gtees ORETE BLELL | =y ||
] Q5% | 0Te's TR seorg | wigea
185 111 %L LLER] || ey ue o
o0, [Anawwse T ooar | {Foygen] g5/ ang | s/t uns | sreumpusg
(ragrom 1Jesomy siag

ndsuel], © U0 BIOMY taiom a(fuls pue snysaig

(e L.
R L5

-

kper deil KNGS pER e

£ afw

ErE]

TIM

aRD
(A
oftedvans mpp [Iva
FmiaTed seg -= p7 T
[drepl
£l
a1
11

SPED BNID HOQ B] e e
EId]
g Biga
¥ PIBA
Teedoatal p2e
¥ Biag

T EEET-FEY

Bigany

FUCIIE LSS UEL] JE)y TUCIIEWLIOSUE) &) ojeg

e

‘Bp00 deN-W0 AQ susd sy

u1s pue jup Buiseder £ spos rajquwasse ay] winjsues |
"AICALIEL JE D0 -LIoU

SES00R JUIF pUB JUD] SUSHannsul sndsuel) om) Aug

ISiquasse Jandsuel] o 3po0 snos BINY Bldwen uopnjeg

0E|NWE WG Sy o) Way panp
PUE BIQINY WOJ) s3ousiaje) Uowaw paseys desj o) twajqosg

“Alowsi paueys (j2nina) se soeds ssappe A0 By siee)

PUR JByIoM BIOINY UB SUNI Jossasold jes| wao yoes *

Coe |5 ||
=5 £ 55
= = =

| = = ||z

B
E

Waa =ys o) (spua)y pue) esoiny Bupuoy

169—

wad 1| T © o
RyIgoPIS 2juisuowap ||im ojorwg .

wdag 1#v|-p o
Jsva] o jo hyyiquia ajosgsuoap jpm
Joyepnwrs puv adhijojoid ammpaoy .

u.cﬂsm.mw b2 sauryIoud Faowrau pasoys
WD ypm 3|gigodwiod ammzjog .

3sodimd g&m hﬂma@_.ﬁfﬁu S) UM AP Ay

SSaMppo JOTIRAIA
s2) wiosl pajdnoosp Ryeaidwos
St umjpp v Jo ULorouo Teoishyy -

SBSEAWD FJOWNB) ISTMIUW o}
fpeoimowemo s37oub1 vyo .

.M_ﬂ..u._dum_. .

Riowsw |paishyd peroys ou Ing
ﬁdﬁcﬁ.ﬁmhd:ﬁ. _m.Q 2r0de gsaippr FAOYS .

Aowuwms — JUTL IO voistfJiq vieq

‘'suoneddde jusJallp
Buiuunlt Jo1enuwia ayl JO SISA|EUB BAISUDIXD e

'SUOIIRD
-lldde fiowsw paleys Jaylo pod ol ued e

‘Ao
8pun Buodny aadlom s|dilinw Jo Builiod e

‘leuoile
~i2d0 AI3UUIND JOTBINWS BUl JO UOISIDA B e

ﬂ_.._ﬂ.ﬂ PUlany pue snjeis juaiino

170

A Programming Environment for Parallel MIMD Machines

Patrick Evans, MEIKO

Meiko Scientfic has besn ssllimg the Computing Surface, a distibuied memory MIMD machins, since
1986. Some 300 systems are now in use in the field, applied 1o a wide variety of problem areas. The
Computing Swiface began as 2o entirely transputer-based machine and continues (o use transpoters for
cemmunications infrastruchire, The majority of systems now sold, however, use Intel i860 or SPARC
processors as primary computational resource. An occam-based software development system served for
a number of years for parallel program development. More recently this has bean sopercesdad by CS
Tools, a crpgs development toolkdt able o targer 2 wide varlety of procassors from a number of

differen: hosting environments.

Meiko's expenience in the concepmal design and the software development process of paralel programs
excesds, parhaps, that of any other commercizl organisarion wday. CS Tools, and the ideas behind it,
represent the embodiment of much of thar experience.

CS Tools supports the parallel programming of applications in two ways: firstly by providing a high
productivirty sofiware devclopment environment, secondly by supporting the potion of well defined
abstract parallel machinas.

Abstract machines are an essenhial aspect of modern software development - operating systems and high
level languages, for example, cloak a varery of hardware with a consistent, &asy 1w use interface. Paral-
lel programming introduces new 138ues including mterprocessor communication, program configoration
and load balancing, which impose aew requirements for usable, hardware-independeat absractions.

CS Tools provides a general-purpose, low-level abstract parallel machine, This has besn designed to
support the creation of application-specific, higher level abstactions.

CS Tools also provides a high prodoctvity software development systam within 2 normal commercial
context, It supports the cross-development of parallel programs from conventional hosting systems -
Unix and VMS for example. It allows the majority of program coding to remain within widely used
sequentizl languages such as C and FORTRAN.

This presentation overviews CS Tools and the use of CS. Tools-based abstract machines in paralle]
applications.

171-—

Mei<o

The Computing Surface
and C S Tools

Patrick Evans, Meiko

1990 0
The Computing Surface: Distributed Memory
MIMD
Heterogenous
lase|
G0
bl
Bl
SPARC
ot ———— LINK
Tlﬂ.lp.ll.lt SWITI:'H
IPARC
=
w

£1990

—172

MmeiKko

THE COMPUTING SURFACE
HOSTED STANDALONE
SN -
i
COMPUTING
SURFACE
COMPUTATION

£1990

CS Tools, communicating sequential tools, is a program
development toolset for multi-processor computer systems.

It supports the development of single and multi-processor
applications using familiar 'industry standard' development
environments and languages.

CS Tools consists of cross-development tools, such as compilers
and configuration systems, along with run-time support
facilities such as high-level communication services

and symbolic debuggers.

CS Tools is NOT a new "parallel operating system".
What it provides instead is a set of tools and services
which facilitate the cross-development of

code for parallel machines.

—173-

MeKo

CS Tools: a cross development approach
Development in a familiar software environment - vi, emacs, sccs elc.
- team working

Exploits existing investment in hardware and software

Minimises learning curve

£ 1990

Three key aspects of the design philosophy embodied in
CS Tools are, firstly

application development in familiar environments using tools
and operating systems that developers are already skilled in
using;

secondly,the exploitation of existing hardware and software
resources generally;

and thirdly (arising naturally from the first two) a minimisation
of the learning curve that developers must follow in order
successfully to develop parallel applications.

Meiko

CS Tools: a cross-development toolset

developmeni
szal

SUN .15 I

Programming a 'cpu farm' from a 'deveclopment seat'

Tools and run time facilities specifically for parallel programming

CS Tools - Sun, C8 Tools - MeikOS, CS Tools - XXX

£ 15990

Decause it is designed as a cross-development toolset, CS Tools provides a clear
distinction between the idea of a development seat and a parallel processing resource.

The parallel processing resource, the Computing Surface, can be viewed simply as a
flexible, general computing resource, the power of which can be exploited effliciently

using the CS Tools toolset.
The development seat takes the form of a hardware and software environment
already familiar to the programmer; examples are Sun and VAX,

The development seat may also take the form of a MeikOS operating system

running on 'standalone' Meiko hardware.

All development work takes place on the development seat, and , hence, existing
sofltware and hardware resources and skills are utilised.

175

Parallel programming in CS Tools is based on structuring
a single application as a set of ordinary sequential code
modules or processes.

Each of these processes will perform some of the processing
required by the application as a whole, and will communicate
with other processes to receive or provide information.

The modules will be written in standard high-level languages
such as 'C' or Fortran (or a mixture) and may by allocated
to specific processors as required.

CS Tools is designed to produce portable applications

which may run on a variety of different hardware using
exactly the same techniques and software.

meiKko

CStools: Distributed Communicating Processes

1) Message passing facilities
2) ' Q/S services '

3) Program configuration tools

4) Run time development tools - debuggers

E} 1989

—176—

1

In order to support this 'distributed communicating process
model of parallel processing, four distinct things must

be provided:

Firstly, message passing facilities, to allow individual
processes in an application to communicate efficiently;

Secondly, operating system services, to allow processes
access both to local services such as memory allocation,
and remote services such as file servers;

Thirdly, program configuration tools, allowing applications
to be mapped onto appropriate hardware;

And, lastly, run-time development tools such as symbolic
debuggers.

NeKo
CS Tools: 1) message passing facilities
Design Aims:
Sun Network « A 'fully connected’ view of the hardware

o Identical functionality on the
development seat

i@

—177—

The major design aim for the first of these, message passing, is to provide the

user with a "fully connected" view of the hardware so that the user does not need to
consider the physical interconnectivity capabilities of the processors being used.

-the system must provide simple logical connections between any one

process and any other process sothat the user may assume that everything is capable

of communicating with everything else.
In order that applications may be developed wholly on the development seat, even

though they may run on a separate parallel processing resource, the system also
neéds to provide identical functionality on the development seat as will be available
on the target computing resource.

Notice that the middle processor in the diagram, which is a transputer, the process
running on that processor is allowed to communicate with 5 other processors even
though the transputer has only 4 physical links.

MeiKo

CS Tools: 1) Message passing facilities

Implementation:

-'. s
.
1 . I . !
.

S 1. ol

1 T T

csn_tx (Transport, BLK, netid, message, mess_size)

155 csn_rx (Transport, sender_id, buffer, mess_size)

178

C8S Tools communication services provide cushioning between the programmer
and the hardware, and present a clean, high-level model of the underlying
parallel architecture.

The programmer's interface to these services is via a number of library function

calls. Identical calls are provided on every processor {ype: 1860, transputer ete.
All CS Tools communications are made through the CSN, which takes the form

of a series of background processes each of which is located on a specific

processor,
These CSN processes are placed automatically by the CS Tools configuration

and lpading facilities.

Simple CSN interfaces provide general purpose communication functionality
and are designed to be implemented effliciently on a variely of hardware.
This is a key aspect of the portability of the design of CS Tools.

In this particular example, two application processes which are
"far apart" in terms of the processors which they inhabit, need
to communicate.

The sender simply needs to call a CSN function, csn_tx or
transmit, with parameters defining the communication
channel, mode of communication (here, BLOCKED), the
address of the receiver, the data and its size.

Similarly, the receiving process performs its part of the
communication by calling a function csn_rx, or receive
with parameters to define the communication channel,
the buffer for receiving data and its size.

Optionally, the receiver may accept other information
such as the identity of the sending process (sender id).

— 179

Meiko

CS Tools: 2) Operating System Services

Design Alms:
o A unix-subset runtime environment
« Local servicing - malloe, shreak

" e« Remote servicing - file /O

Sun Network

21950

Design aims for operating system services are to provide
each application process with facilities for both local
and remote operating system calls.

These may range from allowing a process to print text
to a remote screen to providing memory allocation
ans file servicing facilities across the CSN network.

meiko

CS Tools: 2) 'Operating System Services'

Implementation:
RTE + CSN: Local ofs facilities and a transparent bridge to remote services

ﬂ

11990

In this example, then, lets say that the application process
wishes to access a file on the Sun's fileserver.

The process would make its service request to its associated
RTE - the actual request will be unmodified from the
programmer's viewpoint.

The RTE will then communicate this request to the server
via the CSN, and the service request will be satisfied
exactly as if the application process was running on the Sun
itself.

= 181—

Often services offered by traditional operating systems are required
by processes in a parallel application.

If a process requiring such a service is not located within a conventional
operating environment, CS Tools automatically assesses its requirements
and puts alongside it a tailor-made RTE or RUN TIME EXECUTIVL.
The first function of the RTE is to provide local servicing for requirements
which can be accommeodated locally, such as memory allocation.

The RTE's second function is to provide services which can not be satisfied
locally, and which require communication with a remote process or
device, such as a file server.

The overall objective is to provide a complete run-time environment
tailored to the requirements of each individual process and processor
in a parallel application.

MeKo

CS Tools: 3) Configuration and loading

Tools for:
Describing process distribution across processors

Describing communications topology
Loading and running

Sun Nelwork

ORs

11500

Configuration and loading facilities in CS Tools are used
for describing the way in which individual parts of an
application are allocated to processors along with information

describing the required communication topology.

Configuration may happen in one of two ways, using
cither the Meiko par file loader or CS Build configuration
tools - the base technology for all configuration mechanisms.

Both approaches automatically load and run an application
once it has been configured.

mei<o

CS Tools: 3) Configuration and lnéding

Simplicity: the .par file loader

p-rmmﬂ'l [p:mml.

mrun example.par

example.par

par
processor 0 freg
processor 1 albert

endpar

£11990

—183—

The simplest of the 2 configuration mechanisms is the par file loader, MRUN.

The configuration, in this case simply two processes which need to run on 2
separate processors, is described in a par (-allel) file, here called example.par.

This file specifies that one processor, which we shall refer to as processor),
will execute the process called fred, whilst the other processor, processor 1
will execute the process called albert.

The MRUN utility will interpret the par file, obtain resources (here processors)
from the O/S, configure the processors (ie wire them together) and then load
and run the processes,

Par files may be considerably more sophisticated, giving the user control
over, for instance, exactly which processors are chosen, how they are
connected, and various other characteristics of how the application

is to be configured.

Meiko

CS Tools: 3) Configuration and loading

Power and generality: cs_build

A library of C configuration and loading routines

User-visible and the base technology for parfile, application specific loaders
and future developments - graphical design

main ()

{
GROUF fredGRP = cs group(NULL, "fredGRP");
GRGUE_albertGRP = ¢§, group (NULL, "albertGRP");

cs_exe (fredGRP, "my_ fred", "fred"):;
cs_exe (albertGRP, "my albert", "a1be:rt“:-,

cs_lo.;d ();
} albert

1990

—184—

MRUN is a utility written using CS Build routines.
These are available directly, callable from 'C'*,

Developers may construct tailor-made configurer/loaders

for their specific applications

The configuration routines allow the user to define "groups" of
processes which may be run on one or many processors with
identical results (except for speed!) and to control the exact
configuration to be used at run time.

This example shows the CS Build version of the previous par file example.

2 CS Build GROUPS are defined, then 2 CS Build executable processes are created,
one belonging to each group. Each group and hence cach process is, by default

loaded onto a separate processor by the call to cs_load;
The application will then bu executed automatically.

* and, eventually, Fortran.

meiko

CS Tools: 4) Debugging

T —
,
.

Pdb - parallel debugger harness
+ 'dbx-style' guest debuggers for 1860, SPARC, transputers

+ 'dbxtool’ window based source display

£ 1990

— 185~

Debugging is obviously a key part of developing parallel
applications.

CS Tools supports a full-function symbolic debugger, TDB
based on the UNIX DBX debugger.

DBXTOOL, a windowed version of TDB, is also supported,
giving full symbolic source-level debugging capabilities.

meiko

CS Tools: Abstract Parallel Machines

* Base Level: Communications Calls
Configuration
Resource Management

+ Application Specific Abstract Machines

1950

—186-

0661

dIeMp.IRy
SUIAI2PUN WI0.If SIIST SUOTYSND JDBJId)UI QUIYIBUW JOBIISq Y,

SII.IMOSI pue SIS dunsixa gurnyroydxo JUIWUOIIAUD

9IBA)JOS PUB daeMp.IRY JeI[iwe) e ul Judwdo[aad g

"JUIWUOIAUI Sururmeago.ad
PPrered [ny e Surpraoad oy yoeoadde JuadofaAd(1-$S0.0) Y

Arewruing :S[oojy SO

0>EU

187

DECOMPOSITION OF PARALLEL APPLICATIONS
FOR SIMD MACHINES

1. . ITION OF PRACTICAL SIM TE

SIMD systems obey a single instruction stream but each processor operates on its own
independent data. All processors are lock 5t§ppad, Such systems are easy to program and
easy to debug. Providing the problem tackled is appropriate they scale naturally. A
solution developed for a given number of processors will improve pro-rata in performance

as the number of processors is increased.

Processors can be very simple since they can be controlled by a single external control unit
managing all the processors in the system,

In practice SIMD systems have been built from a very large number of very simple
%ocessnrs. The systems are massively parallel 1.151.:;3.Irf;r containing at 1¢a.st?;ﬂﬂﬂ IOCEsSOrs.
ey are a very good fit to the properties of modern VLSI, which is at its best when
replicating very simple units in large numbers at low cost and high reliability. Systems are
produced using CMOS technology with processors usually provided in a customer designed
chip. Typical numbers are 16 - 64 processors in a single chip usually operating at modest
speeds 3 - 20 MHZ. The processors undertake limited precision arthimetic, 1 - 8 bit are
typical values. Systems are also provided with ¢xtremeﬂf good communication between

Processors.

2. SOME PROPERTIES QF SIMD SYSTEMS

There are a number of properties of todays SIMD systems that are not directly a
consequence of the fact that they are SIMD but are by-products of the way SIMD systems
are built in practice. These include:

* The systems are not tied to fixed word length. The system software provides a range of
integer and floating point precisions and lower precision arithmetic is executed more

rapidly than high precision.

* Internal bandwidth between memory and processors is very high and increases as the
number of processors is increased. A by-product of this is that such systems can
provide very high I/O capability with very low demand on the processors.

* Data communication and data movement are excellent, particularly for regular
transformations.

* Efficient use of such systems requires that applications and algorithms maintain a high
average utilization of all of the processors. Even a low percentage of the task requiring
scalar arithmetic can limit the overall system performance.

—188-

3. COMPOSITION OF COMPUTE INTENSIVE TASKS

A problem that runs for minutes or hours on a fast modern serial computer system executes
at least some part of the application code millions or billions of times. Compute intensive
tasks are therefore always parallel. Only a minority of these tasks are inherently unsuitable

for SIMD systems.

Much of modern computing practice and design has been determined by the re wirements
of numeric, scientific and engineering problems. This has set the practice of 32 bit floating
point arithmetic or if this provides insufficient precision, 64 bit floating point.

Over the last 35 years our computer languages, libraries and tools and many of our
algorithms have also been structured to meet these requirements plus the needs of serial

architectures.

Despite the above a large fraction of todays compute intensive tasks are the processing of
massive amounts of data, much of it non-numerical, and the majority of it limited precision.
There is no general case for computer systems to be built for 32 bit or 64 bit floating point

arithmetie,

Any substantial advance in computer performance must be based upon paraliel systems
with a large number of processors working efficiently on a single problem. For appropriate
problems SIMD systems offer an casy route to massive parallelism and hence very

substantial development scope.
Examples of such appropriate problems include:
" Image Processing - a TV system provides 107 pixels per second with 8-12 bit data.

* Signal Processing - Radar, seismic, sonar and many such sensor systems provide a
continuous fast stream of data of limited precision,

* Data Base Searching and Sorting requires the processing of massive amounts of data,
much of which is of limited precision, eg. alpha-numeric.

* Simulation and modeling often requires high precision numeric data but there are also
many compute intensive tasks that process data of limited precision sometimes even
Boolean. Some examples are; fault simulation of complex chips, cellular automata
techniques, neural network simulation, etc.

4. MATPING PROBLEMS ONTO SIMD SYSTEMS

4.1 Data Storage

The basic requirement to obtain high efficiency from a massively paralle] SIMD system
is t0 keep the average utilization of the processors high. Two extremes are very large
problems, often referred to as "oversize problems” or the processing of a massive
number of very simple problems in parallel, often referred to as "outer loop
parallelism”. As an example, for matrix inversion the former would be a matrix where
the number of elements is much larger than the number of processors and where the
single matrix is handled by the whole array. The later would be the simultaneous
inversion of a number of small matrices where the number greatly exceeds the number
of processors. In this case each processor is used to tackle 3 complete matrix inversion
and a N processor system completes N inversions at a time.

— 184

The design of correct algorithms demands consideration of the mapping of the total
task to the SIMD system. Processing is not the sole requirement. Data must be sorted
and moved in an optimum way. For real time applications latency may provide

additional constraints,

The bad news is that there is no automatic way of converting serial code, The good
news is that once the initial barriers are overcome the extensions provided to languages
to make them suitable for Farallel machines greatly ease the programming task. A
Fortran-plus code is typically about one third the l&nﬁ;nh of an equivalent Fortran code.
AMT provides tools and libraries that together with the Fortran-plus compiler greatly
aid the production of code. As an example most image processing tasks are a number

of calls to routines provided in the image processing library.

The first requirement when tackling an application is to analyze the parallelism in the
problem. When possible outer loop parallelism should be used since this reduces the
requirement for data movement - if all computation is done in one processor all data
for the calculation is provided in the data store for that processor. Often data provided
from some practical system will be blocked up until enough is available to fill the
computer system so that all processors are kept busy. Systems with a larger number of
processors therefore require larger blocks and hence have a larger latency. This can

sometimes provide a constraint on the size of system used.

If the problem is oversized, (ie. with more data points then the number of processors)
thought must be given to the data mapping. Two general methods are uﬁ':d' "sheet
migpmg" and "crinkle mapping". Sheet mapping takes a local area of N points, where
N<1is the number of processors and stores these as a sheet with one data point per
processor and then stores successive sheets down the memory. Crinkle mapping folds
the oversized problem so that it matches the array size. As an example a crinkle
mapping of a 512 x 1024 size problem on to a 32 x 32 array will store local areas of
512/32 x 1024/32 (ie. 16 x 32§}in the memory of each processor thus compressing the
total set of data into the array. Each processor then deals with that local set of data -
le. 16 x 32 = 512 data poinis in the examtgle. Crinkle mapping has the same
advantages as outer loop parallelism in that it requires less data movement. AMT’s
compilers can automatically map oversize problems onto the physical array size and
hence relieve the user of the task. The same source code will run on any array size and

only a recompilation is needed.

Different mappings for the data are often required for different stages of a
computation. Hence data has to be moved in store from one regular structure to a
different regular structure. An example could be the transpose of a matrix or a perfect
shuffle on a data set. These transformations can be complex to program but a solution
is provided by the system software, AMT has some very elegant software called
"parallel data transforms” (PDT) that handles these tasks automatically and very

efficiently.
4.2 Arithmetic Precision
Since SIMD systems in practice are built from simple processors which execute limited

precision arithmetic the systems run faster when lower precision is used. A 1024
processor DAP system working at 10 MHZ will execute 10,000 million Boolean

Instructions per second.

—190-

Users can get code working using floating point arithmetic and can then experiment
with lower precision to provide optimum performance. .

The system software can be "clever” and use varizble precision arithmetic for
successive iterations or even tapered arithmetic increasing the precision one bit a time
to match the increased requirements as the calculation progresses. Such attention to
detail is not required by the average programmer but they can benefit by improved
performance because the system software employs such procedures.

In some cases algorithms can be selected that use Boolean data to get improved
performance. An example is the comparison of two images stored as a Boolean sets
reduced from images of greater precision. A second example is track following when
elements to be fitted to a track are stored as a Boolean map.

4.3 Algorithm Selection

In many problems the algorithms normally used have been selected to optimize
Eerfﬂrmance on a serial machine. Often a more direct and far simpler solution has

cen rejected to gain small advanees in performance. Often these "obvious”
procedures are better for parallel machines, There is no short cut to the selection of
suitable algorithms and no replacement for thought and clear thinking.

As an example finding the largest number from 4096 on a serial machine is completed
by comparing successive values and selecting the largest. An obvious option for a
parallel machine is to compare 2048 pairs, and then 1024 pairs etc. But for the DAP
no arithmetic is used at all. The most significant bit plane is selected and in two cycles
the DAP can decide if all elements are zero. If it is, then the next significant bit plane
15 studied until some elements are non-zero. Each of the processors with non-zero
values is turned on and the others off. The process is continued thus finding the largest
number. This %rncedure is extremely fast. 1use it as an illustration that lateral thought
often provides handsome rewards on massively parallel SIMD systems. It also
illustrates the use of the activity control available on the DAP. This is an important
design aspect in that is allows the system to be used efficiently on conditional code.,

Space does not ?&rmit an in-dagth treatment of algorithm selection. Even were the
space available [would not wish to undertake it because it is an area where substantial

research is required,

5. HARDWARE DESIGN FEATURES IN A SIMD SYSTEM

The architectural design of a SIMD srstem is 4 balance between system simplicity to keep
the cost down so that massively parallel systems are affordable, and increased performance
by adding additional features. " As usual it is the balance of the system that is important,

AMT has provided hardware to provide performance on operations frequently required.
Software to undertake more complex tasks infrequently required is provided instead of
expensive hardware,

An cxarpple js data movement where AMT provides nearest neighbor, row and column
connectivity in hardware and PDT software for less frequently used longer range
transformations.

—191—

The average user should not be over impressed with hardware manufacturers claims for the
advantages of their specific features. The only relevant parameters to the user are:

The performance on his task.
The ease of programming,
* The price-performance provided.

Benchmarking for parallel machines is an important research topic that needs serious and
urgent attention.

—192—

2 - a0y

A3dd3.LSMI0T IHY SHOSSIDOH TV

(f1owaw umo syt sey tosses0id yaea)
SIWY3IHLS v.Iva 34N

(1lun josjuo0 suo)
WYIHLS NOILONHLISNI 3TONIS

(jusiayul)

SWALSAS AWIS 40 S3A11LH3Id0Hd

WY

dV{ HO4 S3HNDId AONVYINHO4H3d

WALSAS QWIS ¥V NI S3HN LY SHYMAHYH

SINILSAS WIS OLNO SIN3TE0Hd ONIddYIN

SHSV.L IAISNILNI 31NdINOD 40 NOILISOdINOD

dvd 40 S3ILH3Id0Hd

SWILSAS QWIS 40 S3ILHI40OHd

ADOTONHOIL AHOWIW 3AILOY NYWHIYHD
ONINNYIN © 204d

SANIHOVIN AWIS HOA
SNOILLYOIMddV 13T11vdvd
40 NOILISOdINOD3A

i

- 193 —

O LY

WY

jeanaeld 1ou si
apoo |ELSES JO UO|SI2AUO0D J1jEWOINE

swa|gold ajeudosdde Jo) weiboud o} Asea

UonEJIUNWLWOD BIED PUE JUaWaAOUW BIED JU=||20Xa

Ayngedes yndyno/indur juajjaosxa

§85eaJoU) s10S52920.1d Jo Jaqunu Se Sasealaul
pue Buipuelsino YipIMpueq [BUIalul

Alpides alow pajnaaxa uois1oald J1amo] -
uolsioaid ajqeliea - Yyibua] plom paxi) ou

SIW3LSAS AINIS 40
S311d3d0Hd DNILTNS3IH

o Lo L

WY

[elauab
uIN oo pUue Mol

inoqubiau jsaieau

d3dIAOHd ALIAILOINNOD LNIT13DX3

d4NaZE T+ NG L UG8 + Na L ‘Ug v ug | Ba
'SHOSSIDOH I1dIIS WOHAL L1Ing

SHOSS3D0Hd 0001 < 13T1VHVd ATIAISSYIN

(suonejuswa|duw jeonoeid)

SINFLSAS AWIS 40 S311H3dd0Hd

194 —

—
E——

LINN
TOHLNOD

\

3Z1S 3903

HEREEN

rruf.mEOmmwwmmm.ou

AEOWIW
AVHHEY

Sd0553d004Hd

s

=

dILSYW

P

h:l\\

3IHOLS
3402

_
LAV

LiNN
NOILO3INNOD

—

O/l LSv4d

H3aLNdWoo

1SOH

==
[~

\\\
v FWA

195~

AM
SUMMARY OF DAP PERFORMANCE |

DAP 5106 610C

Speed 10 MHZ | 10 MHZ

Processors
1 bit
B bit

| Peak Performance
1 bit MIPS
8 bit MIPS

32 bit MFLOPS

[/O M Bytes/s

Frocessor use

Relative Power

Price Performance

$/MFLOP

196~

‘abue Joindwiod Jadns ay ul sauBLLopad B SOy jRpowWw 2018y “abues ggo/dva mou ayl Jo Jey) pue aBuel gvg luanng au) jo uomsod ay) smoys aunby oy

(shosseooid jenpialpul jo Jemod aanejay

i 000'00} 000"L 0oL oL !
pootcozpebiapynme o
; "””.,"._\.m_,w..n."r.. EERRT .”%h&ﬂqiﬁw B DR I ./.._ !
4_ Sl SUOIIEISYIOM
Sjuw
-radns
SOWEJUELY .ﬁr_u__.

soisduyd ciseq
A las
Y aovewsoped

LNV

&

siandwios sadns

0003} NS_001
_ S8Ia% gvQ ™~

S3UEs g4 /
; dvd

.......... N ﬂ/....__cq \

.f._D.n_ﬂ.n;

ywoib gyg
pajoalosd

Jamod waisds 0oo'o0L

anNERY

¢ aunb

—187—

51055220,
10 JaqLuung

B o6 1001y

buiwweiBoys|y Jo uonenge)
buiyojew ssuanbas yyg
Buiysieas piom Aay Bo

ONIIHOS UNV BNIHOEVES 95Vavivd

uoisioaid pajiwi jo BjEp JO Weals -

olwsias ‘leuos ‘Jepes Ba

ONISSI00Hd TVNBIS

ElJEp Q Z1-8 =
oas/slaxid .01 sapinold wayshs oL Ba

_m SINESSE]

SHSVL IAISNILNI 3LNdINOD

Wy 40 S3ATdINVYX3

uolsizaad pajwy| joejep josayign -

80810y

swalshs aIs 1oj ajgepnsun Afualayul ale
s)yse} anjsuaul ayndwod may Map

S3WI} JO suol|Ig JO SuolIwW
painoaxa si apoa uoneddde

|aljesed aie syse} aalsuajul ayndwos ||y

wajsis |ejuswyiadxa awos wod)
Elep jo Bujssaooad Ba

juswannbal swy gas -

wajsAs [elas ulapow uo inoy | Aes Joj sund -

L dA ANl 3N

SHSV.L IAISNILNI
31NdWOD 4O NOILISOdINOD

198

L D6 LI

FOVINVYAQY NV SI
ALIMIEYdVYD NOISIOIHd FTaVIHVA v

SHOSS3D0Hd LNIOd HNILYO 14
d04 3SVD ON SI 3H3HL

SWILSAS QWIS OLNO 114 NOILOYHA OHV1 Vv

NOISIO3Hd aaliwm 40
V.1V DNISS3I00Hd SHY NOILOVHA 01V

T13TIVHYd YVA 34Y NOILDOVHL IDHY v

TITTIVHY ATLNIHIHNI IHY

SHSVL IAISNILNI
41NdINOD NO SNOISNTONOD

WY

|
|
|

(il D6 |y

SHIOM]3U jeINaU
sanbiuyoa) elewolne Jenjjas

sdiyo xajdwoo jo uoljejnwis jine; Ba

. @1enbape st uoisioaxd panwi A1aa sawiPwos -

Aaeunoge pannbay ja6 o} anawyjue juiod
Buneoj) uojsioald ybiy sannbas sswnawos -

(ease peoiq f|lawanxs ue)

SW3LSAS TVOILOVHd dO
NIT1300W ONY N

WY

1949

L1 D~ 100

abuie) waiqoud ay) axewWw 0} BIEP 193)102
0} sAed uayo 3 wajqoid e Jou s) Asuaje| i

JUgWaAQul BlER aSILWUILIW O] u__u_.t_wﬂm

pasn aq o} wajsids ayy jo Auansasuuos |esisiud
a8y} ojuo sdew siyy Mol JapIsuad

wajqoud ayj ur wsya)|eied Jusiayul je Hoo)

walsAs s 1alesed AjaaISSEW B
ojuo 1a31aq dew |jim JeU} mEE:omE lajdws
PUE SNOIAQO 210W ‘}0211p 210W 2l 313y} ua}o

asn o}
ainpasold snojAQo Sy} 10U S4B pUB SaUlldeLl
[eLlas uo soueunopad asiwundo o) payosles
Usaq aAel SaulyoeWw [BLIAS UO pasn swyjobie

9PO0J [BLIAS JO UOISIAALOD JJEWOINE OU 5| 318Y]

WY NOILO3T3S WHLIHODTV

Th0E- L ooy

d3H3AISNOD 39 LSNW ONY
LNVIHOdWI AH3A SI

(a1qejieae st ynsas e aiojaq Aejap ayy al)
SAINILY L SHSYL IN0S HOS

P21apisu0D aq jsnw pue juepodw) ale yjog

INIWIAOW V1VA ANY NOILLYLNdINOD
SZATOANI JWIL NOILLND3IXI

uoisioald oljawyue -
gbelojsejep -
uoloajas wyyioble -

0343dISNOD 38 Ol SW3LI 334HL IHY JHIHL

SW3LSAS ANIS OLNO
SW3TE0Hd ONIddVIN

200

N e) 1

rLod- ot

si10ssa204d Jo Jsquinu = N alaum
WY B I8 PAAJOS SXSE) N PUE LHONOHL Y310 HO4 3LNLILSENS ON S| 3YIHL

¥Sel B saAjos Jossadold yaea 15} Alaa ‘jJuswaAow Blep ou ‘ojjlawylue ou -

1 yuealjiubis yseal o) anuuoa -

piomkay e 10} 0432 5] }Iq 2Jaym s10ssa00.d ||e jjo wany -

aseqelep 1xo) oBie| A1oA & yaieas Ba 4 042Z-UoU awos [pun sauejd umop anuyuoa -
(sa)2h2 g) osez-uou Aue }1 yse pue

syse} ajdwis jo Jaquinu abie| AJaa jo aue(d y1q juedylubls Jsow je joo| -

Buissaoosd annnaday ainpasoid dyq

wsiaered goo T30 JUaLWaACW B)EP jO 510] Ing sd2a1s | sayel

218 -

sdajs jo sauas e u) sied pzo| asedwos -

Aeyte ayajdwos Aq payoe) stwajqosd ysabiie) alo)s -

siied gyoz aledwos -

siaxid pz0lL X 20} Jo sabewijo Buissesosd Ba aujyaew |ajjeled e Joy s)ybnouyl 154

siossasosd Jo Jaguwinu < < sjuiod Bjep jo Jaguwnu sdals 960p sayeL
ayy yum abae| Aiaa Ajuatayul st wajqold . doo] -

isabie) atos -

SW3Td0Hd FZISHIAO anjea 1xau pue jsabie| ssedwos -

au|YoBW [BLIAS

WILSAS QWIS ¥ OLNO SHSV.L AISNILNI
3LNdWOD DNIddVIN 40 SWHOH NIVIN OML siaquinu 960t Jo 1sabiej ayipuly SAWEXT

WY NY

ant—

i1 pa-pooiy

WY

g3sn SONIddYIW VAVA NIYIN OML IHY IHIHL

JHNLOILIHOHY 3HL NOdN 1N3AdN3d3a si
AHOWIW OLNIVLVYAd 3HL 40 DONIddYIN IHL

ONIddVIN FTHNIHD

DNIddVIW L33HS

dvd 3H1 HO4d

a3sn WE1SAS QWIS SHL 40

39VHO1S v1vd

¥

E J

Lof- 1O e

uatajip Alaa aq uea
flowaw ojus ejep jo Buiddew 1nqg

5105s5920.d jJo Jagunp

sjujod BlEpP JO JaqunpN = sdajs Jo Jaquny

S3ISVOHIOGE NI

WY

B 08 LoDy

UuxgelLxgy

ale pasn saue|d

slexid ggL x 9L -a

(4 ck

siaxid 960p X zZig SEU JUdWala Yaes

10ss$5304d 2u0 U] PaJO)S JUBWA)S SUO
Uim sjuatuaja ge x ge ol dn uayo.iq si sbews ay,

slossaooud jo Aesle Zg X ze B OJuo
paddew aq o) s| sjaxid ggobx Z1 g 1o abewi ue

¥

ERE !

3Z1S AVHHY AHL HOLYW AIHL 1¥HL OS
Q3SSIHJINOD FHY SLNIOd vLva IHL

IONIddVYIN FTUNIHD
Wy

Arowsw jo saue)d N
au -
sl@aus N/a -

SE Palo]s 18s 8lep |Bj0)

Aiowew Jo saue|d u jo sjas anissasans ul s}aays
SAISS3IINS Se pasols sjutod glep N aAISS229NS

Alowsaw jo saueld u saidnoso -
.mu.mﬂu jo __”_.ﬂ_m_._rﬁﬂ-. B S| m_—.= =

losssaoud sad jujod ejep suo yym
slossaaoad ayy ul pasoys sjuod elep N 1511

_ sjigu = Y.LiVAa 40 NOISIO3dd

]

N SHOSS320Hd 40 H3gWNN

Il

a S1INIOd V1Va 40 H3gWnn

ONIddVYIN L33HS

WY

2n3—

L& 0 L On\cy

Jajdwis s
buiddew jyaays uayy syurod ejep [e20] uaamjaq
Auanoauuos aoj Juawsannbal ajy st a4auy)|

juUaWaAoW ejep ssaj S| aJay) asnedeq 1ajaq st
Buiddew siyy sjuiod eiep [B20] Usamiaqg
Aiansauuog saunbas Buissasoud Jl 8ouay

i0ssaooud auo uj
Eale [EQ0] B 10] BiEp SsaJo0)s Buiddew apjuun

SWITE0Hd 3ZISHIAO
WV

02 0610t

WY

2,001 s1 Aoua1aijje

Buissasoud jeoaijuapl aiinbal sysej jje pue
slossasold jo Jaqunu

£ syse} Jo Jaqunu Buipiaoad

slossazoid uaamiaq
palinbal st Jualwanow BJEp OU @Juay

¥sej jeyy Buisepapun Jossasoud ayp Jo
Alowaww ayy ul yse) Yyoea 1o} Bjep alols

wsija)eled jo wio) sjy} asn ajgissod alsym

WSIT3T1VdVd 400143 LN0O

-204-

WY

L2 061330y

SWIojsuRI) 131IN0) 10} o33y Le pasade; Ba

suonelall anssa2Ins Jo) Uoistoald Juasaup -

sjool airenbs 1o} Ba

NOISIOFHd 318VIHVA
S3SN IYYML40S WILSAS

SONVINHO4H3d 3SINILHO OL
NOISIO3Hd AHVYSS303N ILVDILSIANI NIHL

JQILFWHLIHY LNIOd DNILVYOTd
HLIM DNIMHOM W3TE0Hd 13D NVD

SAVHHY NV3T1008 35N 3181SS0d IHIHM

QILZWHLIHY 119 | HO4d
SdIW 000°0r SYHOL9 IONIH -

SISVIHI3A NOISIOIHd SV SISYIHINI a33dS

NOISIO3Hd DIL3NHLIYY

EE DG 100N Y

Jayjoue pue Buiddew auo uaamiaq Blep arow
Aljeonewoine (1Lad) swiojsuel) eleq |aj|eled "

Hiom ayy jo |eap jealb e op saleIq &

Ajleanewolne azjs Aelie |enjae ojul
swisjqoid azis Aenygie dew suapdwos dya &

H40Mm 8yi jo |eap jealb e op sailleiql pue sjoo} auyy
asneoaq Jajsea spew si j a2119e.d Ul *saualiadxa
sasinba. pue juepoduw s1 ejep jo Bujddew auyy apym

910N

5—

0

>
A

G 06 10T

aouswloplad-aanid B oo

Buijwwelboid jo ases ajebijsaau]

wajgotd inoA yiewysuag

uoiInul 1noA 3snJj uoq

Wwal} aasl|aq Luog

1saq ale sliay) wiep (e Asyl

suonjos |ewndo, juajayip
pajaalas aABY SJINJORJNUELLE JUBIAJIT

WY

ﬂw.nn..:ﬁ.u_.__._e.

pasn Ajuanbauju ale Jey)
sjuswanow jeiauab alow Joj asemyos 1ad ing

sfemyBiy vwnjos pue mol
sinoqybiau jsaleau

:pasn Apuanbaug 10 asempiey sapirold dva

AAnoettos bBe

suojjelado pasn Ajuanbanjur xajdwoa aiow
1oy a1emyos asn 01 Asea apinoad pue
suonesado pasn Ajjuanbay) Joj

aiempiey apiaotd 0] s| uonnjos }sag

alempJiey ay) bBuipinoad Jo 1509 ayj pue alempiey
leuoljippe Aq papinosd Aausiolle panoldu)
uaamiaq asiwosdwos e s) ubisap ainjaajyaly

W3LSAS AINIS V¥ 40
S3HNLY3d SHVMAHYH

1AV

&2

—206—

LHOITIVIS/dVaAvalin

LINY €2

92 061000

suoneodde jo abues apip
asn o} Aseg

pabBbny

| (ag) diwaad or$
(1a 2g) dOT4W Jad p52s
nem sed sdoT4m 2

yout 2iqna 1ad S4OT4W 0€

auH04 S3HND |

SIHNDI4 IONVINHOAHIC
FTEYHHVINTYH JAID NVO
SINFLSAS AWIS

WY

SWIISAS I TEYAO 1d3a 904

0

Parallel Application Program Resecarch at ICOT

Nebuyuki Iechivoshi
The Seventh Research Laboratory, ICOT

This extended abstract overviews parallel application program research and development at
ICOT sinee the prototype parallel inference machine Multi-'ST became operational in late |932,

1 Multi-PSI

The Multi-P'S1 is & prototype parallel inference machine (PIM), which becanwe operational in late
1988, It is & distributed memory multiprocessor with an 8 x 8 mesh network {eut-through routing).
The concurrent logie language KL1 15 implemented in microcode, and all programs including the
operating svstem PIMOS is written in KL1. Several new implementation technigues were iosted
on the machive, and will be incorporated in the pilot PIM machines, "Uhe Multi-I"S] now serves
as a workbench for research and development of medium- to large- scale paralicl prograns,

2 Early Benchmark Programs

The first prograims to rum on the Mulli-PS] were ones te salve simple problems. The developiment
began o middle 1988, and some of them continued to be improved over a year or more. Among
those programs were Pentomine and Bestpath programs.

Packing Piece Puzzle {Pentomino)
A rectanguiar bos snd o collection of pieces with various shapes are given. The goal is to find
all possible ways to pack the pieces into the box. The puzale is also kuown as the Pentomine
puszle, when the picers are all made up of § squares. The progrsin does a top-down OR-
parallel all solution searcl.

Shortest Path Problem
Liiven a graply, where cach edge has an associated nonnegative cost. and a start node in Lhe
araphi, the problem is to find a shortest path to every nade in the graph from the start node
{single-sonres shortest path problem), The program performs a disteiluted graph algorithu.
We used a 200 x 200 grisk graph with randomly generated edge costs.

We developed o mmlti-level load balancing scheme (al! writlen in KL1) in the Pentoming faree-
gram, and attained a S0-fold speedup using 64 processors. The load balancing mechanism was
extracted [rom the program, and was released as a first utility in the KL algorithm lilrary.

In the Restpath progesin, several graphi-to-processar mapping schemes were tested, and it was
shown that the performance could change dramatically simply by changing the mapping schonws.

Other than the Pentonune and Destpath, PAX, a syntax analyser for English seutences, which
is an implementation of o charl passing algorithm in KL1, and a Taumego solver Lhat does parallol
alpha-bela searchi in solving a Tsumego problem (counterpart of checkmate problem in the game
of Gao) were developed.

3 Recent Application-Oriented Programs

Maore recently, more programs have been written, which are more application-oricnted. Those
programs meluds the fallewing.

— 209

« VLSI-CAD PMrograms
An LSI chip router and a logic simulator have been written, and are under improvement.

o (iepetic Information Processing Programs
Two different algorithms for multiple sequence alignment are being written. Development of
more knowledge intensive progeams are also planned.

+ Legal Reasoning Program
A prototype legal reasoning program that generates argwments, based on precedents, for
both the plaintifl and the defendant in o low suil was developed. It employs a case-based
reasoning mechanismn.

+ Go-playing Program
A sequential Go-playing program (GO(G) has heen developed sinee 1985, and is now being
translated in KL1. The parallel version will have an enforced search task for determining the
best move and incorporate new Go strategies to make the svstem stronger.

The purpose of developing those programs is not so much Lo test clear-cut parallel algorithms
as Lo evaluate the utility of KL1 in developing paralls] prograns to solve non-toy problems. The
details of the programs will be presented in the workshop sessions and the demaonstration session

4 Performance Analysis and Monitoring

The target machines of paralle! program research at TCOT are highly parallel computers with 1,000
or more processors. This means we must not tailer the programs to the 64-processar Multi-P5I (o,
for that matter, even to a S12-processor PIM) Raw performance figures on the Multi-P51 cauld
e musleading in designing and tuning paralle]l algorithms and mapping schemes. "Uhe algorithm
designers have to not only measure perlormance but analyze and anderstand it,

We stacled a sealability analysts of the multi-leve) load balancing scheme devised for the Pen-
tonuno progrant, and some interesting results have been obtained. 'This research area should be
much more strengthened. Research i parallel algorithms and data structures is also pursned.

Performaners monitoring capabilities help a great deal in getting the idea of the runtime charac-
tenistics of programs. Until recently, the only performance measurement/monitoring toods on the
Multi-P5S] were the timer and the performance meter which shows hew busy the indivisual proces-
sors have bee for Uhe past two seconds, The latter helped very mueh in pin-pointing problems in
load balance {e.g., findig the bottleneck in dynamic load balancing schemes) and make changes.
The Mulii-PSI system has recently added a task-wise profiler (which records what predicates have
heen executed how many times on which processors) and a processor-wise profiler (which records
the idling periods, the number of messages sont and recetved, ete.). Visual tools to display Lhe
monitoring results postmortem are under development .

5 Conclusions

I have overviewed parallel applications research at 10OT in the past couple of vears. The First
programs to run on the prototype parallel wference machine Multi=1’S] were simple progiams to
solve simple well-defined problems. More recently, programs are heing developed which are more
application-oriented. Along with wrting and testing programs, research in performance analvsis is
conducted. Sophisticated performanes meazuring/manitoring 1ools to help understand the runtine
behavior of programs are becoming available. We hope 1o lay a solid foundation of the principles
and practice of programs on a highly parallel computers in the rest of the FGCS project.

210—

Vel japa i _
.jms_ .wm.ddm:uq u@ ﬁ! ﬂﬁme H_M,Hl“

Mangfoc

Y ks Bepndy | 9 P |
‘ _

oty 3 g L 9= M)
41 [927 wh |
a1 | 977 45]
dIN 9eT H9 |
p...__.._tnm '
iy 987 |

u:qw+du__&¢ , w_‘duw_: LNV

0\3|/

40))

Aloleioge] yjuaass
(1.ODI1) ABojouyda 183ndwoDd
UCI1BJ2UDD) M JOL 31Nn3I1ISul

IUSOAIYD] 1NANgoN

—~211—

1. ODI
1€ Ud.ieoasay weiboad
uonedlddy |9jjeled

PaaeL/CIN 07 & S3d PO

“/ 1 1d
fl

Jow=lwaal / S41ITHZ ~ 334 S}

A/ 1S4 =-9"W

swapss bunessd(: SOWI 'SOJWIS

JHY4 'aH9
sabonbum) |3utay] 1M 0

puoag Jad saaumaju] |warbe] 1 G417

suresdord uonesidde s8re 'SOWI4 RULI—

wayshs Wid eud Z661
swerford vonesnddy ‘zA /SOWId—

(1714)348Z1%Sd11 H009 d/Wid 0661+ moN
swredord worje1isuOwWa(‘1A /SONWId—

(puaddn 73]

(114)3dv9=SdiN M0ST TIM ‘ZA/ISd-ININ 8861
sureidord apdures jrewg—

(DOH94)3d9%SdIT HT IHOD4 "TASISd-BINW 9861

OHOD— 6861 _
swayshs |9j|eieg

{ puadde g3)

(0T1X®)SdiN MoEE 11-1Sd 9861
SOdWNIS ‘dSA—
(0IM)SdIT MIE 01 ‘I-1ISd ¥861

swa)sAs jeijuanbag

(ounwoluad) 9)zzng ad91d Bunjoeg

(Bulwwesboud siweuAp) buisied jueyd

(Xvd) 19sieq abenbue jeiniep

Buiunid elaqg-eud)y

(oBawns_) youesas aall -awen

ydeusb ssieds e uoy wyiLobie ydeio

(ulediseg) walqoid uled 3sapioys

9841 B JO U2IeasS annsneyxsy

(ounwoluadg) 21zznd 92914 Hunpoed

Swejqoud
Pauljap-|am anjos 01 swelboid ajdwis

(1) sweiboad diewyouag Aple]

213

eoup3 1wobi0 gy A praowal YaTumyc)

i E-j S
asvyy Sy o7
-2
e Rl

7
Z
i

.u«éw\raﬁ T# IO Ypnaag seweag opv)y

_ vors L
H.w:d___a,w Ju ﬁjm
I
Y-
AL S‘x
Tai} \PHODS

e oo [P0 T

f.._:.___q.n_e.__uﬂ__.___._
..m_uu_.d%”du Yawp gws i MO

Saprpeyes Apmond w Tam
a 35w MM 1Y &

(35 Smprn)
MmN IuT) Yio)

(25w)y) \ juw_...,_.m

Lﬂfmm w_,.,,E. ®)

fﬁﬂn@ osmf._m_ﬂ.:,.wﬂw ©4
Lt mw_ﬁs.&qm_ nﬂﬁof_ dmﬁdskg

—214—

4v\ma_q‘.‘.__n_._a_ﬁ_ ¥ TPOM pvoys -

Jcywiau2b
429wy wopmuy 49 Faparadb spi0d bpo .

(eo] ¥001) S$7pow 00Q’Q} -

i

N

— Q@ -2

WU S

X

-

LpRL saoys —af ums__aiﬁ.g

I

Q01

Juod Hels

213

wojqoid Uled 1s=ol0Us

M0AAD UDb mu: mm;% Jw! |

x

Eza: aﬂa J} WNou

L:TG

(Xwvd) 49sied abenbue |einiep

WOHRT 1) oS |
(4B

Iﬂ?.rﬁrmm._du_u..ﬁ “eL70 |W YW EQU

©armppq Jlo-wpod] .

ff@@ r\.h«nfw_.,.@ Xy ul Srmryo <
3 __&c§ ofrmay @ﬁf§>

—Z16—

__ Airiopd Ayriorad

< . ..
42m] sy T
e o O 0
é §w:q§
nﬁw.q__..,:w__n_ Emaw Jﬂ_.sd_& uoy
uﬂ.ﬁl o)

fsfmp@ qmufsf._n L
“ u.iwé:m,_mm_qx \D.._.,_n__r.__&

217

obawins_|_

SauUllnNos Buinos
Wwa|qo4d 1abbLi3-uoiienyis Jo Jaquinu
E JO Bunsisuod weiboid suwi |eas, v

wetbord BulAe|d-0og

Buluoseal paseq-asen

welbord Buluoseay |ebay

sisheue
3JUanbas |di3nw Jc) swyluobie om |

swelbold sisAleuy swouan

Jolenuwis
19A8]-21b07] 'wedboid Buiinos dius 157

Swelbold avD-ISTIA

(seull 000'L~000'¢) 3|es JabieT »

pajuslo-ucedi|dde aloy e

swelbolg jusaooy aJ0N

~686}

Bulinpayoss ssenoud
10) Moud uoinjosal-ybiy Lo asn

uoirendwod aaije|ndads

¥23U2|110Q9 'peE3yisAD

uoiedunuwLwo)D

bulddew 213e3s '‘Bulddew sweuiqg

buiouejeq peoT

paouslladxs
Blam S105sa004d I nNWw ajeds-Lwnipaw
uo swesboud |a)jeded Ul sanss| Jofew e

(z) sweiboud diewyouag Aje3

S 218—

uawdoEalap J2pun
3le S|001 UOIIBZIENSIA WIHOWS0H

(Buljiy01d 3SIM-10SS800.4d)

‘038 ‘'sju=sAl

paulap-iasn ‘Bujpuey abessaw
'sawull 2|p! lossad0.d Jo BoT) e

(Bui04d 251M-3{SEL)

$10SS9004d

Uaiym Lo sawl Auews moly
PIINIaXa alam sainpasosd Ydiysn

sia|joad wesboid

‘Bbuiuni uo[nglsip

peo| Ul |niasn Adaa ing 's|dwis
“Uonrezipn

105S3204d JO JOIEDIPUI BU}-|EBaY

13]=2w a22uewliallad

sjoo | Bupojyiuowy

/ju2uaanses|y 2JuewIolad

{_iMuuL pu

SISAJBUY 2DUBLIIOLID *

- %00

S|001 DUulOJIUON
/IUSLLDINSEIN 2IUBLLIOIDd *

PnqoQ 2ouewWA0ji2d pue

jolaeysg weaboud

puejlsiopun Joijed OL

219-

.ma%ﬁtw
T AFIfve dv nf..dp& &wﬂ;drw)

Jasvajoul Y S0

d paol o
%\

Jasvrou) xmxﬂa.wuwﬂm "Sosw) Auow MT X

wWerl ot n%
i (ud)S

(ud) L
(v

mxuuq&m (v9) ¢ =

__....haxmn& %d._.& M WH,HH Urv I.._d.__m_nﬁm v
NP ap rm Wil (u n@!_{

Dol pred o g oo wiggad ot o 4zl

\«usm_u._.w%m - omH

LLaulysew
J0ssazoud QoO'T e uo uolledidde
INOA UNJ ©F 213511E20 20 U |lIAN,, *

Wl 939

‘sg|diil ‘se|gnop s10ssanold

Jo Jaquinu 2yl uaym wesboud
INOA 01 uaddey [IM 1BUAA,, *

SisAjeuer
All|lge|ess AQ passasppe suonissnd —

"51055320.4di3Nw
alqeleds (asn 03 ue|d ‘i0)
Buisn aie noA uaym ‘juepodwi St —

B e P L
sisAjeue A}ilIqe|eds »

‘Jgnoilaed ug
‘SauUiyIew

JO SSe|D B U0 swagold Jo SSeD B ylim
Bujjesp 2.8 NOA uaym 'Jupliodwll S| e

SiISAleuy ID2ueLwLIClIad

—220—

TN

(4:d)6

Dpge (440 |
w.:._u..,._ﬁ__d.@ _w_éj w\.vbj ;aif_re

() = Hpol &

2a) fo b
Sgrogns & fo prdiip/mports Y
 dhy
§ane| S % 2 s D00
77
O

SN T \shﬂ_
%,,_.E_._&__dm qﬁ.o.w wﬁﬂjiwco

(7ydunxa) AoWa12)] %%.m -0sT

h Lﬁisﬂxﬁ mp)
LM ixbu

bvapifle Fory ep Szpdo W) 'fay0aiv) k)
U M yo 3

Jv azwxdv) MW U

7y §) fa,_ﬁ..:._iup ‘m.xﬂ.wuﬁ@‘wan %WQ
‘Fasvaioui g 30
JoSvafrep \u{ﬂﬁ&@@u U %E..Jﬁ v Loﬂh)3

dmuzr_ﬁsqup A2 swwu_%%m..amH

—221

BUIOJIUCW BDUBLWIIOLIRY <=
i 15 viowalad wngy 2ug

SiISAleue All|IQe|RDS <= Wi Pa3oedxe [se isn(
untd wesbosd AW saop ‘JOYs U, —

L£5BIN123TIYDAe JudaaIp . (7219 'slodsioy
uo weldboud siyl unit 1 41 1IBYAN, — UOIIEDIUNWWOD 'S¥Iaus|llag
|eljuanbas) s»oaus|11oq siayl aiy,, —
WS |qoad
ioble ylm Jlo 18318q 1 Wy, — we. PEOUIBAC
UOIIEDIUNWWOD 3yl SI IBYAA, —
2]
S10SS220.4d JO Jaguinu 3yl asestoul LiaUY Bu)
[4! '8q dnpaads ayj ||m 1BUAA, — JO 1S0W »Jom s10sssooud a3yl oq,, —
Lauoleindwod '4|2SIN0A 5B 0] SUO0IISaN) e

aallenoads yonw moH, —

HSE 0} SuU0IISenD sio|n i121124 22uewuiol1ad

welboid puelsiapun 01 paaud afn

SuoISNDUo0D

—222-

MGTP: A Hyper-matching Model-Generation
Theorem Prover with Ramified Stacks

Ryuzo HASEGAWA, Tadashi KAWAMURA, Masayuki FUJITA
Fifth Laboratory, ICOT
Hiroshi FUJITA
Mitsubishi Electric Corporation
Mivuki KOSHIMURA
JBA Co., Ltd.

October 1, 1990

The research on theorem proving in the FGCS project aims to develop a parallel
automated reasoning system applicable to various fields such as natural language process-
ing, intelligent database designing, and automated programming on the Parallel Inference
Machine (PIM}).

In this paper, we will present a parallel theorem prover for first-order logic implemented
in KL1, and the KL1 implementation techniques which are useful for other related areas,
such as truth maintenance systems and intelligent database systems.

The MGTP prover, which has already being developed, adopts a model generation
method, as used in SATCHMO presented by Manthey and Bry. SATCHMO tries to
find ground models for the given set of clauses that satisfies a condilion called range-
restrictedness. The condition imposed on the clause set allows us to use only matching
rather than unification during the proving process.

This property is also favorable in implementing a prover in KL1 since matching is easily
realized with head unification, and hence allows us to implement a model-generation based
prover in KL1 very easily yet effectively.

To improve the efficiency of the MGTP prover, we developed an algorithm with ram-
ified stacks for removing redundancy in matching literals in a clause against elements of
a model candidate.

Experimental results show that the enhanced MGTP prover can achieve orders of
magnitude speedup compared to the naive version without using the ramified stacks in
the pseudo parallel environment on the PSI-II machine. Moreover it is expected to at-
tain further speedup by giving priority to negative clauses and by employing a pruning
mechanism like relevancy checking. Several experiments are being carried out in order to
verify the effectiveness of MGTP in a parallel environment on the MULTI-PSI system.

With MGTP, we can solve a large class of problems very efficiently. To deal with
more difficult problemns hard to solve with this type of prover, such as the Lukasiewicz’
problem, MGTP is extended by incorporating unification with occurs check, weighting
heuristics, and other deletion strategies while still keeping a model generation paradigm.

- 223—

"W 108lel usyy ‘W |epow e ul palsies
S| (as|e) «-y)osnejo aAebau B ul oy |

a|ny uonoalay
00 Ylim |n] pusixa usyl ‘W |epow e ur 09
Jou INg paiyes s (D «~y)asne|o e ui oy J|

3|NY UoISualxy

A

(esnejo eanebsu) ase) «— wy - Ly
(esnejo anpjisod) un ! O «— ang
ORI L A

189S 9SNE|0 UAID B 10} [opoW 2 JONJjSUod 0]

‘P11 0D var
VHNWIHSOX DinAi

uoljelodion 214199|3 WYSIGNSIIN
V1Irnd i4sodiy

ABojouyos] Jeindwog uoljeiauary MmaN 10} alnyiisu]
v1irnd mnfesepn
VHNOWVYMVYA IYSEREL
YMVDISYH 0znhy

SHIBIS PeIIWEY UM JBAC) Welosy |
uolI2uas-|2paey Gulysiep-iadi W

-dLOW

—224—

Qb ! (B)]d =— onj 190

e ¢ b =— (x)d 16D

:umﬁwﬁ_ﬂmﬂwﬂwﬂa —~— (X)s —-— (XM ¥D

PaIoLISal S| LOEOLUN LIING 113 * (s =— (b €3

uaiye pue ajdwis sweiboid saxyep - ‘asie) —=— (Als ‘(x)b 120

waysAs Bulkiapun ay) Ag paIsiio Suljing sezZin - asiey =— (X)s ‘(d 110

sonuewas snonbiguy -

sajqeuea LN (2)

o X
_ |
UOEBN[EAT BB 10 20 5
JuapeUl PUB X8|dWwod sweiBoid SHEN - * SA
saunnol Juswabeuew s|qelEA allim O} SPasN . g0 vo €0
SDIUBLLAS JEB|D) » ({Q))s (). (e)b
suna) punolb 13 (1
p) £n C1o)
selgelieA |8As]-109[qo s|puBy 0l MOH Q)b (e)d
/w\

Weigeld LS

iglaidisiul 41O
jusig 194 ejdwig

"BSNBeD LM B

Buijeo Ag se|jgeliea ysauj uegQ -

uolneisushb
|japow Ui Buiyoiew salounfuoo

azi[eal 0} UOIIBDIIUN peaY 89 -

'SQSNe|0
LY 10185 Buipuodse.lios B ol

SasSne|o Jo 18s UaAIb e ale|suel] -

T U JL D Bunusie|dn] Jof sonalu]

Buiyorew
i0) p8sn 8g ueod uoledliun pesH -
sa|geleA |ans|-198lgo Bunuasaidal
10} PBSN 8q UBD SB|QELEBA | Y -

uoneluswsdwi |y

(Buiyorew Ajuo spaau)
AlBSS808U J0U SI UoilBaIIUM -
sjapow puno.b siea.| -

MSET

WHILY

—226—

oo ooy XL y)o) 8sne)
LI FTA

(welqoid) (wajgeld)
185 9SNE|D UsBAIL) 195 8SNE|S UBAIL)

{1 {ew)
(1maxdiaiuy) Janoid "m,_,xw =0
g \\\.w H (1ayaudiaiu)) Joroid

L]

4 e 3

(e)s ‘((e)d] (2)d (]
Ui [jED Hum [[ED

| [---Ted---]: IIBPON

[...(®s... (®d -1 Coeavy s (X)L Y LD esnelD

- UCIJEDILIUN DBBY UHM Pazijeal eq ue) -

Wewes [ePo ©
JEUIEEE (81201 & BUlyarsiy

(bt {e)d— snn g9
XM O0b= (d tg0 %
Xs— (1 1v0%
(s~ (x)b g0 %

‘a51e) « (A)s'(x)b 209

esiel — (X)s (x)d 1 10%

wegold 1S

a)b (e)d] = y

104 " (x)b] =

S|

Me=H 1 oany - (T T)o

"BsIMIBL0

angy = (Y] tenu‘glo

anyp - (Y ‘11 (x)d ‘s)o

foasl=y 1 enny = (Y T 001 o

[{x)sl =y

—

any - (Y (1" (b gk

@sel=Y 1 an - (Y "[{x)b]*(K)s ‘2)0

ues =Y | enj - (Y ‘1 (x)bg)o

‘asiep =y 1 any = (4[] (X)s 1)o

woa=y 1 ey - (Y T 0ad)

TN

9=0N | 8- {oN)ou

Tl=w 1 snn- (W)spow

$/0 ‘L/ou 'y epow ognd -

‘wa|gold T dibw sjnpow -

—228—

.-medule mgtp. :-public dof1.

dolA):—truel
mgtp_problem;nodul{ﬂ),
mgtp_problnm:nciﬂ},
5atisi;_cluusa={¢,H.H,A,d),

3atisiypclau5:={",_,_,F.ﬂn:at}:—trueltruﬂ. alternatively.
=ntisry_alausautl,H,H,l,E}:-J{H,J1:=]+1]
satisty,nntuff,[].[truaIH].H.ﬁiaB}.
and_sat(hl,A2,4,B),
satisig_clausns{ll,H,H,ii,ﬂ}.
ﬂatisfy,clnusasfﬂ,ﬂ._,h,_):“truu]ﬂ=snt.

and_sat(sat,=at,A,_}:—tIuﬁ]n=sat_
and_Eat{unsat,_.h.H):—trua|A=unsat,B=un5at4
and_sat{_,unsat,h.ﬂ):—trua|A=unsaﬂ,B=unaat.

:Ltisfg_antg{d__,_,_,_,unsat]:—true[true. altarnatively.

!&tiﬂ!f_anfﬂfﬂ,ﬁ,[F|H2],H.ﬁ,E}!‘tfﬂEl
ngtp_prablcm:ﬂ(J.F,S,R}, -
5ati3fy_anta1{J,R,FJ5,H2,H,A,H}.

Eatisfy_antu{_._.[},_.A,HJ:-truu|n=snt.

satisiy_antsi{l,iail,P,S,HZ,H,l,B}:“trua[
satisiy_hnte{J,S,HE,H.E,B}4
satistg_aﬁtal(J.cont,F,S,Hﬁ,H.A,B}:—trpe{
satis!j_anta{J,[PIS].H,H.hi*ﬁ}.
ud_:a.t(.ﬁ.i.hﬂ,h,ﬂ-),
:ttis:y"anta{J,s,H?,H,Az,E}.
:ntisiy_nntaltl.ialsa.F,S.HJ.H,A.BJ:'truu|B=#.h=unsat-
sqtisiy_antal{J.F,P,S,HE,H,L.E}:—likth)|
5atisiy_cn5q{F.F,H.A1,B},
and_.a&t(!.i,h?,h,ﬂ).
satisty_ante{l,S,H?.H,hz,ﬁj.

Satisij_cnsq(_._,h,_,unzltj:*truﬂ|t:ﬂu. altermatively.
xatisi?_c::q{[ﬁﬁ|Ds],F_H,I,Bj;—trua!Eatisfy_cnsqlfﬂl.ﬂs.F,H,H,A,E}q
satisty_cnaq([],F,H,h,_J:—truel

ngtp_problem:n(N),

ﬁxtehd_modal{F,H,F,A,_}.

zatis:y_cn:qliﬂ,us,f,[DIH?],H,A,u}:-trua[1=sat.
:atisiy_cnsql(n,ns,r.ij,H.A,B):-Lrual:atisfr_cnaq{D:.F,H,A.B}. othervisza,
satistf_cnsqifﬂ.ns,F,[_IHE].H.A.EJ:—trua1satiary_cnﬁql{n.Ds,F,HE,H,i.B].

axtend_mednl{_,_,_,_.snt}:—:rue]true. alternatively.
axtand_pndal([DIDs],H,H,h,ﬁj:—trna1
5atis:y_¢1auscs(0,ﬂ,[ﬂIH].Ai,_?,
and_unsat(A%,A2,A,B),
extend_medel(Ds H,N,AZ,B).
ex:and_nudul{[],_,_.ﬁ,_]:—truulh=un=nt.

and"unsat{unaat,unaat.n._J:-tru4il=unsat,
and_unsat{xat,_,h,ﬂj:-truuljﬁsat.ﬂzsat.
nnd_unsﬁtf_,sat,h_ﬂj:-truuih=sat.E!5&t.

A MGTP interpreter in KL

¥ ¥

wa|qoid s,polupny pue Jaisliod ‘€S
wa|goid Ja|joiwesls s,uagnyosg :2s
(3d) 1I-ISd U0 |Sd-HINN-opnasd ¢

092/ENNS U0 9QA Bojoid snisolg |

¥

(epz12) | (120v) | (o1g) | (Suononpaljo taquin)
[swlele | [sw]log | [sw]g #d-dLOW
[slerg | [swlgg | [sw]ol ‘l 1OWHOLVYS
[uw]og<| I[slye | [sw]og ydlld
€S .S 1S We|qoid
BoUBWIoNB g

S|ePo PUNOJIY) JO] UCSIIECW0?)

Avolding Redunadancy

——

Redundancy in conjuctive-matching

~_ _/
Model -
o
s . — Consg
Mo M
stage n (M +A) = (M+A)
stage n+1 “M*M+A*M+M*=A+A+A

redundant

—231—

Sixm

5i X ©

}+ai.1 (i 21)

i)

e e i ane LLE L L LEE T TP R

P

51

L1,

Lz, Ls —> Consequent

{(N@n H@m @m@}

;i "-HlL'l-h-i
| Ni-itrl.t.rl
L=al) N -]

\\mmmma..n

-k
_l!.'l1l

e
-
u|
-
|

L]

L5 -

- [
Lk
A
] b | waf

Si Sz
Ls Lz La — Ls ; Ls

—232—

‘Swig|qo.ld uJoH-uou
paloliisal-ebuel 10} |[8m A|qeEIBPISUDD

wslajered-y4o nojdxs ueo 41O -

SeouRISUIl [BI8ll| 8jdiynwl e
sesne|o a|dijjnut
salepIpued [apow m_a_:.:E .

wsl|a||eled Jo S82In0sg -

JIOW Telered

| uojejuasaiday ,

— 8escl — — v/
— 108 - - aup
[sw] LSusenp g
0'06€E 059 givese| 00rees i
0508 (1= LE9e6 090256 aug
| fswl sl fsw) ,SUSAN0 9
| 0L SEL ¥S8uk 00e0s v
062l 7l pogl 00ES Qo
[sw] [stw] (5] LSUZINYD §
g'le 0f 68 C8vE Iy
8’61 ce SEY BLEL 8uQ
[sw] [sw] (sw] LSUEND &
-diBw_| Seees | (enen)
\.Z.\,.,”_\ch_ y-dibw | N-diBw | owHoLYS | wesboid _
_ |

WUHICE] @ g@ﬂﬂmﬁ] E@E @ QI

Bd

—233—

E-MN ~
aABS
_U H
O 4] 1BISEW w
. i
(3d 1e1sEp 81BwIg) BjdWIS |
Buly ‘g
(wsye|ered YO-pepuneg)

UCNEo0|y 34

(wsyeleieg YO-pepunog)
[JUCHE30[[7 3d

as[e) «— ax=/=rx "(A ‘z2x)d ‘(A "tx)d

(N BN - S (2 1eN)d (1 L+N)D - 8na

00LE 00lE OLLE | OLLE ObLIE pany
0'El 28'9 8L'E 002 00’ | dnpasds
¥509 L1oLL | see02 | 89g6E | 8cge. |(sw]awn
sucalbid

9Gg 95e 95¢ 9se 95e palty]
06 (29 8v'e v6'| 00'L | dnpaads
986 62| 8/52 | v29v p958 | [sw] swn
sucbid o

9 S gy g gt pay
L9Y v6'E €52 8.1 00t | dnpaads
152 862 rov 659 g/l |[sw]ewn
suoabid 5
9} _u g 14 z _ EEWE...“_

$1055820.d JO JBGUINN

(eren veslld)
[U6 G-d IO i

{e=N)
ey)d | @wd| (L'v)d
g'eld | ('e)d | (L'e)d
e2)d | (g2d| (1'2d
e)d | End| ('pd
9 g |
ajoy

(N‘Dd == f(gp)d (1 fy)d - an

- 235—

uosbid

o 0 =

asS|8} —a———
(ep A ex s asesiou “{ep ‘exid "(sA) d

(N'N)D Do f(g'N)d ;iz”__n_;f anJ)

(NL)d ! - f(z)d (L')d = any

31 8 F 2t
!] ! |
L1
-2
- ¥
[eapl -@- "
suosbid y o "
o
suoafidg —e %
sucefidg -G~ m.
O
- gl

(80} uoeBig)
H-d DA 10 oney onpeecs

— 236

_mmE
mzmmzwm
suasnbg
suaanbg
suaanby

(suean®) N)

T-J1 DA 10 cley dnpeeus

dnpesdg

LLELL FAR S AN LEVLE LLLEL peuy|
0s°vl A PE'E L6} 0ol dnpaads
0zale | 2580 | L266L | LOBSSL | BBKSLE [sw] awny
susann) 0l
WL 09% | 03P 09y 0sb paly
SZl 169 | 9L S6'L 00t dnpasds
5001 5lE1 BEEE SZ¥9 BESZ) [sw] awn
suaanp g
gEe BEZ L'Ee L'E2 L'EZ paty
zz'y by'E pHE 651 00°1 dnpeaads
bG1 681 302 L0% gse | [sw]euwny
susan) g
uj=} 051 gFL I L SF'l paly
080 06'0 201 oot ool dnpaads
i 12 6L o 0 ﬁWEH =100
suaanp ¢
9l B8 14 4 b weiboid

$10$58201d JO JagquInp

@mg@mg@ _7;

— 237

¥a 2€ gL, 8+2

'SwI9|qo.d uloH-uou palolsa.-abuel
Buinjos ur weole A|gelspisuoo aie
siaAnold uolessush-japow |g|eie -

[EER —pee

"sianold uonelaush-jppolwl au) ul . mcm
noJ

Buiyojew-1edAy Juepunpai pioae aduns

0} sn sa|qeus wyliobje ayi-218Y v -

‘AlBAnosyis 194
Aldwis Asaa |71y w1 paiuswa|duu

8q ued sianro.d uonelsusb-japoly .

ueIEnpuey

we|geld susdnp ¢l J0)

oley

—238—

dnpsadg

Parallel Programming in LSI CAD Systems

Kazuo Taki
e-mail address: taki@icot.or.)p
Institute for New Generation Computer Technology

1-4-28 Mita, Minato-ku, Tokye L0, Japan

1. Focus of the talk

This talk reports the recent R & D) status of parallel LST CAD programs in 1COT.
They are a router [1] and a logic simulator (2. The talk will include two major
aspects. One is the IU & D status reports of practical application programs on our
parallel machines, on the Multi-PSI and the PIM. The programs are written in our
concurrent logic language, KL1. The other is to feature KL1 programming such as
making a model of a problem with concurrent objects, its distributed implemen-
tation, separation of problem solving algorithm and load mapping onto physical
processors, etc. They are shown along with examples of the developed software.
Preliminary performance measurements will be also included.

You can find a description of the software, including problem descriptions, al-
gorithms, program struclures, and load mapping schemes, in the résumé of the
Multi-PSI demonstrations [1][2). Please look at it with this abstract.

2. Two LSI CAD programs

Two LS1 CAD programs have been developed, a router and a logic simulator. These
problems are well known as the most time consuming applications in LSI CAD field.
That is, speed up and applicability to practical large problems are very important.
Using these prohlems, the real performance and applicability of our machines, and
easiness of writing in KL1 language are under examination.

The routing program is based on a line search method [3]. The search problem
includes dynamic characteristics in nature, which fits the KL programming. New
formulation of routing problems was taken for higher concurrency (described in
next section). Both good absolute speed and speed up ratio are expected. The
second version of the program has just been working, and will be shown in the

demonstration. A real routing problem will be used for it.

—23g—

The logic simulation program is based on the event simulation and the virtual
time mechanism. It simulates the behavior of logic circuits described in the logic-
gate level, taking delay time of each gate into account. The virtual time mechanism
realizes the local time management in each processor although the logic circuit con-
tains loop structures. An event history is recorded in each gate. When a tune
inconsistency occurs, the event history is rolled back and the simulation is replayed.
Logic simulation programs in KL1 langnage are not casy to get good ahsolute per-
formance. Because the KLI langnage function is sometimes too high-level to write
simple computation of a logic gale behavior, that 1s, basic implementation cost of
the language tends to reduce the absolute performance. Virtual time mechanism is
a novel trial in logic simulators, which evaluation will be an interest. Good speed
up ratio is also expected. The second version of the program has just been working.

It will be shown in the demonstration. Published henchmark problems will be used

for it.

3. Feature of KL1 programming with examples

One of the most general programming styles in KL is to describe concurrent objects
that communicate each other through streams. Formulation of the routing problem
is lcaded naively from the programming style of KL1 based on concurrent objects.

Formulation of a routing problem

The routing problem is to connect lerminal pairs using two wiring layers without
path conflict. A line search method, which uses a virtual grid, was assumed as
the basic rouling method for efficiency and general applicability. In the line search
method, lines must be drawn along with the grid lines. The routing problem was
modeled as follows. Any lincs, already drawn lines, empty lines or grid lines, are
modeled as independent objects. Line objects, crossing each other, have communica-
tion streams corresponding to cross points. The line search to fined a good path for
a terminal pair is executed by these line objects with exchanging search messages.
The formulation can have much concurrency becanse each line objects can work in-
dependently according to reccived messages, Since the objects correspond to lines,
the formulation can keep efficicncy of the line search method. Two different Lypes
of concurrency is expected. One is found in the line search algorithm to connect a
terminal pair. The other is in concurrent routing of different terminal pairs.

Process-oriented implementation of a router

These formulation can be implemented directly in KL1 with small runtime cost.
Line objects are implemented as independent processes connecting each other with

—240 -

communication streams. Status of each line, occupied (drawu line), empty. or under
searching, is kept in a corresponding line process. Processes execuie thie routing with
exchanging messages. Line drawing and rip-up correspond to dvnamic split and joint
of these line processes with changing the process status. Programmers can separate
the writings of these problem solving algorithm from the load distribution code.
Debug of the problem solving code is usually done before attaching load distribution
code in KL1 programming. That is, the logical correctness ol the problem solving

algorithm is tested independently from load mapping.

T'rocess allocation in a router

After that, annotations for process allocation to physical processors are attached.
The annotation is called pragma. Comuunication and synchronization across the
processor boundary are antomatically maintained by NLE language system. Pro-
grammers only have to concentrate on the process allocation. Communication lo-
cality and load balance are taken into account in Lhis step.

Communication cost across the processor boundary is approximately twenty
times higher than a inter-process communication within a processor. So, a ratio
of the inter-processor communication cost and average computational amount in
processes corresponding to each message is very mportant to estimate the inter-
processor communication overhead. TFor the better load balance, line processes
should he distributed among processors at random. Ilowever, a random distribu-
tion arises much inter-processor communication. When a expected communication
overhead is not low enough, locally comumunicating processes should be grouped and
mapped onto a same processor in order to reduce the inter-processor communication
overhead. When Lhe load balance or communication overhead is not good enough,
pragmas are changed to improve them without changing main body of the program.

These are the features of KL1 programming,.

References

1 “Parallel LSI-CAD demonstration program (1) - LSI router”, in a résumé of
Guide to the Japanese Demonstrations, in JOINT ICOT/DTI-SERC WORK-
SHOP, Oct.15-17, 1990

2 “Logic-level simulator of L8T circuits: A parallel application program in LSI
CAD", in a résumé of Guide to the Japanese Demonstrations, i JOINT
1ICOT/DTESERC WORKSHOP, Oct 1517, 1590

3 Kitazawa,H. and Ueda,K., “A Look-ahead Line Search Algorithm With High
Wireahility for Custom VLS] Design”, proc. of ISCAS 85, ppl035

—241—

swia}sAs Buissaooud |9)|esed

pue aSengue| Jua.Nduo0d INO 9jenjeany e

87 432 LODI
sowayds Juiddew pue
IMVL ONZVXM
SWIYjo3|e JuUsa.1INdU0d JuaIdYe uSisa(] e
sjool QyD peads ySiy azijeay e
&
a 73 ¥ jJo @soding 3
sonjeoydde qyoH Suiwnsuod swi] .
iojenuig 21807 |9)Ried 7 swoalshs VD 1S

12In0Yy |57 [2)eied ‘T ul sulwwessold |d|eled

swelsold qQvD 1S7T om |

JoponuiC 21607 (2)

-

J431N0¥ (1)

i
mﬁ_oﬁss puv nmz.&dmﬁm_n_f
‘Dujjapoul jo ssarody

© buiwwvaboaq |7y

oUW 0} A3 d
E._EENE%EH

wylob| |y

U013YUY|d X3
ua|qod

243

£3d[734
QMﬂf

puiddmip]

buidnaib i

AManugs ssanaud =

wyobpo
TUALIMUO)
m#_mﬂoE 3
ﬁﬁcmto-ﬂmﬂo

wa|qodd

uorpvjuRua|dul puv buljapow PaRU3LIOo -1319()

10ssa004d 3wes e uo paddew pue

padnoJd ale $2s52004d Suljenunwwod £)jedoq e

s10ss9204d uo sassodoud asay) dep ‘¢

SLeal]s adessawl Ym sassad

~oad Suneaunwiwod u wayy juswsydwy g
3 uo wyjuod|e juaunduod e udisaq e

124310 yoea Sunjediunwwiod syoal

-0 judLINJU0d se wa|qold e aziewtod ‘I

Kem reordAy v

114 ul ulyg

—244—

(0 78) g
! ﬁw.—mumﬂaascw
(1S 1) 1erndwiod

| STUl ~ (0 dumﬁasoo

auiyoew |Bas B U0 1S9 -

ewSesd ayy yoeype =

apo2 Buynpayds

pue Suiddew ayy Juawajdun pue udissQq

(wealoid ay3 jo 1ed

Suinjos wajqoad ay3 3nqap) 3 3ngeQq -

Jewdead, jnoyym =

apoo Suinpayds pue Suiddew noyiim

assaa04d Suresiunwiwiod ul 1 juswldw] -

A3e20]| UOIEDIUNWILLIOT) -
Anxajdwoa |euoiieindwod Moy -

wyjiog|e juaiinduod e ugisa(]

widjqoad e azijew o) pue dzZljeuYy

G

1

Suiwwieigoaq 1Y 4O ssadoid

—245—

£3d] 2d,
3d] 03 \

buiddojy] \ \ /

aunjongs ssaad=

I

E._.,._s%,ﬂ;m
A
it N (A)PPoU®(0 ‘75)goveduod
(X)3pou (7§ ‘IS) Zeynduiod
.Ew_JOLﬁ'. ‘ :m .Hu _.m”_.j&Ecu

‘(A ‘X ‘1) bwddow-anduwod
| 33 —: (0 '1)?Induod

UoI3vIuUIWa|chu | Pasvq - uoi}isocwedap wa|qoy

—246—

FuilnoJ 191se) 10} U VZIB||RIRd <=

a|gendde Ajppim pue juaayyy -

Yo4eas aul] peaye-3007

weidoad ino ul wyluosje oiseg

‘UMOU-]joM 1B 2319 ‘Sul

-Inol jauueyn) ‘yaleas aul] ‘Suinod azep

spoyiowl SuINoJ [BIoNaG

90BJINS |G B UO S$320]q 3IN24ID JO s|eu

w49} udamiaq syied uo1123UU0Dd S3PIDA(

wajqoid Suiinoy

LI w Sunjuiyy, jo 9jdwexs uy

oy ST Ielered

—247—

-
: : } ? - virtual grid
R SRy - two layers
| _T 7 '] EEFDEJ'[:E? o via hole
)_E ¢ 3
JGB H} L 7 :F= Ebhjck
bs . mEman o terminal
|
J L
]"Ez'? g
o] e
LST surface

o
=

| B x
E| FI G
£
A f p |
e . pass through
B X b] p 4 inhibition
c?f s iy A via hole inhibition
|
- > e S start
X e X | X X .
T T target
| X XJY X K ’
X g %
& oy
X X | : Ol x
L
p 4 X TT L

[Look-ahead line search method

— 248 —

; |
7S N bass through
:,_j = f %K i ¢ X inhibition
B

7 "
X bi,, A A vid hole inhibition
u #

' : g .'E _?:}{_,(S start
hf X e X X X T target
X | X K X
] X X

X X | i sl X ..j

s SN

B l ¥ >\ T L

pass through
X inhibition
A via hole inhibition

S start

T target

[ook-ahead line search method

—245—

New formalism of the line search

e Formalize every lines as objects

e These line objects communicate each
other to search paths.

— based on look-ahead line search algorithm

Concurrency

e Concurrent computation in
“looking-ahead”

= calculation of expectation points

e Concurrent routing of different nets

When conflicts, first reaching net prior.

250-

a

NN
\\‘I\."'\.
SN

Master line objects (processes)

R
NN

\E\\ﬁ
N\
N

NWAN

N
AR

NN
NN

Line objects (processes)

251-

Concurrent computation in “looking-ahead”

NN

{7 /%//'/AVA

777

%

i

G

N 7 7 u.k\\
W7 7/N ey

QW\ AT A
%

i!j ﬂ

!

Implementation

Objects = processes

Communication path = message stream

— very naive

Grouping and Mapping

¢ A master line process and processes on
it are grouped.

— for communication locality

e Groups are mapped on processors at ran-

dom.

— for load balancing

Pruoblem

8
S \\\\\:E\\\g‘:l\
N

N
NN
i

ot
NN

Problem
A _
1 Modeling
1 Y — Y *
/c;;//%; AISDI""I'H\WL
G
/,{Ang
. V77771
fodl ALV
(¢ "'::{f'z; :Tiq_ '}
C
> = process

¢4d|73d

ouiddol,
WOPUOY] \/ \Jm: | %ﬁ@

Ssanaud = (=]

,)
(c . — : hw: Huvv
5)

>)

_.\,ﬁ WS AN

w1406 u
mc.__ _mmo_\/_ m_w

wa|qadd

A

— 256 —

abod 1xou STUEEN

S|PUNNRY 00f =
S$eul 9¢)

mm.::_ m_.t,m 00| x DwN
: Walqoud 3jdww ¢

SUEVESUREIN

saui| 24n08 |74 M €

AEE_& | 49) L0 3 — 439032()
0 *2p - Ao O bbl
butpod puv ubisa(]-saquaidag

vap1 dIsog- U 4Qh)

JuoWido|aRa(]

dnaib v Jo ais wiway
o

1707 = 3502 U013 IUNUU0T)

Adopunoq Jossadaid 2y] ssaudy e

5530040 0 Jo 22IS ulndt)

pESEINY SA
_..w_f (¥ bunprms ssaoad)
1l = 1500 ,.s.JEEEﬁ_uiw

Jossaoaid v Ul o

buidnaub puv

04300 37IS UIb Jo} 3w)japink)

—257—

S408S32a.4d J0 “oN

79 143 91 8172

T | | P D

13

4 0/

4 5/

238 9) = 107
Y1l UoIMax3

03p! an ﬁvmaw

,EEmEQ JIM0Y U0 SIUBUANS VB

— 256

peyd Buin]

1
=4

jana] ooy Uy paquassp INong e Jo ojdwexa uy

l0}enwig 21807 |3)|eled

sde[ap uorjeldedoad [eu
-S1s pue voryeoyoads [eordo] 8y AJLIBA OF, *

$3INOJI0 JO IOTARYSq @JB[NUIIS OF, —

asodand

UOI}e[NUIIS [9A9[-01307]

A

0] BrBA o7 8nes

540 Fa L B

sabessaw inding

07 SR

Ll ey

LI
-~ GG awi

BE} 2w

sabessaw jndu

UOIBINWIS UBALIP jUBAT]

Iap

-10 3WI} 3991100 UT BALLIR P[NOYS saFessai] —
syndur a3ed

8y} je afueyo sredurs usym L[uo sajndwon) —

UOIFR[OWIIS UDALIP-JUIAT »

awry jun e jo sa[dijmip —
sen[ea Ae[9p I[qR[IBAY »

sanfea ¢ (umouyun)y‘ogiry —
saneA TeUdlS S[E[IBAY e

[2A2] 2383 ay) e paquIosa(] -

S}MOIID Ja3Je],

we1sAs Jo aul[InQ

BJNI00 X084 |0H

A

moj Kauanhaly 3aeq-||o1 e @

UOIIEIIUNLUWOD J0S§S3204d-131Ul DNPIY
sabessaw inding

108

A

-saa01d yoea 03 A|jenba sajed anquisiq e

€ feEp

uoipsodwodap wa|qoid o5 onv
) anjen
</ ge3 oun !
gebessaw nduj %
ejep = 9je3
‘ssanoad = auiBus uonenuwig o WSIUBUOSW AW [BNUIA
10
J9PJI0 309II00UT Ul
soalire o8essoll B UAYM SINDID0 HORq[[OY,, —
UOIeZIIOIOULS

ssasoad = a3jen
reoo Suisn wsiueysewr [oIjued [areted v —

WISIURYISTT SWIL} [ENJITA o

i 191194 S! YdIYpA ‘uonejuawd|du

Juaua|a
buissadoud :u34

2J4n3oMugs

— H
mmSEﬂ " Liabouvw

LA9

WS uoyaul
JWl3 |omalA
yim auibua
uoljw|nuils 1 u3

uoq

-1500u033(]

&

—262—

Development
1990 March -Design and coding
May - VO
October - V0.7 (by 1person)

7 K KL source lines

Target circuit

e A sequential circuit , published by ISCAS
s13207.bench

e Number of gates in the circuit — 13,000
gates

31 inputs

121 outputs

669 D-type flipflops
5378 inverters

#

2573 gates (1114 ANDs + 849 NANDs
+ 512 ORs + 98 NORs)

e Input sequences — randomly generated ex-
ept clock lines

— 263

S408s3204d Jo ON

79 43 7l 8 &N .
0/
07
0€ :
07
¢ 109
38/5TUMI Y §H =
9uyudopaad 9AI1393}4 3 i poads

Nnsv9
gEmEn_ U019 MW Q 91607 U0 SIUWBINS I

Conclusion

1. Two parallel LSI CAD programs have
been developed, as practical large ap-

plication programs.

2. Parallel LS| router
e Object-oriented formalism

—suitable to implement in KL1
e Concurrent line search algorithm
e Good absolute speed

3. Parallel logic simulator
o Virtual time mechanism
e Problem decomposing implementa-
tion
o Good speed up

4. KL1 and our parallel processing systems

are fairly efficient and applicable for these

problems.

—265-

Ub-dAPAN workshop

Parallel Programming in Genome Analysis System

Katswmni Nitta. Masato Ishikawa. Masaki Hoshida.
Makoto Hirosawa and Tomoyuki Toya

Iustitute for New Geuneration Computer Technology

1 Introduction

Molecular biclogy is advancing rapidly. and its progress have affected sociely significantly. As the amount of
DN A /protein sequence data continnes to grow, paralle]l computers and knowledge processing techniques to analvze
them are becoming increasingly important. As ICOT has developed both parallel inference machines and knowledge
processing techniques, we have suitable research environment to develop a genome analysis system. This system
consistz of several parallel programs for genome analysis, In this paper. overview of our parallel programs which
align multiple sequences and extract motifs are introduced,

2 A Biological Introduetion to DNA, RNA and Protein

2.1 DNA, ENA and Protein

The bodys of living things consists of cells. In each cell. a DVA molecule exists. A DNA is a sequence ol 4
kinds of nucleic acids (A.C.C and T), and some parts of DNA have genetic infonnation. In the case of human
beings, the number of nucleic acids of a DN A is about 4.000.000.000 and it is expected that 50,000 genes exist in
a DN A, The information of gene is transcripted into srBN A which is a sequence of 4 kinds of nucleic acids (A.C.G
and 7). The information of mANA is translated into a protein by a ribosome. A profein is a sequence of 20 Kincds
of amino acids (Leu. Val Ala, Met. .} (Fig.1). Translation occurs in every 3 nucleie acids of mRNA according
to the coding table. For example, ATG is translated to Met. GCT is translated to Ala. ete.. This coding table is
comman o all living things, A sequenecr of aming acids is folded and makes complex stroetures sucl as secondary

structure, super secondary structure, tertiary structure, ete.. The lunction of a protein is closely related 1o its

struciure,
GRNE
DNA — I
inun — nDElF Treasripliss
mRNA b f
TR EHTEOH
\ \!] / / Spliciag
ATG TAG
Translstion ATG — M (Methioniga)
l/f GCT —+ A(Alsalas)
1
1 Amius Sequence

Felding

|

Protein

Fig.l] DNA, RXA and Protein

—266—

2.2 Databanks of DXA and Proteins

Sequence data of DN A protein appeared in joumnals are gt ints databases. For cxamiple. GenBank containg
DX A saquence data. PIR contains protein seguences and PDE contains theee dinpensional stevcture of proteins. o
GenBauk and PIR. not only sequence data but additional infurination is acconunodated. For example. the uame
of features and specification of the residues comprising them are included 12 feature table.

To ke vee of these databases, several programs have been developed by biologises They are classified into twe
eategorins - database searching and sequence analysis. Datahase searching prograns are used to select sequences
for comparison with the test sequence. Once, sequences are selected from a database. they are compared and more
information is extracted by analvzing thent. For example. proteins contained i PIR ave classified into groups from
view point of hiological evolution. These groups are called super Samilies. Functions and structures of proteins
which belong ta the saine superfamily show close similarity. Therefare. if we extract specific pattern (melif} ta s
super family. we can use it to predict [eatures of uuknown proteins.

7.3 Hesearch Activities of ICOT

The 3rd research lahoratory and the Tth rescarch lahoratory are developing programs related to genetic infor-
maliou processing.

+ A unified database -
The 3¢d laboratory has developed a database management system named Kappo. which employs the nested
relational model, and is now develaping a kuowledge representation language named Quirate. which is a
deductive and ohject oriented lanzuage and is good at representing complex knowledges. such as the ones
of molecular biology. As for the genetic information processing. GenBank was stored in happa in 1939 to
research what kinds of databases ave really necded by the melecular binlugists. Now the research focused 1o
build an intezrated database, which have data of GenBank. PIR. and other databases of molecular biology, As
the first step. GenPank and PIR are stored together in Kappa. to develop a suitable tools for building useful
secondary databases. As another step. a protein [unction database is writlen in Quixote. to complement the

integrated molecular biologica! database.
» Parallel programs for analyzing protein sequence :
The Tth laboratory has developed basic application software for parallel inference machines, As for the genetic

information processing. a WL program which classifv protein sequences into super familics was developed
last vear. Ohie next tarzet is 1o develop following genane analysis tool= with a bislogical knowledge hase.

We use molifs as a clue for analysis,

1. Searching homeology.
2. Extracting medifs by comparing sequences,

3. Predicting the structure and functions of proteins.

3 Multiple Sequence Alignment and Motil Extraction

'i‘ﬂ nligﬂ SRS is e nf |h... pst T ||1.-|n|'u|!:|1':~ Tan Hllili}'rl‘ SO T,]l 1= "H"I LT !ilul 1"”!‘!.‘1!"!:}-'1‘-;

botween sequences, to fined motifs of a sl of proteiis and (o search siinilar =eepienees Frorn didalase,
An alignment is realized Ly Fning the sequences with currespunding characters dineetly above one another,

To ke currespunding elaacters L ap, we e insert dashes(aded) e e sequences. For exanphe. il two

SOQUCNCrs

§1: ACTCTTACTA
82: ACCATATA

are given, we ean alime e as Tollowes,
o

517: ACTGTTACTA
527 ACC-ATA-TA

Frouu given sequences, we ean create nwore than one alignmen s, Therefore, o evaluate the quality of an alignment.

we need to define an alignment score.
A difference score dif is one of typical scores for an aligmmnent.

—267—

dif = mealpha + nsbeta

In this fermula, 1 s the munber of unmateles [sabetitution= in the aliznoent ad wis the waileer ol indel- Al
is a penalty for an ummateh, and beta oo penalty of an todel G|?‘.;.ma| alignaent is cutstructed iy r-.1i||:||:|':;r.i||5
the difference score,

To align two sequences. Needleman and Wunsh developed & dynamic prograteing algorithi { DF-matehing (1L

The basic idea of thew algorithm is as follows. Let input sequences be 51 [=al.al.am) and 52 {=hlbL2 g
For all i such that < < a0 £ 3 £ o0 distance wwore can b bl by the folliawiog ool
scare(l,0) = i1=beta
scora(0,.j) = jebata
far 1,) such that 0<4idm, 0<j<n
1f ai=h) then
scora(i,ji = seorel:-1,3-1)
else
scoreli,}) = min { score(i-1,j)} + beta,
scorel1,7-1} + beta,
scorefi-1,j-1) + alpha }
Score(ij) corresponds to the difference score of aptimal alignent of sequences 51=al.al...ai) and

52 =bl.b2...bj). Complete nlignment of 51 and 52 can L comstracted by tracing path Teomn (0.0) e (oo,
For example, if S =ADHE) and 52{=AHIL] are givea. the path which ounswize scorefdod) s (0.0 = i1, 1) —
(2,1) = [3.2) = (3.3) = (4.4) (Fig.2).

Fig.2 DF matching

Froam this path, we can eonstruel the following aligniment.

ADH-E
A-HIE

Aligning zeveral sequences §s oee diffienll than aligning just twe segquences, 10 Nectlleman sl Wansh's

algorithm i= extended to align nosegnerces, cxeention thne grows expaoauentinlly witlow,

We are developing KLL progeams which aligo a2 igde sevpenees aned exteaet nniils,

3.1 Alignment by three dimensional DP matching

Firest oue is bascd on Nevdlemun aoed Wislcs algovitlons We estendded thes aleoimtbon o align the seepaenns
as follows.

Let input sequences be 51 (=al.a2..am) and 57 {=hlh2 bo) and 53 (=clcloeph We can aligi these
segiences by coustructing a three dimensional rectangular prisin [Fig d) aeed b Jinding o el from 020,00 10

{im.n.p) which minimize the scoring function seamw .

score2(:,),k) = score(i,j) + score() k) + score(k,i)

—268—

{m. e c)

F.g} Thieess dianensional |:""-Lllilli.'|lllllgI

In our prograny, each node m the prisur is represeuted as a kLI process. When a process(ig.k] recerves seore
data from adjacent processes sucl as process(i-1jk). provess(ij-LkL process kU process(i-1-Lk). process{i-
Lk-10. process(ig- 1% Uy and peocess{i-1j-1.k-1]. then this proves. can calealate its seore, Therelove. e data
dependencies form warefrants diagonally across the prism from (0.0.0) ro fimn.n.pl and this program contatns 2 lol of
parallelism. However. if we align just three sequences once, each process hecomes idle most time hecause & process
mest wail a o tne unti! inopeceives all score danta Trom adjacenl provesses and bovanse a process become needless
after it scuds ils scare 1o neighbors. To make cach process work effectively. we construct the prism {netwark)
before sequences are given. After the network is constructed. if we input a set of triplets of protein xequences
[{ 51,82, §3). (4. 53, 56). .| our program aligns (31.52.53) at frst. and then aligns (545556).etc.. Conseguently,

each process continues to calculate its seore until all triplets are aligued.

3.2 Alignment by Simulated Aunealing

Simulated annealing is a techinicue Lo =et optimum solutions for combinatorial problems, This woeedure slarts
4 | 24 | |
with initial solution candidate X0 and initial temperature T0, and tries to find the solution X which minimizes an

energy function E{X) as follows (Fig.d).
Let current solution candidate be Xn. At first, this procedure generates another candidate Nn'. and compares

E{Nn) to E{Xu'). 10 E{¥u'} is less than E{ Xu). then Xo™ becones a new candidate. [FE{Xu") isn't less than E(Xn).
Xn remains as a candidate. To prevent E{Nn} falls inte local wininmmn. vecasionally, Xa® hecomes a candidate
instead of Xn even il E(Xn’) is greater than E{Nn). The prababiliy that the seehstinntion occurs i< controlied
by temperature Tn, Usually, as n becomes larger. Tu s scheduled to become smaller and the probahility lor

suhatitution heromes lower,

begin
Xotz Inirial selution ;
[Talamtt,_ss 1= Temperature (Cooling schedule) ;
for A= @ lo - do
begin
X' :m Some randem neighbaring solution of Xa:
4E := E(X') - E(X.);
il AE <@ then
Kusi 12 X'
else
il exp(=AETa) 2 random(0,1] then
Xast =X
tlse
Xost = Xa
end;
Ourput Xw |
end;

Fig.d Simulated Annealing

Professor lkanehisa of Kyvoto University developed an algorithm to apply this technique to a multiple alignment.
The basic idea is a5 follows. Let input sequences be 51 {(=abalaml 52 (=bLL2 bob Sk (=cleto.epl At
first. we construct initial alignment by adding indels to end of each sequence,

- 269—

51 - al,aZ%.,a3,..........,&8am,~,=,=
52 : b1,b2,b3,.......Boa,=,=,=, =~

Sk ¢ oel,ed,ed, o BT

To modify the alignment. we can insert an indel to any place in the sequence and delete another indel. 17 the
difference score hecomes smaller by thiz operation, the gew alignment bevomes a cawdiclate for solution. B
repeating this operation. we can obtatn the optinal aligniment

One of difficult problem to apply simulated annealing to actual world 35 making schedoling of rempera.
ture ([To. Ty Tl B the seheduling i wot suitalde. we cannot obtain goorl sotution because it falis dowa 1o
local mintmum. Therelore, we must devide cooling sebeduling carefeliv, To make sclieduling problens essy, Kimuora
ol ICOT developed a parallel simulated asnnealing progean [2) I = algorithoe eacll processor maintains one
solution and performs the annealing process concurrently under a constant temperature. The selutions abtained
by the processors are exchanged oceasionallv. To each processar. ditferent temperature s allocated. Thoeselore,
data exchange covresponds to the change of temperataee. Cansequentlv we ean avoid the task ol deciding the
cooling schedule.

We developed a RLD progran which apply Iimwra’s algositlan to align maltiple sequences,

3.3 Motif extraction by comparing pairwise sequences

This program iz hased on the nlg-.‘.‘u‘ilinn developed b H, Soanth aed T, Saath [1! When protein SEUCIICTS AL
given. this algorithm extracts the conserves] patlern o input seguences. As it takes moch thne to compan: all
seguetoes ol onoe it ealenlates difermee seores Tor all paies of sconences. Fue esamphe, (5 0 sequenees are given,
we (= 12 pairs ave aligned and difference seoees pre calenbivred 1o pervallel. Afvee ditferenee seores are caloulared.
a parr whose seore is the lowest is selected. Two sequences of the pair are nerged finte one sequence using an aming

acid class hierarchy. For example, if two sequenees ace selected awd aligoned as follows
31 : ADDEK
52 : A-DOF

then they are nwerged into the Tollowing sequence.
S0 @ AgDdX

where g means a gap, 4 s the amino acid class to which IV and E belong, aud X weans a wild card] character.
50 i the generalized pattern of S0 and 520 This process i= repeated notil all ingee seepueees ave wnilied Tty e
sequence. Lhe final seguence contains a soolil slormation of inpol sequences.

4 Conclusion

We introduced three KLL programs which analvee the DN protein seipences. The pugposes of devduping
Hhese pragrams ave to investigate Uhe efficiency af paralle] prosrames awl to exteact chiracteristie pat teens,

To improve the quality of alignments ar matils, we have 1o use Lialpgieal koowledge. Though we lave o
adepted knowledge bazed approach Tor aligiooen anel il extraction. we are investigating knowledge which
biologists s o align soguences, Tloe extewcted information By tlese progeams can e vl 1 devedap the

hiological knowledge base, Qur next plan 3= o mprove these progeazns by asiog e Rooswfeege Lase,
REFERENCES

(1] Needleman and Wunsh, ~A General Method Applicalde 1o the Sewrch foe Sisilarities i the Aming Acid
Sequences of Two P'roteins”. Journal of Molecular Biology, 1 1970).

[2] Kinwra, “On a Time-homologous Parallel Simulated Anuealing (in Japanese]™. TH-563(199040,

[1] R.Smith and T Smith, ~Automatic Generation of Primary Sequence Patterns {rom Sets of related Frotein
Segquences ., Biochemistory, | LA,

—270—

wo1sAG sisAjeuy awousn) e

wajlshg jejuawiniadxy Buiuosedy jeda

swen Suikeld 09 ¢ 102l
wo1sAg pieoqyaelg .u_:mm:_mu_:_ . BUIN IWNSIEN
weidoid AVI ISTA walsAg sisAjeuy awoudyH
uj

aiemijog uonediddy Buiwweibold |9j[eied

—271—

Juaw
-udiy ajdiyniy 103 sweaSold [3)|eied *

WwajsAkg siskjeuy aauanbag —

duiydieag aouanbag -

LQD] Ul SaIIANDY YDIedsay e

A3o|o1g JeNI3jO| 01 UOIIONPOIIU|

sjoelqng

272

U)oL g

9 1 N

ﬁ ssurpruid uowwo)
Surplog e, sulsoidl) uEEh_._.H. i=1278]
. H

muﬂm.ﬂ.mvm_m ourmy @ —1_ /ﬂ Z/ﬂﬁu

T aqn WNH

(pximelV) ¥ < LDD
(sTtaotgie) T < DLV woyB[EUERL], "HN ’
|_.IU saunind Uowwo]

\\ u_.:cuﬂ{

JuTUEN

nLY m N . H N
mﬁﬁua I \ //,_.xr. N H ,_.!.!t \\
1 A j _ HO!
.ZDFE ZDM.FZH ./.

/V+ N N\ NH /z A"
uondiesuesy, | Z_Uvnm hoXd HOXE) THN
¥ ; O
YNC

HHED

Sursse00dd TWONEBUWLIOFU] O[oUID)

—273—

vonsod uonsod puosag

P

\pua,5)
Lowrsod
544

SAD

Bly NnaT

O[N]

SAD

9] 9]

njo

274

-25me3 571 Jo sse|piedel ‘Kyurejnuys Aue 0f s12)31 SISY) 1Y) 0
o) Fulnsad £21711]fls AIRTOIN|OAR 0] 1331 U0 sldojowo,

} pue spioe ounwe fjuam] 947, (T'F 21q=L

A TeA ouEA
A 151, aulso1f],
M diy, wegdojdAiy,
1 T, SUITOIIY T,
Kierisy S 132G SuLIag
d ord 2ufold
I sq g | surze[ejlusyd
W LY SUTTOITIR Y
1109 “uiny ‘puetis ejaq ‘sojjay eydpe 3 sk auisi]
Kiepug « T na FuEnI]
. I I aUIM3[05]
m 1 SIY SuIplysty
| 5 £19 SULATH
" AD 1S ey na jep 0 U | SEEERID
q npn | pre smuren(g
ST o 5 s£5) outasdD
a dsy | pwzonredsy | |
__ N asyy suidersdsy || |
q F1y surmdIy
Sul23oidd jo ainjoniig v [y Surmely
SULT/.

2poa 43339)-] | P63 43FIIE
I 2 3]

R e PR

— 2?5 —_

IHLY
FIAAAITIDPAIINALODIILEN L
DATIIOSHHAHANRYYIASLadvyho
d D LXEXODD XTI AIROBDSOYRT
oE SZ 0z 8T (i}4 g

T0S6 wmsHoeung FoT ysduers LT9TT iufTem-TernoeTols

ToTheTigeoe
\euwsy \worjeireydsond earseprxo \uregs
Lxogerrdsex \1vodsmery wozgsars \ MO TIpToYIoqTa
s smoxgocyfs smepg
(spuwedry TeI¥e) woxr swey egTs—Hwrporge
Y (1teTeacs) ewsy sars-Furpurgp
\Pus outwe pejerfgese egys-peTITPoOHE

* uREng
HITA TesTIuwapT eq oy sreedde o suorgaoqfs eszweduryy
BO6T I9qoio0 "SETIV 93 O3 DPeilTEqNs
THTS URWaTRoRN

T B96T THE-89E

v, 78T "Tag peay &K WLy CH'M ‘U94Td pme
3 "usertofxey fq peirs ‘gesr ‘s3rnser peusyrqndm
‘g yserrodIey T-g's uRwaTpeey
{sop14dad oradirqowfys yo suergrsodwen)
ZO00OY
sezweduTys sweu-uoummeag -segipotors wed

Lesr- o'z 0'% o1 o1 o1

TER-LT 3x81#./@67-TeR-L] eousnbes# [86F-TeH-LL
(®>usnbss savgesus 3) sszwedaryy - o ewoxysozkp
uTejord sdiry 2390

AXTAVITOCY ¥ 16
HITLEHTLOI ¥9
IAE24ATOHTHTE
AT AADEXIAADT

Foranbis
LUVHHOS

SOHOMARA
LIIRY J9Edns
08'eT
FASE)

T
FELLYAL

INTHKOD
TOTIRITOR
sIOY3nyE

HINTUTITY

UOTIRITR
sIoqznYH
FONANTIIY
KOISSEIOV
EOUNOS
LHIARIIVIL
ZLVQ
dTLLL
AYINT
i

2AN3INA3S ¢ g9ad —

souanbag poy ouwwy Y|4 -

SuI8104

- 276~

mu:m.:w_wm Eu.n__. u_m_U:_.._._ ”ﬁmﬁ_ﬁ_ —
2duanbag piy s@PNN TgNT —

@ouanbag pioy 2PN yueguen —

vNd

sul@loid pue yN(Q jo saseqeleq

b=

(=]

Database Searching

@enBank]

Protein function
- DataBase

@ u: xote

Sequence Analysis

Motif extraction l
“—
Multiple Sequence Alignment '

rStructu re Prediction - |

— 278

Motif (a)

Motif (b)

C (X) C (%a2) H (X) H

Motif Extraction
Motif, Template, Consensus, Pattern

Super family

Super family

—279—

Multiple Sequence Alighment

Purpose

« Homology Search

o Extracting Motif

e Evolutional Tree

—280—

n_dm Y2)jewsiw
AN]

gy +0 gz +207

YIL-Y¥-LY-DDY YL-YLY-DDOY

Y LOYLL-D0LOY YLOYLLOLOY

A 4

Y.LY.LVYDDOVY

YLOVYLLOLOY

—281-

Prediction of 2ndary Structure

-2B2—

Prediction of Secondary Structure

Sﬂqﬂeﬂlﬂe O O LTI T [EITTITL

c—helix B-strand

Sequence Analysis

Motif Multiple

extraction Sequence
hgnment

Structure
Prediction

283

duieauuy pajenuig g

sulyojew-4Q Suiydjew-4q 1

— 284

Aq juawiulny a1diyny

weido1J [e[reied

Juawudi)y 2ouanbag sjdinn

dQ g o Burssevorq auredid [9[[ered

({(A X)xuewjouhep+itiig) (A"a)
‘ 1soadeb+14) s
‘(Jsoadeb+1q)

Jujw =hg (x*Tsig)
- -
(X"g)

Buiwweiboid onweuiq Aq
Juawubl)y sausnbasg

Multiple Alighment by Simulated

Annealing

—28B6—

9A0UW 1S4} 9y} JB)je Juswuble uy

@0DILdSOL-—-— - |
MODITASNYH- - - — -

- 287—

|||||| HOAZHODITASNYH -~~~ ~-

y
|

Buiyojew-4q Aq uoioeiixg JI30|0

Buieeuuy pale|nwis |8|jeled sss|g|npsyos “bi4

suonnios jo afueqoxs onsifiqeqoide : J
G3d U0 | g ; sl
pAd U0 } —— @.-4, L T L T L
€3d U0] —=—=— ﬁ:i_w---:--,_: £l
23d U0 J <t)
|34 U0 | =— = S gl
z1eered _w_,
(oum) 7 — 0
5 .
¥y _ "
m..v.-. -N.,h
Jurpeeuue polgnuns [enuenbas A L
aY] I0J 2[npayds SUT[00o ® My

(emmeredway) ¢

—2R8—

TRRTI

—. TRBOTR

A27547 '

Cluster 50 (Trypsinogen/Venom serine proteases)

! i l 1

120 100 %] 60 L]
Simitarity Score

~ 289 -

Juiuoseay paseg ose) / Suiuos
-ead}] |ed18ojeuy /3uluoseay anonpuj e

Aupgeqoig /sonsnels ¢
oeorddy

DSIOQ JO 107 sulejuol) eje(

a8pamouy ulewoq 23ajdwoduy

STIa[(01]

yoeoiddy poaseg a28pajmoud

o8pamou)| |eddojoig + jlrop ¢

34njoni1g Klepug jo uolldipaid —

uswudy aouanbag a)diyniy -

—290—

uoIoeIIX] JIION -

sisk|jeuy aduanbag «

uoIsnjauo0)

Constraint Logic Programming and Its Parallel Implementation :
Guarded Definite Clauses with Constraints
Preliminary Report

David Hawley and Akira Aiba
Institute for New Generation Computer Technology (1C07T)
4-28, Mita l-chame, Minato-ku, Tekyo 108, Japan

Mvovember 5, 1990

One major trend in the effort to extend logic
programming languzges is to include special
handling for ron-herbrand domains and certain
predicates over these domains which are termed
consiraints, The component comprising Lhe
added functionality that is required to process
constraints is called a constrainl solver.' Incor-
porating non-herbrand domains increases the
expressive power of logic programming, by al-
lowing the natural expression of knowledge that
is either difficult or impossible to represent in
vanilla logic programming.

An important scheme which establishes
the semantic foundations for constraint logic
languages, is CLP(X), proposed by Jal
far and Lassez [JaL87]. Instances of this
scheme include CLP(®R), which handles linear
(in)equations over real numbers, and a num-
ber of other languages [DiH88, Wal89, BeP59].
A slightly different scheme iz represented in
the CAL family of languages at ICOT, which
variously handle rational polynomials [SaA80],
boolean equations [SaS8%], and equations on fi-
nite/cofinite sets [Sat90],

Recent work in parallel logic programming
research has included formulations based on
constraints. To do this, the concepts of uni-
fication and matching are respectively general-

'Actual systems may use freeze techniques in con-
Junction with constraint solving. This is done either to
restrict the applicalion of the comparatively heavy con-
straint solver, or to shield solvers that ose illt'tlll‘lllIE'LE'
methods.

ized to constraint satisfability and entailment
[Mah87]. This idea is picked up in [Sark9),
which proposes the Concurrent Coustraint (cc)
family of languages, which wodels concurrent
comnpulation as the interaction of multiple co-
operative agents through the asserting and
querying of a shared repository of information
sean as comstrainis. Concretely, this scheme
can be realized as a guarded (conditional) re-
duction system, where the guards contaiu the
queries and assertions. Control is achieved by
requiring that the gqueries in a guard are true
fentailed), and that the assertions are consis-
tent (zatisfiable), We introduce Guarded Defi-
pite Clavses with Constraints (GDCC), an ex-
perimental instance of the cc scheme, which
supports an unstructured user-specified set of
sorts and constraint symbols in a committed-
choice [ramework, and is intended to be used
as a research tool for investigating issue of con-
straint solving in concurrent programming lan-
guages, such as concurrent constraint solvers,
problem decomposition, use of maltiple solvers
and hybrid techniques, management of semi-
decidable solution melhods, debugging tech-
nigues, ete. GDCC is implemented in the KL
committed-choice logic language, on the Mul-
til'si parallel logic machine.

In the CAL group, we are interested in
symbolic algebra based techniques for solving
constraints, specifically methods built around
a canonical simplifier called a Grobner Base,
which is calculated using an algorithm due

—281—

REFERENCES

to Buchberger [Buc®3]. These methods were
shown to be compatible with the CLP(X)
scheme for sequential constraint logic program-
ming {SaA89), and have the advantage of being
complete with respect to deciding satisfiability
and almost complete for entailment. Specif-
ically, Grobner Base solvers can handle non-
linear polynomials in contrast to solvers hased
on Gaussian elimination such as the one used
in CLP(#). The Buchberger Algorithm is NP-
hard, but it exhibits a high degree of appar-
ent parallelism. On the other hand, its per-
formance is extremely sensitive to the order
in which constraints are encountered, and Lo
the scheduling of its subcomputations. We dis-
cuss the use in GDCC of a Buchberger Algo-
rithm /Gribner Base constraint solver [or ra-
tional polynomials, and our attempts to paral-
lelize it.

References

[BeP83] H. Beringer and F. Porcher. A Rel-
evant Scheme for Prolog Extensions:
CLP (Conceptual Theory), In &th fn-
ternational Conference on Logic Pro-
gramming, pages 131- 145, 1939,

[Bucg3] B. Buchberger. Grihner hases:An
Algorithmic Method in Polynomial
Ideal Theory. Technical report,

CAMP-LINZ, 1083,

[DiH88] M. Dincbas, P. Van Hentenryck,
H. Simonis, A. Agroun, T. Graf, and
I'. Bertheir. The Constraint Logic
Programming Language CHIP. In
FProceedings FGCS-88, 1988.

J. Jaffar and J-L. Lassez. Constraint
Logic Programming. In Proccedings of
the 14th ACM Principles of Progrim-
ming Languages Conference, Munich,
January 1987,

[TaL87]

[Mah87] Michael J. Maher. Logic Seman-
tics for a Class of Committed-choice
Programs. In Proceedings of the

Fourth International Conference on

[SaA89]

[Sarf9)

5a588)

[Saton:

[Walz0]

—292—

Logic Programming, pages B3s-876,
Melbourne, May 1957,

K. Sakai and A. Aiba. CAL: A
Theoretical Backeground of Constraint
Logic Programuning aud Its Applica-
tions. Journal of Symbolic Computa-
tion, B5:580-G03, 19549,

V. Saraswat. Concurrent Constrainf
Frogramming Languages., PhI} the-
sis, Carnegie-Mellon University, Com-
prter Science Department, January

1939,

Y. Sato and K. Sakai. Boolean
Grobner Base, Februarv 1988, LA-
Svmposium in winter, RIMS, Kyoto
Uiniversity.

Y. Sato. Fx-
tension of SetCAL, Seplember 1990,
Joint American-Japanese Workshop
on Parallel Knowledge System and
Logic Programming, ICOT, Tokyo.

C. Walinsky. CLP{EZ"): Constraint
logic Programming with Regular
Sets. In §ih International Conference
on Logic Programming, pages 151-
149&, 1988,

d«PBT0°0 = dIN
(Tid dN'TT 'y d)e8ediow -

0521626 =4
(d'000T'01°9' 000001 JeBe8ow -;

(g dIA T e, | JINAE- UL O+d)e8eBuow
WOTHd)+E =W O
‘g <suyg
- (g ‘g T ey, ‘g)efeSuow
(N -SWIL) - W[T[RIOL + = g
00T 1/Tsd) % SWIL = U] [EI0],
'Eo=> Wil W] =>)
=1 (g ‘dIN ‘T feunt T, *g)eTeduow

ededuopy :sjdwexy

VD dIHD “I1I/11 Bo104d () d1D x3e
JAISS2UAX3 BIO|N e

Sjule.lisuoD Fuippsquul Joj agendue| |Nusmode
d’] JO UCISUalxa |EIN]EN e

d 1D 01 uolldnpoJjuj

YIOAA 42UTINJe
19Aj0G [9]|B4E®
|apojy 3dendueT] |9||eiede

d7D ©1 uoidnposiuje

‘0661 1840100
fioresoqe yiy 1 ODIDASIMEH pire(

uonejuswajdwy |3||eied S}

pue Buiwweldold 21307 1uleISUOD)

135 |ie} 31ul} = |spows 1s91eau3 = dj3o

19S SS800NS = |3pow 1se3| = djlo
(Q1S papuixe) s3nsaye 135 SS320NS = |3powW 1se’| = dj|o
5335 (ANQS papueIxa) synsayje
s3iuly(02) ‘uesjooq ‘IE3UI-UOU |BUOITEL (XTo ues|00q ‘suba Jeauij |Bad 'SUIBWOp 811ul4 XJo
W0} |esluouen)o 1edwo) uonnjogo
919|dWwo?) uoI11DEYSIIESO 3313]dwo) uoioejsijego |
:$911SINb3JIald JUIBISUOT) /ulewo(]e m

:S31ISINbatald Julelisuoy) /ulewo(]e

o awayds (X)d1d

F%éﬂ.. .q---In) :8yuon 'z
(y = nong)enos = S 1 Aq sonpay
'q ‘D -y :3sne|)
(g‘¥p-..'n...In) :Syuoy

SOljuewWas |euollelado ul ADULINJUOD 3o e
=X T=AX "L=ATX
T=AX =X "L=A+X
T=AX LEAHX b=X |

4=2pd0 JUulel}suod |043uodo

% Anaygg
|

FuiseaJou|

JUOoIjBLLIOUI JO MO|JO
asnepd Jo Ajijigesljddeo
uoize3ndulod jo |oJju0T)e

SI9A|0S J0j Wslj3||elede

uoljezijajjesed 10j UOIIBAIIO |y

saden3ue| 2130| JulelISUOD [3||BIEdO
SI9A|OS JUIBIISUOD [3]|eledo
SJUBWIR 3|qeUeA YyHm s3as apuly(o)))e
suiewop /siaA|os /siulelisuod Buluiquiono
siskjeue Aouapusda(o
SIUIBIISUOD |EDIYDIBIBIHO

SS243044 u|e
VD 1360
¥ uesjoogo
VD 2ieigal|yo

JlE(] O] @

10D1 4e Yyaieasay 471D

—295—

A CA TR TAYX EX TR 1X)8e orean
(PAYXI(EX X0 (TAeX) (1K TX))uerstered -

TA+TA=EA+T0[R T+ X=CX+T:Te
[ann - ({eR eXI{TA T (T A 1X))prw

{EA'EXTATX 1A X Sfe indur) LB siomsuv y = to g pup

-ann V6 spojua y =tp ‘G uaym
R, o s0f sppipuee > 5 8- g
s DO o (y=tonlonifngw...q-.) Byuoy
(Aa'xa) 1d pd)prw {AD XD} pd'ed)pru b 31epipued Aq v jo uoilonpay
(thagyed N%_E.,ﬁm“%mﬁwmmwm_ﬁﬂ q'Zo | I6 ; V6 -y :b asnepy
(Saxahomor g e b G s (gt Tp) :Byuop

.nu_,__m? sutewop -: °

JBuBsy, pue Buia], e

sulewop a|diynw 4oy sianjos ul-gnjge 3035 JUIBJISUOD B BIA Sjuale

(EIIEEE)) uonejuswa|dwi 17y e ussmiaq uoljesadoos se uoieindwod [apopye
HWwod aued 3,uo(e

sden3ue| JUIBJISUOD JUBLINIUOYe

22009 sadengdue julesjsuo’) JuaLINIUCY)

—296—

SHNJE A <-51E s

unyosg
dujBi¥ngag

SBANGE <o wpELog

| 1Pys 5305 *

11 =wdd=

E

SWoje [3A39]-193(qo sue (siep)le

159 |3jjesed-puyy «— j3sey pieng |3f|eded-1ye
(1dx3'foquuiAg)jje3
(Hogy HWwWo' 4 /4’ g 1dxg |oquikg) jeze
(10qy'4 /5" Nd D 1dx3 Joquiks)yse
sisanbaye

ABM|0S UYDBS 0] wesl3s s343-a5iap e

uonejuswedw) HHgn

FHUINTY [BJUILLRIIU]

A EATA TAYX EX'TX 1X)B1e aean0
TP Ay ER e (TR T (T A 1X) nes:eed -,

TAHTA=CA+TOIR ‘TXHIX=CX+7:Te
| onn -2 ({g X ex A T TR TX) pr
{EA X' TA X TA 1X F1e indur)

“ana
| (X0 (p A1 R)=(CA-ZA) (b X-1X):81E
WO (T TA) =P A-EA)«(TX-1X):Fe

= (AP {EA e {TA T {TA 1Y) Jeaed oayo

{PAPXEA'EX' TATX TA TX 88 ndur}
{Ag'xa) 1dpdIp ‘({0 0} pd' £ d)piw
‘({Ag'xg} ed' zdpiu ({Ay'xv} zd' 1d)prw

‘(a'o'd'v)esed yoayo
| ona -2 (pd'ed'zd 1d)uEIS
{Aa'xq'Ao'xD'Ag'xg Ay*xy Sl area10)

"(=)d]e surewop -:

&d

id 2

td

22309

297 —

(3184 j3p13) subg ‘Syepdn) \ T b

o uba
i

TP —— 1 sapny
Doy 30y EEH U]
. LI aAl ™ and

'd O} Ppe pue g jualo

uay1
(f797)po3 (*7¢7)po8
..mmu_‘um_m_ﬂ - u__El..q 3
L3 (Y — A7 — b)) eioy

{4 #0'q 34| (Y fd)} = 1 39
S9|NJ JO 185 B 3qQ g 197

0#6 =

[uoIsiap wylos|y 49819q.,ung

- subg < | PUBILT [op g H.."U

g9 seylpow 1593 AJ|IqelsIieS e
Juswi(ieius a3a|dwoedu| e

g
(89)1 3 dyjro80—d

:diysiaquiaiu [Bap| 2A|0S 0} ISEY JUGOID) IS
({1 > 1 1

uosousey(=4Yd=-.---=1d

({1} 3 4 ¥s N 3 ug Y

djouoses (= =--. =1d jo ujos A13n7
wyT

'S9|N4 3314mal /shjod juanpuod PP = sseg Jsuqoun

2dA} aseg J4auqoun) WEN el
) 4210 s|elwouh|o :SIUIRIISUOY)
siaquinp dlesqad|y :ulewo()

J83An|0y, 73 ulewo(] 9|dwexy

—288—

(s2pud eagna) subg 'siepdpy

=

.l.,.t:..__-.._h
¥ D

&
i

]
T
ﬂE;I:- A
2 ¥ i

— 2899~

P R S =t FER T
L
. LY o
P _ _
o =gkt &R %
Y e ;
S Jemanng — : el pd

e
"wisipz||eded y3iy

1 uossap,
s1dQ snsiaa dnpaadg

¢ uoisiopn wyiuos|y 18848qydng [uOis19/\ :uoljenjeny

213 'a|diund esiopuy
'$AI0|g 1SUNIDNIIS [0IIUGD L3YI0)e
SUIBLLOP J3Yi0)e

salianb paziusiawesed jo

Solalien Jusw|ielus s13|dwod 1o} swyiod|ye

AOAN JBUTINY

'SIBA|0S BpISUl |0J3UOD [BUCIYIDPE paap
uoieindwod jo jod3uo)o
HNIYYP s1 sseq seuqoin Fuizijs)eiey
SJ3A|CS 104 WSI||Rle O
'SOBJI2UL IBAJ0S ++]SOY JUBIINIUOCD 310 |A0
L7 Ul pappaqui a3enZue| 53 1975 0e

BUIN[OS JUIBIISUOD «— UOIEIIUN g e

AOAA Joyang 73 Alewwing

L
L 3 H
.:ﬂmlnmmﬂl.._llu-_mw—ﬂlu..

ey
Ll

B ..._.\\

ey
pliug

jjospeny wsijz||esed fuoijewiojur peg
S|4 paanpaiun uisn 4o /a1umay Ay
SWwz|qoad Jadie| uo samolg

swejqo.d s)dwis uo Jzjse

 UOISIdOA :uonjenjeny

00—

FROA DOC IMPERIAL COLLEGE

A

10,82,1998 1%:7e MO,

Mapping Applications onto Various Paraliel
Architectures using Functional Language

and Program Transformation

Professor John Darlington
Department of Computing
Imperial College, London

Abstract

We are addressing the general problem of how applications can be mapped systematically onto
a variety of parallel architectures in 8 manner that reconciles the need for efficient execution
with the maintenance of desirable software characteristics such as comprehensibility,

modifiability and portability.

The approach we are adapting is to use functional programming to serve as a peneral model of
parallel computation and identify the characteristics of particular parallel machines with
particular restricted subsets of the language and to devilop program transformation techniques
to convert general programs into the required forms.

The appropriate program forms are expressed as skeletons, or general purpose higher order
functions, which serve as algorithm building blocks, abstracting away many of the
troublesome features of parallel machines.

Sequential implementations of the skeletons establish their declarative semantics and optimised
parallel implementations are provided on suitable machines. Expression in a skeleton,
however, is often not sufficient to achieve optimal performance and other, pragmatic,
information is often required. We are investigating methods whereby such information can be
expressed abstractly, as & requirement the system should attempt to satisfy, rather than
explicitly, as a prescriptive way of meeting the requirement, Thus the compiler/loader/run time
system 15 left with as much freedom as possible to satisfy these requirements with benefits to
comprehensibility, adaptability and portability.

We are currently investigating dynamic MIMD machines, static MIMD machines and SIMD
and systolic machines. Programs are expressed in the funmctional language Hope+,
transformations are implemented on the Hope + Transformation Programming Environment and
the various parallel implementations are accomplished via the Hope+ to C Compiler.

—301—

rd

Lamimoyy =N =

o voyepe 192 3

e

h&, jwawwannug

.___“_{q_.__d..r;ﬂ% i nu.r

1.1.__...”..9.__-* m_m.. MU_Jd
\ﬂ \x_ ,Enfﬂﬁ.; md@ ﬂJD\P
Wi Yy
.rj_u....._...u_{...hu_u. ..,.i.._u&L.._... J._u“_ﬁ-E.H-
N

H..umd:.. ﬂ... L |

mmg.judc: du:fﬁ@

O*\._c__ﬁ_

._J...n_~+.u: -\m

We)1021422 wdg fwpl @ﬂ.__._ ;

l cl

my gy g2y ATmay W 70

ab, H @c_.@@dg

Comwolos, ™
».._..I._.Qd_(rnvu T._.u_.”..: T) LQ .?..E._.wu._._._dhw

4dca_+u;5m

— 302

ﬂﬁ.ﬁi..qiu.___z._ r2y4? ﬁ_..a.,_itn_ -
.U.r'._-i__u ﬂﬁ -

hH_J__.Ju.-.F.
.H.u.:.u\ia_ |.TD .ui_ﬁr .._lu_lﬁ.. a u.u..._d.._.._t.....
hnn__ﬁqﬁ._u_uﬁ u_‘du:._.wo.___ rt.__uw.:_:._ T -

140X

iadupwaojsad 1oy favssazau jng

Lyngerredpfyigeipadananposd
JJEM]JO5 40) snoaojsesip wsijejeaed jo joxucy yadsg

sapsprpEacys [uisiyd saumyaew 3y o) aendiucu £dojopoyiom dseajespdendue] uowwos o
pue wuoj eprdosdde ojup wenessadsaueadosd
[EI2u3d 1424U00 €] UONUWIO)SUEI) SN L]

gadiy aunpacw apeaed jo Lps1aalg
LEENENH
Jo 3ddy auiyoew Ay 40) swdej juaygs o) puodsitiod
jeyn swaey wesdosd jeusisung jo spsqes Ljruap) »

proadde woneiojsusnpIenut (EuoRaung uonejo|dxyg [afjedeg o) uonjenddy

— 303

ﬂ.n_ wsijajesed 0} yoeoiddy |ejajayg .qlTﬂﬂ

‘a1g!550d suuo) jaresed wejeanbs o Aauea
'ST)UBWISS SBYS||gE|SE ueimuasdu equanbeg .
“Bal)
193)}8-3p1s pUe onsjuuuaiep sie sweibosd |epeiey .

“SLIEBI|S
Aq pajspow Auebsis uolesiunuiwes ssasord-apyy .

“SuLc) (eEEs Duugep
Mo WSIVEYDEW APESES BRIA0sd SUONDUN) repoaayby .

-SU0}8|9XS [eUOCHI3UN] JO SebejueAp
uswdojaasp uvoeLLjsUR] anmmns .
suonuswaidw) paswndo AyBly gigeey .
"SUBLULCIALS UOBLLIOSUR))
PASIESE-DUIYIEW Jo) swuo) (aliE) apmeld -
"PUBSIEDUN
B B8N 0) ASES 878 UNYM SUu0) BjqRSN-0 .
“UofRIEIV Juawaded uondposap
§5820.0 Bujwuaresboud jeesed |BucuasLo
Uli% PRIBIXOSSE SINUISUOD aJBM)0S DRSOy .

ERINIET] [BITYDENYIE DRSOy "

“SWI0 [ET3]93S JO SabejueApy

‘wuoy shenbuel-eeonaun; _
Erarubiy i) woy sweaboid jo suoieuawstw) [
81835 aalap o) Aficiouyos) vonewuosuen osn .

(seuma)yaie snosuabolalay)

saUlisew [Besed jo syomau paingusp

ol paydnoo -Ajesoo) o) pajdnos-Ajaso)a ISRULIE W
[BleiEd JO 55212 apim B 10) SUOJDIOUS JUSW sdw; .

“Apoauucoiaiu pue Auenueib-ssesod Koeds
Awondu yogm suug) onuguobie jo os B eprolg .

UBIEETEd EEg

iraucay anis 201337 oloisks I9Ixe
il T

WeHEIn| Y
B2INOSBY

syopesedo [Ty | csumesBoud
jegered (), § eajessdu

“EIER 2 e uon
UDHERI kB i -BIWOLDEA
DLy THIELOVY

o gy

—

JUMUaDE|d
550204

'lllLllll

TRICA +
woweaed I ~baju pus
¥ UCjEeD i sessaoMd

5582014 jiErg

uajjeald
$5a9044

=304 —

EHOLDEA

+ Uojez
BT R TR
¥ UDERD
=g

Wws|ja||eled § STUIYIEW |8]||EJEH

ul wsi|aj|eled o} yoeoiddy [e19)e)s v

{T)bas « (" x (T wjEy)beq « — x [jB6eg)bas : gn

SI|€joads buljeiodoon

(dhisi ¢ (o) x e x 12n)
=TT T T x T ey %N)bas lysepy

sy « (ohisy = (Then « [Thsyibas @ adyg

“Womjau ssaond
onels [esausb Any spsyeeds Supessdoon .«

‘auladid jo uoyezyessusb g-z wsspy -
“sessesoud jO seUes JESU) euedly .

19345 SHEIS AN

~omsu-Sugopms B ySnouy Awoauuoasu)

sseooud rusvelb sepenws -sabessow

10 [BALIE JUBPUBdER BLIL-UMN B [2POW YoM
S2unjonils passasce-AedsuILLRiap-uoy soeg .

*Aanauuoasu|

s5800id paxy SEIENLIS "SJ0)2MJISU0D
1DUiS-pESY UM pIPNNSUDD SISIFATE] SWESNS -

| Dulj|spo
"AJESSEI8U BJaUM
PUR UsUm duw)-ury e pateaud sessecad owweudg .
“(uoneao|

SE {jom 5B Joquinu ul} paxy aue sassaooid onEls .

TSUod |

1945 AWIW

[Bnoge ey
o Au jo sopou panauuodie|u) snosueboisioy .

(Buyoep-uonoauuey 'deq Jedsew 6'a) WIS .
'(sung painqusip Yuanbag ‘oyiepw Be) gmim .

.IHI!_ wsija|eied o} yseoiddy |ejaja)s v _J

— 305

“|r.H— Emm_m__m_hm.& Q] Eumﬂhn_ﬂ._ﬂ. hm:w_.mxm v

‘Yorodde
(awim) pajuauo-ssascud asieos uey Jaises
U0 UoloeNe weie)esed o) yaecidde paueiB-aul4

'S82Ua.9s paydde pue [einjBU W suones)dde

10} 8|qe)ns Aawanxa wsyaiered jo wio) o|dwy .
'sabenbue) [2uonaun w

SRIMINIS-BIBR ABLE JO &SN Juapyja-Aybiy o) smopy

“lwsiayered aassew o) paposap
volionusu &10us) Jusionge g peaYano Mo ABwaixs .

LUusTe[[eled-ereq A,

slosszocad o sueld OpS
SS0J0E paIngUisip sanons elep Aeue uo slesedy .

BUNINS BIER LOWLWDD B o

Siuawale o) Ajuaunsuos vonerado 2iBuis & Bulkjdde
W) pasuep wsyayesed wwsyeyesed-eigp odxa .

-SUOIB[ENS AWIS

b &=L x (m)Beq (g +) x ((L x (0)6eq) « 4 x [()6eq) ‘o
insay slEls Jenny ARG JEISEW

TOAE[S-I8ISEl]

I S J

f += 0 x {oog +) x ((o)isy «) x {d « (ghsy) x (g « 1) :0g
NERE Qodd jEAL arodioaer) Lo AR

Tlenbuoc) pue apiaig

“E¥5E] JO uonE)o|dxa
|3|esed 10} [DPOW [RISUST) ISABIS-JSISEW

‘ugje[Eys Logrsodwoiap
walgoud oisse vanbuog-pue-sprig -

-SuL)elays JJWeuAqg ‘gQi|

——— T TEEm——

qJ wsijajjesed o} yaeoiddy |B18|e)s ¥ =y

306

wsijajjesed o} yoeosddy |elajedsS v

(v)feue — (o)fewe x jeyiieLe X0 x (0« px o) uayed
tojieLe —(o)ieue x JeN)ABLE % D % (D + 0 X D) U3EIS
{o)Aeue « (o]ieue x ey)AElE anuuad

0 (pileue x 0 K {0« D x D} Ja3npal

(o)Aeue « (0)fBE x 0 x (0 & DX D) [UEIS

{mheue «— (o)ieue xjEN EEIQ)

(myfeire + (Dpeye x 0 x BN E)epdn

{MMeue « (f)Aeme x (o)feue x L+ ¢ xn) gdew
(g1Aeie « (o)fewe « (0] dew

'SUONelado pealag

(o}feue « (o)AeuE = JEN 2Uny

{o)ieie + (2)ABiE X D ¥ BN (puaxa
{(mhsn)fene « (o)ieue = fey)iene u2ia)
{(ohsy)fewe «— (o)leim « fey)ieie puss

{o)heue + (o}ieie x DX ey ys

(1 = o)feue + (f)leue » (o)lele diz
(d)eise —(o)Aeue x (g «— 0 xjey) dew |
o+ [mheue ey oEes

Jjen + (D)feue punog

(D)feue +— 0 x]EN ARIEMBU

SUONEISA) oAUl

R—

wsi|ajjesed o} yoeolddy |eiajays v

[swiypobe oyoishs
6-a) suopeziundo Jo suojeyvads [ana-ybiy
wed) swiyjuobie |0 USlEANSp UOjBWIOSURY)

0} g|geuswe aue sweiboud jaered-eep Buynsay

"(udie) ‘puss
BgE) uswessu-eiep pue (dew) Gunsespeouq
UONINUISUL JC) ISINe SUONEjUaSaIda) [RUCDUNY -

sheue
uo susiesado jo uonpisodwo yBnoy) papoidxa
5| wsya)eed-g1ep puR SAIMONS SIYjouow

se sfeue preba) Agesnpeu sabenbue| euonoung »

uoljejuasalday jedoljoun,
A

\\I
{1} Aadwog J
j2lesed den

Yo Eg puas
| .mﬂ:ﬁ.& SjuBwe|3 BlBg 8A0K

Wys=aaop ﬁ *)

uoneiadg 9| Eled-Ele _7

307 —

"ajqejfeas 89 ABW UOIEIIUNLILIOD
[ES0{-UOL JO| ¥I0M]aU UoN3auU0IIalu) |BlauaD -

“pajoauucn AEDg 5 Jossarud yorg .

uojangsy jsespeog-Aleqob
ewes ay) Gugnosxa Asnouolyauls
sjuawals Busseood spdws jo spuesnocy) -

BJEUD =INjIapya1y anlls

wislj2[|eded 0} yoroiddy |ejejong v

[aidurex3 jo pusg)
(10 51 sugoew gpis e o aberany jo Lusdwas gU) -sda)s g
Ul abzw ve jo sbeteae ay SIBIN2JED UBd 3beazay wonouny oy
([=x
fiex 'yanog)azjys
‘lsx ‘3ssM)arzTys
“igx ‘3seg)azjys
flex 'yizon)azyys) ¢4 zdew) prog
{5/} iden = (sx)abesany

(0 1} = yanog (1= ‘0 = asam
IT "0} = 3meg g "T-} = y3aon

-sucnauny Jepig-seybly Buisn weibosd Buipuodsauios ay)

. .
T TR F U TR s TR = {1

Lesh

"SMDJ|0} B sanfea jexid oy) jo abelane up [TE=1T

d Buipuodselon ay) jo
JO0 JUBWSI8 yoBa |2 anes g

O} USIM BM, "UBJDS B UD Jax)
Apsuaiu sy of Bupuodsal

yim fBLE O-2 B A pojusasaida, 5| UeRuos so|ydeib v

——— llS]|2]|eled 0} Yorolddy |e13|23S ¥

{suonaun)

ansInsal-pe] yiw dew sajqeus)

v = if dew) (suqgbqed) = (sug b seuyeb) (f dew)
» « Ifdew)(suqbianess) = (su g 6 1eyEDs) (f dew)
Fybroig isp By (f eanpay) B= (B dew) (f eonpay)

(f dew) {su eynwuad) = (su sjnuwuad) [dew)
(f dew) (1iys) = (1) (f dew)
(+1amys) = {Lys) (1 ipys)

(6-£) dew = (6 dew) (/ dew)

TE1qab[y uonewJojsues]

—A08—

suwannbsr s Sokjspes J0 spqedes
SIELAW Wy [paal-ydiy e JIRpIUL 0} paudissg]

MOH 10U By - BANER] D3] .

Suasssag Sumrespy

uswannbay uonnssrg ‘surerfoug jo samadorg - suonmouwry

uCnnjos
! payses aq o
B U SIEIS A ey

(re|noued avo) 105 vandusssad & s Lpandys ey as
luswannbay e se ‘Apaensqe ‘wonewio steudoidd

(D¥Vds *Aeare 3o1934) pannbss sossanoid josdl

221s uiesn)

(vopeaunmwo ssjuruim) ypeso ssavorg ¢ g5

INOLARY g FUII-urg

ssiundo oy djay UsAIT 99 o1 spsat waysds SWn-unIpEC| A Id ey

uoneuswapdu

1ewnde sansus o) susoyns SABMIE 10U 51 UOIS)335 £ Ul usssardyy

SNAYAINOD TYNOILVHAJO
40
NOISSEIdXH FALLVEVIOHAA qH.L

wsi|a)jeled 0} yoeoiddy jele|ans v

1o5saa0ld
yIes e paldoe vonaun) g {yinos ‘Isem 1sea
‘yuon) uonsenp ¢ sweans (ndu seyads

(o)Aeie +— (o< 03 Dxn) x (o)iele
x (e x jen) x (ons) = (e xeN) (o)) 10LSAS

TUO}a|YS D1)01SAS

e Bord

ay) jo Apadaud 2n1es e auojasey st wyuobe ue jo

aunfeu ayolsAs “suopesado ojcisds Auo Buisn wuo)
oju wigiuobie sbueyo O] pasn 5| UDIBWIOSUBI] -

‘suolEIado 3)|01sAS-uoU

pue 211548 yiog asn Aew wypoble eaw -
uchesyoads

jans|-ubiy se paymads wagoud euiBup -
"jo]sAs-uou g Jnoisds

ojul papivp aq ued suolesado jgeed-el2g -

suoeo;suen Guruesaid-buiresw pesjuerend
EjA SJuaEMnba 090)sAS ojul paLLo)sURS g
ues sweibol [egeied-elep ebenbue-puogoung -

(018 "vonscdwoosp-7 ‘voREsg W
-xljew 58] swa)qoid [esuswnu Jo Aauea
B B 10} 1se sungiuobie oyosAs waioye Aubly .

JUBLEBAUI-EJEP PUR
h:n_n_zm._m.c.__wm:mw_._ 1 UDNEDIUNWWLGDY |8 Suaym
swyuobie |ajesed-Blep JO SSBI2 pajopisal .

'SUIUJIOD[Y 9I|01SAS jo Uoieandaq

- 304

s[jea Fursue(eq peoj
f3wnon Anugly o e suonRomIYy

Bjfed Areagr) o e UOREMUNEOT)
FPO3 D € $Ipoq euopIung
flosi-g0 po

suopenonues +3doy e pastaudys seagumud
Zuiauereq peo] f uogEsmAWmos B .

suanaung 2y

Wpim paioaws do) suoiaayg

fipgewed “Aypgueay -
198 CUoEW B,

spdwon way +zdoy o pus-y3eq M3

J3a(idwon 3y o1 +adoy

ALNOY NOLLVTIIdIWOD

wawainbay Jossasaly

SI055320U4 [EI0) JO amyS

2ouzpuzdapu] s532014

Anzzdwe sane)ay

SeD) LUc(] ‘SUmS ‘resp)

UTIEoTY

LONEa0||Yy 105533014
SOOIEIN0 W LI0S
SSI0UL-3TU]

TG WG

Rnieso

fyson|

Ampqeusd "Lipgedepe ‘Aipgrsusyaidwon

uoneuawapdw jo Liigixe]d

Swraaugd [euonesado pue sanemeep jo uontiadag

satuadoad jenuassa uo snaog

HITELTY)]

—210-

/‘/rg_r\s‘(ormq'f-{ong Stuclied

_> C carse 8mfneo(,
Divede &£ Comquer

:> D pe l{nE

m;as[f\

— sIMD = 585+a{t‘c
(&

’:> mtr;aaa rparn‘na

311

Second Joint ICOT/DTI-SERC Workshop

Title: Future Direction of Parallel Symbolic Processing

The aim of the panel: To identify the future direction of parallel
symbolic processing {rom the aspects of
architecture, programming languages, and

application areas.
architecture: Do we need special architecture such as dateflow?

programming languages: Fither convenlional languages or high
level languages?

application areas: Do any significant application areas exist
which need parallel symbolic processing?

final question: Do you think that parallel symbolic processing will
bring an innovative tool for human being and/
or human society?

—312—=

Guide to the
Japan & UK Demonstrations

Second Joint ICOT/DTI-SERC Workshop
on

Decomposition of Parallel Applications

and
Benchmarking and Evaluation of Parallel Systems

Wednesday, October 17, 1990

—313-

=1

10.

A List of Japanese Demonstrations

. Pentomino—7Dacking Piece Puzzle Solver

Bestpath—Shortest Path Problem Solver

Experimental svstem of parallel version of computer Go-
playing program : GOG

. Paralle]l LSI-CAD demonstration program {1) : LSI router

. Logic-level simulator of LSI circuits : A parallel applica-

tion program in LSI CAD

Experimental System of Parallel Legal Reasoning using
Precedents

. Genome Analysis Program (1} : Multiple Sequence Alig-

ment by 3-Dimensional DP-matching

Genome Analysis Program (2) : Multiple Sequence Alig-
ment by Parallel Simulated Annealing

Constraint Logic Programming Experimental System :
CAL

Molecular Biological Database in Kappa

—3ld4—

Title

Pentomino — Packing Plece Puzzle Solver

Purpose

load balancing scheme for OR-parallel search programs is studied.

Dynamic
Multi-level load balancing scheme is proposed, and evaluated by implementing
all-solution exhaustive search Packing Piece Puzzle (Pentomino) solver program.

(hitling

&

Features

e, consisting of a rectangular box and a collection

Packing Piece Puzzle is a puzzl
of pieces with various shapes. The problem is to find all possible ways to pack

the pieces into the box. This puzzle is known as the Pentomino puzzle, when
the pieces are all made up of & squares. This is a typical OR-parallel search
program. A multi-level dynamic load balancing scheme is developed to highly

utilize the processors.

Program structure:
An OR-parallel exhaustive search.

Load distribution:
Tasks are generated by a master processing elements (PE), and are dis-

tributed to idle PEs, in order to balance work loads. To overcome the task
supply bottleneck at the master PE, multi-level load balancing is intro-

duced.

Systen
Configu-

ration

Packing Piece Puzzle with 5 pieces —
Search Tree and Load Distribution o

FE1 PE-FE13 FEI4 PE1S

=315

D e t a i 1 5 (1/3)

1 Overview

In the demonstration, packing piece puzzle with 10 pieces (Fig.1) is solved with increasing
number of processing elements (PEs), and speedup figures are shown.
The demonstration is carried out as follows.

« Program is executed on 16 processors with simple load balandng scheme.

« Load balancing can be observed real-time in the performance meter window.
e Program is executed on 64 processors with simple load balancing scheme.

« Task supply bottleneck can be observed in the performance meter window.

+ Program is executed on 64 processors with multi-level load balancing scheme.

o Near-linear speedup is obtained.

3 8

oo -
2|—|5’—|T 10

Figure 1: Packing Piece Puzzle

2 Description of the program

To solve this puzzle, the program starts with the empty box, and finds all possible place-
ments of a piece to cover the square at the top left corner. Then, for each of these placement,
it finds all possible placements of a piece (out of the remaining pieces) to cover the uncov-
ered square which is the topmost leftmost, and so on until the box is completely filled. Each
partly filled box defines an OR-node, where the possible placements of a piece to cover the

uncovered topmost leftmost square define child nodes.
The program does a top-down exhaustive search of this OR-tree. Here, deepening the

tree depth corresponds to place one piece in the box. The number of OR-nodes increases
as the search level deepens, but since some OR-nodes are pruned when there are no more
possible placements, number of OR-nodes decreases below a certain tree depth.

3 Load balancing scheme

Load balancing is done on master PE by partitioning a program into mutually independent
subtasks (Subtask Generation), and by distributing subtasks to idle PEs so as to balance
work loads (Subtask Allocation). To detect idle PEs, on-demand distribution method is

—316—

D e t a i 1 s (23

utilized. When a PE becomes idle, it sends 2 message to the master PE, requesting a new
subtask. Subtask generation is done until the search reaches the certain depth in the tree.
as the number of processors increases, the rate of subtask execution eventually

However,
supply. In other words, subtask generation becomes

becomes larger than the rate of subtask

a bottleneck.
To overcome this bottleneck, we have introduced multi-level load balandng scheme.

Each subtask generator is in charge of a cerfain fixed number of processors, which form
processor groups (PG). V processors are grouped into M processor groups, therefore, each
PG is composed with 4z PEs and a certain PEin a PG is called group master PE.

In Fig.2, two-level load balancing scheme is shown. At the first level distribution, super-
subtasks are distributed to idle PEs to balance the loads of PGs. At the second level,
subtasks are distributed to idle PEs to balance the loads of PEs which belong to a PG.

This scheme is scalable to any pumber of processors because of this multi-level structure.

Super-Subtask

ﬁihl Generator
Aﬂfﬂﬂ [I]E] [ﬂ]]] II[[E‘; Super-Subtasks

ﬁ?!-ﬂ?_\‘ Distribution

]| 1] st e
PG PG PG Pow Distribution

| 1

O O O Subtasks
O OO

Distribution

I | \d@ u Second Level
Distribution

PE, PE. FPEg_, FEg

L PGy }

Figure 2: Structure of Multi-Level Load Balancing

—317

D e t a i 1 5 (3/3)

4 Speedup Measurement

Execution times are measured for one-level load balanang and two-level load balancing.
Speedup (Sw) is defined as the ratio of execution time on 1 PE (T}) to N PEs (Tw), and
calculated by %‘;, and it is described in Figure 3.

Spesdup of one-level load balancing becomes saturated because of the subtask generation
bottleneck. However, it is improved by two-level load balancing, and near-linear speedups
are obtained: 7.7 with 8 PEs, 15 with 16 PEs, 28.4 with 32 PEs, 50 with 64 PEs.

i
&4
—pa Twe-lovel load balanding
e
e
d
uﬂ
P
o Dime-level load halascing
16
8-
1 " L) L L] -:
1 -] 16 32 (7]

MNumber of Processors

Figure 3: Speedups

5 (Conclusion and Future Works

This scheme is efficient not only for OR-parallel search problems, but also applicable to
general trees search problems including alpha-beta pruning problems, which does not involve

frequent inter-processor communication.
This multi-level dynamic load balancing scheme is now availavle as a utility program to

come with the operating system PIMOS.

—318—

Title

Bestpath — Shortest Path Problem Solver

Purpose

The problem of mapping intercommunicating processes on loosely-coupled
multiprocessors is studied and evaluated by implementing 2 shortest path

problem solver.

Cutline

&

Features

Problem : The single-source shortest path problem is to find the minimum
cost paths between a given starting vertex and all other vertices of a
graph in which each edge has a non-negative cost. Large-scale grid

with tens of thousands of vertices are used in the demonstra-

graphs
test data.

tion. Edge costs are given by random numbers as the
Algorithm : Processes corresponding to each vertex exchange messages
with each other. Each message contains path and cost from the start-
ing vertex. A priority is attached to each message so that a message
with lower cost is sent earlier than one with higher cost. Each vertex
remembers the shortest path notified so far by the messages and its

cost,

Load balancing : Three different static mapping strategies are tried to
get high processor utilization with low interprocessor communication.

System
Configu-

ration

‘;—-— Shortest path

Starting vertex

—319—

Outline

 The single-source shortest path problem is to find the minimum cost paths between

a given starting vertex and all other vertices of 2 graph in which each edge has a
non-negative cost. In the demonstration, the grid graph consists of forty thousand
vertices. Edge costs are given by random numbers.

Io the demonstrated program, processes are generated for each vertex in a graph
and computation is performed by exchanging messages between processes. This
algorithm requires Jess computation than the algorithm in which processes are forked
for each candidate path. Priority control efficiently prunes the search branches, so
the algorithm is as computationally efficient as Dijkstra’s algorithm.

Algorithm

A message contains the path from the starting vertex to the receiver vertex and its
cost. The computation is initiated by sending a message with an empty path and
zero cost to the starting vertex. All the vertices remember the minimum cost to reach
the vertex notified by the messages received so far. Initially, the cost remembered
by each vertex is infinite (Figure 1).

When a message arrives at a vertex and the cost notified by the message is smaller
than the minimum cost remembered in the vertex, the new cost is remembered and .
messages with better paths and costs are sent further to the adjacent vertices (Figure
2). If the message has a larger cost value than the known minimum, it is simply
discarded.

Since a message is represented by a process, sending a message means crealing
a message process, while receiving a message means executing a message process.
Each message process has a priority decided by the cost: 2 message with a lower

cost is received earlier than one with a higher cost.
When there are no messages left in the graph, each vertex has the shortest path

from the starting vertex and its cost.

Load Balancing

The heaviest part of the processing is communication, which is initiated at the
starting vertex and propagates gradually to the whole graph like wave propagation.
So, the processor utilization is expected to be higher as the grid is divided into

smaller blocks.
Conversely, when the grid is divided into blocks for mapping, interprocessor

communication arises at the boundaries of the blocks. So the more the grid is
divided into smaller blocks, the more interprocessor communication occurs.
The program tries to attain a good compromise between communication local-

ization and processor utilization.

1 Each vertex has
l——' (w0, -

i 1
L T
4 5 Verlex v remembers
Starting (1234,w) 1
vertex f.__._
ol 10 ¥
(%] @]

w
Initial message(0,{]) &=
.) %eﬂage(lﬂl. u)
N at pricrity P
D u

Figure 1: Initial state
Starting vertex
i

Vertex v remembers

(1121,u) 7 Message(1128, v)
with priority Py
w L 1']
0 @ o’

Priority: Message(1131, v)
(higher)P = P, 2 Pi(lower) with priority Py

#

. B

Starting vertex

u

Figure 2: Message communication

Mapping Strategies
The following three mapping strategies are tried. In each mapping, p = g° processors
are employed.
Two-Dimensional Simple Mapping _
Divide the grid into ¢ x ¢ blocks and map each block onto the corresponding
pIOCessor.

Two-Dimensional Multiple Mapping
Divide the grid into k super-blocks, each of which is again divided into p blocks

just as in the two-dimensional simple mapping. Each processor is responsible
for k blocks, one from each super-block.

One-Dimensional Simple Mapping
Divide the grid simply as p narrow rectangular strips and map them onto the

Processors.

12 13 14 J

The shaded block is mapped onto processer 0.

Figure 3: Decomposition of a grid for two-dimensional simple mapping

12113[14)15

1] 2] 3] The shaded blocks are mapped onte processor 0,

Figure 4: Decomposition of a grid for two-dimensional multiple mapping

----- o |15

The shaded block is mapped onte processar 0.

Figure 5: Decomposition of a grid for one-dimensional simple mapping

D e t a i | s (%)

Performance Results for a 40,000-vertex grid

Speedup Two-dimensional simple

304 grmeeenane One-dimensional simple
¢= — — Two-dimensional multiple

n T T ¥ 1 T + 1 L

14 8 16 25 36 49 f4
Number of processors

Figure 6: The speedup for various mappings and numbers of processors

Processor utilization ratio(¥%)
1004

ab

D'
One-dimensional simple

Processor utilization ratie(%) Processor utilization ratio(%)
1004 100

S04

Two-dimensional simple Two-dimensional multiple

= Ratio of operations for communication
4 Ratio of other operations except eommunication

Figure 7: The processor utilization ratio for various mappings with 16 processors

—323—

| N :
Title Experimental system of parallel version of computer
Go playing system “GOG
Go has been a difficult game for the computer to play. We are trying
Purpose to build a strong Go program using the computer power of the parallel
inference machines.
[Outline]
¢ The intermediate results of parallel Go playing system *"GOG"

on paralle] inference machine.

Outline This research is being jointly developed with ETL.
& [Feature]
Features
1. The tasks of small granularity tend to smooth out the
load imbalance caused unevea tasks of large granularity,
2. The frontend sequential GOG system dispatches string search
works to the Multi-PSI which works as a backend machine.
Multi-PSI
generation
of tasks

FEP T3
Systen GDG position
Configu- \ .

B Recognition
ration
Move Decision ||
dead falive

D e t a i l 5 (L"_:;)

Developing a computer Go playing system

We have been developing a sequential computer Go playing system called "GOG"
on the sequential inference machine since 1985. The current system is stronger than
a human Go beginner, but considerably weaker than a average-level amateur.

To make the present system stronger, GOG has to incorporate much more pro-
cessing. But, if the system simply took in all those tasks, the execution time would
be too long. In the parallel GOG system, we would like to incorporate more tasks

and still keep the execution time relatively short.
A parallel version is now being designed to run on the parallel inference machines.

Part of the system have already been parallelized. It is a intermediate result of
computer Go system "GOG™ of parallel inference machine.

The capture search

The outline of the process in which GOG determines its next moves is as follows.

Recognition of board configuration
—+ Geperation of candidates moves
— Decision of next move

In the recognition of board configuration, GOG determines which strings (con-
nected stones) are in danger of being captured. And, for each such strings, it does a
search to decide whether the string will be captured or not. This recognition is very
important in this phase, because next move depends on the state of stones “dead or
alive”,

This system recognizes dangerous stones with DAME of 4 or less. Such a state
(string with few DAMEs) occurred frequently and many dangerous stones are ap-
peared at the same time. The capture search time accounts for roughly 40% of
processing time of the board recognition phase. As the first step of parallelization,
we wrote the capture search part in the concurrent logic language KLI.

i#d B¥

|

D e t a i 1 s (75)

For efficient parallel execution

(1) We adopt 2 dynamic load balancing scheme to make the most of processors.
There 15 a master processor to distribute search tasks to other processors. An idling
processor requests work to the master processor, and receives a search task.

(2) All processors have a copy of the board, and updates it every time a move is
made. This reduces interprocessor communication, since the master processzor needs
only to specify which string is the target of the search.

(3) After all dangerous cluster search tasks have been dispatched, a particu-
lar kind of plausible move generation tasks are dispatched. Those are "KESHI"
candidate moves that may restrict the enemy’s potential territories. Since KESHI
candidate generation tasks are of smaller granularity than capture search tasks, they
tend to smooth out the load imbalance due to search task size variance, thus making

the processor utilization higher.

Front End Processor (FEP) Multi-PSI

E3 | PE4 - - -

position

Reeognition
of points
Search 1 5‘”“ P Search 1
Search 1
S-u:rh 1

Recognition dead falive .
of strings u Search T -)
Recognitions ‘)
of groups
l Search 2
Generation of Search 2 |
didat
Ean! ales KESHI
] Candidate 1 1{ I ;{rqnt
Evaluation Candidate 2 KESHI (KEEI]

Decizion of
pext move

Figure2. How the FEP and Multi-PS] processors
cooperate to decide the.next move

—326—

D e t a i l 5 {3/'3}

How to decide the next move

We have incorporated the parallel board recogaition program into the sequential
GOG system.

1. The frontend sequential @GOG system notifies the enemy moves to the Multi-
PSI master processor. Then, the master processor dispaiches the capture search
tasks and then KESHI candidate generation tasks to the other processors. The
results are sent to the master processor and then to the frontend processor.

2. After the frontend sequential GOG system get the candidate moves from the
Multi-PSI, it evaluates them with the candidates generated by itself. Then it decides

the next move.

This experimental parallel GOG performs more processing than the
sequential GOG system, but the processing time is kept roughly the same.

Demonstration

1. Recognition of the board configuration in parallel
2. Play with Multi-PSI

—327—

Title

Parallel LSI-CAD demonstration program (1)
LSI router

Purpose

A VL5I layout problem consists of several different problems that require massive
computational power. Routing is one of those problems. Our aim is to study
concurrent algorithms and load-balancing methodologies through design and
development of parallel routing programs.

[Abstract] This program executes routing between modules on an LSI chip, after
the placement of each module has been fixed. It determines the copnection paths
between terminals of each module.

[Concurrent algorithm)] The Basic algorithm is a sequential line search, the
look-ahead line search algorithm. It is expanded for parallel execution. Major

OQutline
5 parallelism is extracted from concurrent routing between nets,
(Implementation] As this program is based on a kind of line search algorithm,
Features processes are assigned to each line segment on each grid line as concurrent
execution primitives. Intermediate results of routing are kept as inner statuses
of each line process. Routing is executed by communication between these line
processes. The master line processes stand for grid lines, and manage line
processes on a corresponding grid, and relay those communication messages. Line
drawing and rip-up correspond to dynamic split and joint of these line processes.
E master_.line process
]
rf“ .-'_{L// 5(¥
i’ij’/" ﬁj&—”
7%%/%
LillazAzx
A
- line process
Systen
Configu- \J
same line orthogonsl line
raticn
mns ler—hﬂE Process master.lme pru Cess

message from message to
crossing line crossing line

message from adjacent line

— 328

D e t a i 1 s (":/jj

[Routing problemn)
Routing is one of the VLSI layout problems which determines connection paths

between terminals of modules on _a.ﬁ LSI chip. Routing is executed after placement
of modules his been determined in an LSI design of gate arrays, standard cells,

or building blocks. There are several well known algorithms for the problem

such as maze routing, line search and channel routing. We assume two routing
layers, one for vertical and the other for horizontal paths. We also assume that
each connection must be routed on a virtual grid on a chip surface. The block
and through hole inhibition conditions are also dealt with.

[Basic algorithm] | '

This program is based on 2 kind of line search algorithm, look-ahead line search.
This algorithm calculates positions that are expected to lead to 2 good solution

before routing each line segment. Figure 1 shows this process. Start point S
and a target T are given. If a line drawn downward from S turns at A, then the
reachable point that is closest to point T is point 2. Similarly, if the line

turns at point C,D then corresponding points are ¢ and d for each. These points
(8¢, d) are called expectation points for S. Note that as the through hole

is inhibited at point B, so point b cannot be an expectation point for 5. Of all
these expectation points, point ¢ is the closest one to point T, so point S and

point C will be connected in this search step. Similar processes are followed
and thus point S and point T will be connected. In addition to the above

processes, this algorithm includes two more functions. One is to get out of
local optimal point in expectation points calculation. The other is backtrack
for escaping from a dead-end by removing the last-connected line and returning
to the point visited last. Thus this algorithm guarantees the wireability

between two terminals, if connection paths exist.

D d bW
[Fw
H s[El F| 6l..
B X
A J : £as iy -, 2% pass through inhibition
B -..f b f\ - - LI]
it o 2 ey £ through hole inhibition
q g) clye
— rar
hf X e X * X
FiLy LL
4 x *KJY X K
b 4 p 4 W
;.{ 7
wir e] Al -w
Fai P . i .
Fig.1
dagd }{ J’>< T L E

--329—

D e t B i 1 s (3'/3]

[Concurrent algorithm)]
This program uses a parallelized version of the line search-algorithm shown
above. The programis 'dﬁigﬁ&d to extract-a parallelism of computation mainly
from the concurrent search of multiple nets._On KL1 programing, _thé‘minjmum
execution unit is called process. We usually adopt an execution model in which
the computation is executed by exchange of messages between these processes.
This program'also adopts this execution model. As our algorithm is based on the
line search algorithm, so processes correspond to each’lines on grid. Each line
process maintains the corresponding line's status-and at the same time the
execution-entity of search. As figure 2 shows, each process corresponds to each
grid line and line segment on it. In this program, search and routing proceeds
~ by the exchange of messages between these line processes. The routing process of
one net is almost the same as that of the basic algonthm, but the cnﬁputatinn
of the expectation point, mentioned before, is parallelized. The computation of
the best expectation point is executed in this‘program as follows. Request
messages for.calculation of expectation point are distributed from the line
process now being searched to the line processes that cross it.- Thus computation
of expectation point is executed mncu:rtntiy on each line process that received
a calculation request message. Later, the result of each calculation will be
returned from these line processes to the searching line process, then this line
process aggregates these results and determines which is the best expectation
point. When the best expectation point isfound, the searching line is connected
(fixed) to the crossing line that includes the best expectation point.
(Figure 3(2)-(d))

-
B master_lina process
1 FZ7A77A7A | Y
: s
I AT
2%,%%
i VA Y
S
¥ || #—| line process
Fig.2
- Lt

—330-—

D e t a i 1 8 (‘}/j}

F a8 1

i Q_;\.:pﬁctati{:r: Fpﬁintﬁ :::_ 'E:'Z.P'Eh:t‘lﬁﬂ;}. pﬂints
* oA T route —» A rrniaraea | T
rnﬁ{’%”’/j’;x T f—’;’x /::’:
A A7,
A % ¥ }/{%%é
7 s
RW.777/% Z ﬁ! Z
T (2722 [z
e .
f;y searching line process 2%
cleulating expe:_;':af.ic:n point
1 1 1 1] 1
Fig.3(a) Fig.3(b)
m':pa:tation points) 1
L1 £ L . AT
BB 7777 D 7
‘: ":} \.r’ LA) :} /jrr ’,:/' H,'/
F = 5
77 "’fff/ff,_/}";’ﬂ \. 7 Za /ll A
:‘?é expectation Faints A l:nm.plet e
1 1 1
i = target point

Fig.3(c) Fig.3(d)}

Note again that the concurrency of computation is extracted mainly from routing
of multiple nets, in other words, from parallel search for multiple nets. In

this program, routing is scheduled to route nets in increasing order of their

size, shortest net first and longest net last.

[demostration]
The parallel routing program, written in KL1 on the Multi-PSI, executes routing

of LSI chips of a practical size. Execution results will be shown on a display

in real time.

[Kitazawa,H. and Ueda)K., "A LOOK-AHEAD LINE SEARCH ALGORITHM WITH
HIGH WIREABILITY FOR CUSTOM VLSI DESIGN?, proe. of ISCAS 85, pp1035)

LY

Titl
’ Logic-level simulator of LS] circuits : A parallel application program in LSI CAD
« To construct a logic-level simulator in a concurrent logic language KL1 which
can simulate practical-size logic circuits on the Multi-PSL
Purpose
« To evaluate the virtual time mechanism, which is a parallel control mechanism
for discrete event simulations.
The system simulates the behavior of logic circuits described at the logic-gate level, taking
delay time of each gate into account, The virtual time mechanism is used in order to realize local
time management in cach processor. When a time reversal occurs, the rollback of event bistory is
performed to malntain the correciness af the aimulation,
1. Event-driven simulation
¢ Tosimulate the gate behavior oaly when its input signal changes (only when an event
Outline oceurs)
& 2, Parallel contre] mechanism — virfual time mechaniam
+ Local synchronization by passing mesasges between gate processes
Features Exch message has the information of new signal values and its changing time
+ Rollback will happen when a messsge arrives in incorrect order. (Rollback means
rewinding the history of a gale proccs.)
+ Seheduling of mesvage processing in one procesor #o a3 Lo decrease the [requency of
roilback
3. Laad balaneing = static load balancing by preprocessing
« To decrease the frequency of rollback
o To decrease the inter-processor communieations
static | lancing | i
> (dividing the circutt statically) —» (the divided circuit data)
System | parallel execution of simulation
Coofigu— (_
the divided circuit data) —y
ration (simutation engin_e) > (output signal saquances_)

(input signal sequences) >4

— 332

o e t a i 1 3 ('z"’g.'.'

OUTLINE

Logic-level simulation of LSI crcuits is one of the most significant stages in the
LSI design process. The purpose of logic-level simulation is to verify the correctness

of the logic circuit design from the viewpoints of its logical specification and signal
propagation timings. Since simulations needs a long run time , high speed simulator

is eagerly awaited.

We.constructed a logic-level simulation system on the Multi-PSI which can deal
with gate delays. The virtual time mechanism was adopted as parallel control mech-
anism, and we have just started evaluation of the efficiency of parallel processing.

APPLICATION

The system can simulate both combinatorial circuits and sequential circuits of
practical size such as those consisting of over 10,000 gates. Circuits should be
described at the gate level. Different delay time with a multiple of a unit value can
be assign to each gate. The simulator handles three signal values, Hi Lo and X (not

specified).

SIMULATION METHOD

We adopted an event simulation method, that is, the gate behavior is simulated
only when its input signal changes. Each gate is implemented as a process. Events
are propagated as messages with a signal value and time. When a message arrives
at an input of a gate process, it calculates an output value. When the ouiput value
changes, that is, when an event occurs, a new message is generated and propagated

to following gates.

PARALLEL CONTROL MECHANISM

We adopted the virtual time mechanism as a parallel control mechanism. When
a gate process receives messages in correct time order, it calculates events recording
its event history. However, when a message arrives in incorrect order, (a message
arrives which has an earlier time tagthan that of the last message) the gate process
must rewind its history (this procedure is called “rollback”) and simulate again
from the time which the time-reversal message kept.

Opposite to our method, there is a well-known parallel simulation mechanism,
called distributed simulation. In that mechanism, each gate does not start event
caleulation until messages arrive at all its inputs. This mechanism assures the
correctness of time order of messages, but it does have the possibility of deadlock.
Supplementary messages are used to avoid deadlock, which makes costs very high.

The remarkable merit of the virtual time mechanism is that there is no possibility

of deadlock.

—333—

D e t a i 1 5 (Efi:;:]'

1. Local control mechanism
(2) When a message arrives in correct order
« Computes the new output signal value using previous state of the
gate and the new input signal value
+ Sends a new message to following gates if the output signal value
changes
(b) When a message arrives in incorrect order
¢ Rewinds the history and restores the gate state for the time just
before the message should have arrived, and resumes simulation from
that time
» Cancels the invalid messages already sent

2. Global control mechanism

(a) Memory management: Sometimes computes global virtual time(GVT).
GVT is updated equal to the earliest time kept between gates. GVT is
used to release the event history. History records, corresponding to the
time earlier than GVT, can be released.

(b) Termination detection: Simulation is regarded as finished when GVT
exceeds the simulation finish time.

A g bslory e i A gt Nalery area
e €2, walim Lo} i e 104, valod b
[T ,," fime 02, vabse Lo
fe o Je s s i (o TH, wmivs H}
i [+ =} s s
A i) Goalw ; AND Gala
romgigs = dhulcyd { LT
flires 101, wakes HI] [! T e 10, vabos KD
B brwnat hisiory arsa f: [
e B4, wulow K ; H:u:ﬂu. b
{tme 83, b ls] o {Sue B3, wubss Lo}
Eﬁu;ﬂ.mﬂm ; (B 50, i 4]
..... T

o B, vahos Lo} [t 81, wakon Le)
{eres T, vakuw b ¥ i 7H, :JwH}
feaheoe S P
D flate -! NG Qale o e s
I ——] [
[l 81, wahss Loj H '_’.'mmﬁ}m
f' {4, valos o]
nmm”u‘. .': B irgad hbsdory
(o, maH] v B4, e 1)
(e B3, b L i fere 3, vwhom L)
ilm?'- vl) {umas B4, vakeu HI}
LD R [+ =)= » =

(b} When a messaga arrhres in incomect order

- 334

D e t a i 1 s (34)

o e ek i

3. Scheduling

In one processor, we should schedule messages to arrive at their destinations in
correct order (to keep rollback frequency low). We made a scheduler process
in each processor to sort messages in the right sequence.

PDIN'I_‘S TO CONSIDER IN LOAD BALANCING
1. To make simulation proceed in each processor at the same pace

2. To make communication frequency between processors as low as possible

DEMONSTRATION

We simulate the sequential circuit which consists of about 13,000 gates. Input
signal sequences are generated randomly except clock lines.

As the result of the simulation, besides the output signal sequences, we get
several data for the performance evaluation. We can evaluate the elapsed time, and
can compare the total number of messages with the number of rolled back messages.

—335—

Title

Experimental System of Parallel Legal Reasoning using Precedents

Objectives

The objectives are to develop a parallel inference engine and to investigate the

computational model of legal reasoning.

Qutline &

Feature

o (Case-based reasoning is reasoning from precedents, adapting old solutions

to solve new problems. We evidenced that legal reasoning can be modeled

as case-based reasoning.

« Qur system deals with precedents about death due to overwork. Legal

decisions and arguments made by plaintiffs, defendants and judges in law
courts are extracted from old cases, and represented in the form of case
rule. When set of facts of a new case are input to the system, it creates
all possible inference irees the roots of which are légal consequences. Our
system is used to construct explanations to help the plaintiff or defendant

make their asseriion firm.

« Condition part of each case rule is checked if it is similar to the new facts.

The matching process can be independently performed for each ease rule.
We dispatch case rules to multiple processing elements (PEs) of Multi-PSI
and the matching process are performed actually in parallel. We much

improved the efficiency of the legal reasoning.

Structure

(Fm:ndmls about death due (o nvam@

extract
Inference Syslem
'
Case Rules
¥
input Inference Explanation output .
03’""!5} ’ Engine *1 Construction »] explanations

—336—

Contents of Demonstration (1/3)

[Legal Reasoning Problem]

is solved by reasoning using syllogism based on legal rules.

We might think that legal problem
cared in legal rules are often

But this approach did not work well, because legal predicates app
ambiguous. In fact, 2 legal rule does not make it clear how to apply the law to a new case. In

a lawsuit, both plaintiff and defendant asserts their interpretations using suitable facts.

When making interpretations, law experts use a kind of case-based reasoning. They refer
precedents concerning old cases similar to the new one to help themselves make explanations.
Then legal reasoning is a good example of case-based reasoning.

Qur demonstration system deals with precedents about death due to overwork. When
{acts of a new case are input to the system, it retrieves cases similar to the new case from a

case base, and outputs all possible inference trees to explain each consequence.

[Representation of Cases |

Each fact being involved in a new case is expressed in the form of 3-tuples, {object, relation,
tic network representing the relevant facts of

value} . A set of the 3-tuples construct a seman
the case.
Prec
plaintiffs, defendants and judges in law. courts. They
nitial facts. The reasoning processes can be regarded as a set of rules. We
rule 2 “case rule”. The condition part of a case rule represents a situation of an old case,
its action part represents a result of inference. -
A case rule is apparently similar to production rule, but is different because it is not
a generalized rule. It represents just relations between concrete situations of the case. Asa
is particularly useful for solving problems in which
About 270 case rules are previously

edents contain reasoning process, which are legal decisions and arguments made by
reason some consequences based on the

call this type of

and

case rule is expressed in concrete level, it

knowledge is difficult to be represented as general rule.
extracted from 25 precedents and stored in the case base.

[The Process of Generating Explanation]

When a hew accident happens, we represent is as a semantic network. Facts of the new case arc
input into the system. The inference engine retrieves case rules each of which condition part
matches to the new facts, and executes their condition parts. By matching-execution cycle, the

reasoning proceeds with forward chaining. The explanations are constructed as chains of the

inference.

337 —

Contents of Demonstration (2/3)

The matching process is based on similazity, and it has two characteristies. (1) If

importaat facts of the condition part matches to the input facts, the rule can be fired even if
other condition does not match. (2) Even if condition part does not match input facts, if they

match at the abstract level, they are regarded to be matched. This is 2 kind of generalization

of a case rule using JS_A link of 2 semantic network.

[Inference Engine and Parallel Processing |

In the experimental system, as past precedents are stored in the form of 'case rule’, the reasoning
process is performed by a matching-execution cyele like an inference engine of a production
system. The condition part of each case rule is converted to a process network of KL1 in

advance.
When the facts of the new case are given to all of these process nelworks of matching,

each process network checks whether the set of facts are similar fo the condition part of the case
rule by using similarity-based matching. If the sum of the similarity weights of all conditions
in the condition part is greater than the threshold of the case rule, then this facts is regarded
as matching the case rule. Then the action part of the case rule is transferred to the process
network of execution, and the results of the matched case rules are given to all of the process

networks of matching. Thus forward chaining of the reasoning is generated.
As mentioned zbove, the cost of the similarity-based matching is very high, because

a case rule generally has many conditions and the similarity-based matching is heavy enough.

Also the matching process for each case rule can be performed independently. If there are a
large number of case rules stored, we dispatch case rules to multiple PEs and the process of
fmatching condition parts are performed actually in parallel. Then we can improve the speed

of the legal reasoning.

T

Contents of Demonstration (3/3)

[nitial facts PED

--------------------------------- -

History management process
: E Exolanati Process network of
O_' -Expranation . matching of case rules

- : e &

{ i P

Case rule : ¢ |Matching| (Matching| @ : Malching

' C) execution i jlofrulet | Jofrule2 | ! {lofrule3

i1 process ;

N S IO S

i r Y cen
RS i

Parallel Inference Engine

—330—

" "doqur ey Rq posneoe =7 juspioor Byl Tyl pepTounp
v PG uEe 37 wog: 'AoqeT STY PUS EMDHNSITH CJH oy Butusddey
- LUODRTO0® O3 uDDmioqg AyTTesnoe efqeqodLd ® BT odeyy 41

SElLIRT

([eiuepTooe, ¥ piniuspioce
Fud b0 8T PUR LUBPTOOE UOGSMIOq RyTresnco pTaRqoad, fr iueswloydwe ¢ o niuoefoTdee 1) ShE I LOYA ™|

(g~

(l.uosaed, ' omelo)y .thq.-aumaﬂgea:.nlﬂzoEJnH£Ec;ﬁ.¢_=p:-!:u4nln.-uu_"ku{ull_
. Z1IRT3INY T

(L=40auT 843 Ra PRsnEo) uoTSToBP. ! (LIUBPTO0E. " 0 IHIUSPTEOR.]) 118110V

TRUBRJo0T wogel e =7 junpToGe Byl FEYR
‘Gut.ieqey GUTANE RRJANO00 1T 3EYE pun
RPRENES SEm JuepPToOCE ey i IEY} pepTe®p ST 371 61 .

srliRT

- aepTOoRR 84 ueos 3T usyl
- SOeET Byy [

(luBuTaoger Buyang =¢LL$oua.u..:oqnquuut._.uzcvqnuu-.

«OTAIUIPTOOR LI ILL110¥4™ 1
(lusi@Oe] ous Gy pusneo.) ..._._vqu__oE....H.__u.:nu_...unu..,..aﬂ___n_..an.ﬁouﬁ..: @:.u,_i..r_
..

PITRT AN
([WdU2RTOOE J0(ET L)' JUuOTSTORD . P [L3UD

RTOOR, ' L BINIUePTOOR.)) L9310V

MOpUT() UDTIEUBTAX

([a3UBRTOOE JOQET] " MO JSToRR . [LIHERTO0T
(la3UpToon JCde]u.] *ucisjoepaL’ [J3uapToon,
(Lua3URpIooe Joqe]]t UuoTsToap.. ' (JYUuepTooE,

(laPUsRTooY JOquT-ucu]
([3UapToon Joqgul-uou,]
([3UBPTOOE Lnﬂuguﬂozgu..:oqnqnﬂn.,H.azntqouw¢.1=H=u£n=moo-=-u -]

(Lud@oeT oyvi: [Q :nhddw;_.-:o-uqnmu.nH.w:caﬁnuu:.rndzuﬂaﬂqnou:uu

([uiUdRTOOE AO{BT L] 'LUOTSTORR ' [(L3UBR]OOR,

fallNEUBpRTOOE,]))
LB STENTE-SE - 1.0 S B
FLOTHIURpRTOOEL]) 5%
AU TSToOD. [L3uepToon.. ' L 0HIUePToORL]) X9

FuloTSTORR ' [LIURDTO0e . 'L 0II3USRTOOR LYY L0

H]
faBisuepioow,.]) 09

— ———
b .

MOpuT) 308

340—

Title Genome Analysis Program (1):
Multiple Sequence Alignment by 3-Dimensional DP-matching

« Parallel programming on a large-scale problem n KL1.

HL -
Pese « The first step to genome analysis.

[Outline]

The system solves three-sequence alignment problems by 3-
dimensional DP-matching. - The DP-matching is executed by a
of KL1 processes. The network works as a parallel

outline | prismnetwork
ipeline.
& pip
Features
[Feature]
« Efficient DP-matching by parallel pipeline processing.
o Quality improvement in three-sequence alignments.
=
l_l_ = f.f-"’ f‘f’ f"/" ’H,—-’
. = == P
[_ -
[-
Systes 3 sequences ,:> P]
E.'{:n.figu- . [I H'f‘
r
rati 1 |1
on E I_| - f
: _ L~
Aligned <:| P
3 sequences

3D DP matcher made of
KIL1 process-network

— 341

1 What is multiple sequence alignment?

Biologists often align DINA and protein sequences in order to determine liow similar they
are. DN A is a chain of four kinds of nucleic acids and 2 protein is a chain of twenty kinds of
amino acids, which ave translated from a chain of nucleic acids. Strong similarities between
sequences may result from a common evolutionary relationship, and these sequences may

have almest same function.
Figure 1 shows a typical multiple sequence alignment. Twelve fractions of enzyme

proteins are aligned. Each letter stands for an amino acid: D is aspartic acid, R is
arginine, H is histidine, and P is proline.” A good alignment has same or similar amino
acids in each column. To make an aliznment good, each sequence is shifted or gaps (dash

characters) are inserted into the sequence.

~——DRHP-|PHHOEILCRLGRC-HYFTTIDLAKGFHOIEMDPESVYSETAFS
——-—Dﬁ'I'H-LPHHﬂ'EI.L'FLIH_GK-H.IFSISFDEKSGFHQ‘HLLDQESRPLT.&FT" ------
——-I':IIHFT#‘FHFTHLLSELFFSHQH‘TT\"L_DI.FZD'J.FFELRLHFTSQPLF,&FEW—RD?IM
—==L=FGPYQRCLPLLSALPOOWRLI=1IDIXDCFFSIPLYPRORPRAFAFTIPSLHHH
e P GAYQQGAPYLSALPRGWPLM-YLDLXDCFFSIPLAEQOREAFAFTLPSYHND
---DLSSSSFEFPDL-SSLPTTI.JLHI.QTIGLHD;'\._TIFQfPlPHQFQPTFAFT?PQQENT
===TLTSPSPGPPOL=TSLPTALPHLOQTIDLTOAFFQIPLPRKQYQPTFAFTIPQPCHY
~==P|PALSPGPPDL=TAIPTHPPHIICLDLKDAFFQIPYEDRFRSYLSFTLPSPGEL
===D=FWEYQLGIPHFAGLEREK SYT-YLOYCODAYFSYPLOEDOFREYTAFTIPSIHNE
YHWPE F=AYPHLOQTLAHLLSTOLOQWL=SLOYSAAFYHIP [SPAAYPHLLYG====—===
¥ WPRF—-AYPRLOSLINLLSSHLSWL-SLOYSAAFYHIPLHPAAMPHLLYG
MAFPRY-WSPHLSTLRRILPYGHMFRI-SLDOLSQAFYHLPLHNPASSSRLAYS

Figure 1 Multiple sequence alignment

2 Dynamic programming on sequence matching

Dyunamic programming (DP) is a basic method to find an optimal alignment, The method
is regarded as the best path search in the N-dimensional network. In the method, for
example, if two sequences, ADHE and AHIE arc given, we form a 2-dimensional network
that has 25 nodes connected by arrows. A cost is assigned to each arrow. We scarch a
path from the top left node to the bottom right node, minimizing the total cost of arrows.
In this case, the set of arrows that connect white civcle nodes is the best path. This best
path corresponds to the optimal alignment, ADH-E and A-HIE (Figure 2.1).

I e

Costs on arrows should reflect similarity between compared characters. In the case
of protein sequence alignment, Dayhoff's odds matrix (Figure 2.2) is the most popular
way of obtaining the costs. The matrix was oblained by statistical analysis of mutation
probability of amino acids.

Though DP-matching is an optimal method for alignment, it takes a lot of calculation
time. DP-matching with more than three dimensions is too time-wasteful to be used for
practizal alignment. So DP-matching has been used for partial matching, when several
sequences need to be aligned. For instance, we can produce all pairwise aligznments of
given sequences with 2-dimensional DF, then merge the alignments one by one.

AHTE

Figure 2.1 DP-matching method

L m ¥ DCQELEcEFILERTFPFITWVYVYSEEII

1 =3

I =4

T o-=1

0 1 ==

T 4 4 =12

0= ={-=2 5§

0 1=1=3 5-2=
=1 3 @=1 3 1 o=5-

LT

L =

[+

B 1-2-2-1 3~3~-1 2~8

I 122211223 21-% .

L 23 2 48 T 3 4 F=1-4 oy N

E 1=3=f 0 §=1 ¢ 2 @ 2 J3=§ Flgllle 212

¥ 1 o 2 3 68] 2 3 2=2= 0=d4 . s
F 44464585 2-1-25 09 Dayhoff’s odds matrix
F=L @ 1 130131037311 58

£=f 0=1 & & [=1 1 § 3 @ T ¥= =3

T={ 1 0 ¢ 21 60 1 93¢ 13 a=1=

¥ 4-2 4 7T 8 57T 7 3 62 3 4 0 8 7 FIT

T 32 4 2404 450 35 1 4 2T £ 3 23 010

¥ o 2 12 732 34 2= 2211108 2~4

B o §=2=3 4={=2 0-1 2 ¥3=1 2 § 1 @ ¢ § 3 2~-2

I 0 0=l=3% §=3=3 i=3 F 3 & 3 F & & 1 4 4 2-2-3

I e 1913211411111 31 21 0@ 4731%11

-343—

D e t a i 1 5 (Ef:.',.}

3 Parallel pipeline processing of 3-dimensional DFP

If 3-dimensional DP can be executed rapidly, it is useful for partial matching because it
tolerates noise better than 2-dimensional DP does. e have implemented 3-dimensional
DP on the parallel machine, Multi-PSI, and improved the speed of three-sequence match-
ing.

Qur system constructs a 3.dimensional prism network with KXL1 processes (Figure

3). The prism network is divided into 64 subprisms of equal volume and is mapped to

64 process elements (PEs). The KL1 is suitable for constructing such mesh-like process

networks and the network can be used as data-flow pipeline easily.
If many different combinations of three-sequence alignments are available, we expect to

merge whole sequences adequalely for rultiple alignment. This system provides optimal

three-sequence alignments by parallel pipeline processing.

4 Demonstration

The demonstration system solves three-sequence alignment problems continuously by par-
allel pipeline processing. After several initial alignment data are fed to PEO, their optimal

alignments come out from PE63 and are displayed at short intervals. During processing,
the performance meter window shows that several wavefronts pack and propagate from

PED to PE63 clearly.

o % =
1 [
ADHRES. 'ERERL] # a
ABTES .., rerens g - H_,,.-""
AHIDG . .o cnuvesn Er o~ L]
P * =1
o ;- . L #.’i_,.-f'"
1-1- .".\ |
i -~
-'; . -
'l; -{ .'1:' I-'l. l|.'-l .”.r‘ -~
N 3 |~

Figure 3 3-dimensional DP-matching

—344—

1

Title Genome Analysis Program (2)

—

Multiple Sequence Alignment by Parallel Simulated Annealing

« Application of a parallel simulated annealing to a practical

Purpose problem.
¢ The first step to genome analysis.
[Outline]
The system solves a multiple sequence alignment problem by
scheduleless parallel simulated annealing. Each PE has a con-
outline | Stant temperature and exchanges solutions with neighbor PEs
& in some probabilistic way.
Features .
[Feature]
e Simulated annealing without designing a cooling schedule.
¢ Generating various alignments in different local minima.
I Initial Sequences '
T == t on PE1
s ;
- oo T _ 2 I onpe
Configu- i:‘ ________ :1;___“‘ $ ¢ PE3
TJ‘ i :[i . i on
ration T+ 1 T T "‘i“: { on PE4
==X { on PES

Ts

l Aligned Sequences l

— 345

- | U

1 Simulated annealing algorithm

In many impertant practical problems, a solution is an arrangement of a set of discrete
objects according to a given set of constraints. Such problems are typically known as
combinatorial problems. The set of all solutions is referred to as the solution space and
an energy function is defined for all solutions. To solve a combinatorial problem is to find
a minimum-energy spot in the solution space.

A general sirategy to search in the space is the method of ‘iterative improvement'.
The method requires a set of moves that can be used to modify a solution. One starts
with an initial solution and examines its moves until a neighboring solution with a lower
energy is discovered. The neighbor becomes the new solution and the process is continued
to examine the neighbors of the new solution. This iteration terminates when it arrives
at 2 spot that has locally minimum energy.

Simulated annealing algorithm is an extension of the method of iterative improvement
based on an analogy between a combinatorial problem and the problem of determining
the ground state of a physical system. To bring a fluid to a highly ordered state like a
single crystal, a process called ‘annealing’ can be emploved. We first melt the system by
heating it to a high temperature, then cool it slowly, spending a long time at temperatures
in the vicinity of the freezing point. Kirkpatrick et al suggested that better results to
combinaterial problems can be obtained by simulating the annealing process of physical

systems (Figure 1).

begin
Xo = Initial solution |
(Ta)mo N1 3= Temperature
for n:=0 toN-Ido

begi . _ ‘
t}%"T:: Some random neighboring solution of Xn:

AE = E(X's) - E(Xa);
if AE <0 then
Xarr =X

else
if exp(-AE/Ta) 2 random(0,1) then

Xasti=X'n

else
Kasl 1= xn

(Cooling schedule);

end;
Output Xn,

end; Figure 1 Simulated annealing algorithm

2 Multiple alignment as a combinatorial problem

There may be some ways to formulate multiple sequence alignment as a combinatorial
problem. Kanehisa, a professor at Kyoto universily, developed an ingenious formulation in

order to solve multiple alignment problems by simulated annealing algorithm. We adopt

his formulation.

—346—

D e t a i

Ianehisa's idea is as follows. First, we make an initial alignment by adding 2 number
of gaps to both head and tail of each sequence (Figure 2.1). To modify the elignment,
we focus on one sequence in the alignment 'and select a gap and an amino acid randomly
in that sequence. Moving the gap to the other side of the selected amino acid gives the
modified alignment (Figure 2.2).

The energy of an alignment is calculated by summing up each correlation value of pairs
of characters located in the same column. The correlation value comes [rom Dayhoff's
odds matrix. If the energy of the modified aliznment is lower than that of the previous
one, the modified alignment is always regarded as a new alignment. If not, whether the
modified one is regarded as a new alignment or not depends on the probability derived by
temperature. The temperature is decided according to a cooling schedule. This annealing
operation often brings good alignment (Figure 2.3).

"-744-——HAPATFQRCHHDILRPLLHKHCLHFSTSLD
D LKQAPSIFQRHMDEAFRVFRKFCCVE SNNE-—~~~~-

Momemnoee SPTLFEMQLAHILQPIRQAFPQCTILQASF-==---~
Iigure 2.1 An initial alignment

"=~ HANSPTICQLYV-QEA-LEPTR-KQFTSLIVIH-=----~
Hom e TCEPT;CQL??GQ-V-LEPLHLHH'PSLCHLHﬁ*H*“ﬂ-“
Memmmem SPTLF-EMQLAHI-LQPIRQA~FPQCTILQASP=~~=*

Figure 2.3 A good alignment

3 Scheduleless parallel simulated annealing

Designing a cooling schedule is troublesome because the optimal cooling schedule depends
on the type and the scale of combinatorial problems. Without careflul lemperature reduc-
tion, a solution is trapped in a local minimum which has relatively high energy. Kimura,
a member of ICOT, developed the method of parallel simulated annealing that makes it

possible to avoid designing the cooling schedule.

— 347

-

D e t a i ! 5(3‘3]

In Kimura’'s method, each process element (PE) maintains one solution and performs
the anne.a.ling operation concurrently under a constant temperature that difiers from PE
to PE. The solutions obtained by the PEs are occasionally exchanged between PEs that
hold neighbor temperatures (Figure 3). This exchange of solutions is controlled in some
probabilistic way. Kimura proposed a scheme of the probabilistic exchange, and justified
it from the viewpoint of the probability theory. He applied his method to a graph-
partitioning problem, one of the representative combinatorial problem. That proved his

method to be efficient.

T (t erature
(temp) a cooling schedule for the

|
711 qu K sequential simulated annealing
[EE L

i Ks
T3+ ;
P Ke

Te1 T Ks
T[54 '

) — { (time)
U parallelize

Tr === 3 - { on PE1

L L L ionpe

Ts 7 """i"" '"ﬁ % — 1 on PES3

T4 T T $“ ~ { on PE4

Te —===>— t on PE5

1 : a probabilistic exchange of solutions

Figure 3 Scheduleless parallel simulated annealing

4 Demonstration

The demonstration system solves multiple sequence alignment probles by the parallel
simulated annealing method. The multiple alignment problem is formulated as a combi-
natorial problem by Kanchisa's idea, and the simulaled anncaling operalion is processed

by Kimura's method.
Generally, it takes hundreds of hours for optimization by simulated auncaling. The

demonstration is a brief version of multiple alignment. It shows you gradual improvement

of the alignment of some small protein sequences.

—348—

Constraint Logic Programming
Title

Experimental System CAL

(1)Programs easier to write and read
Furpose (2)Highly abstract programming
(3)Research on efficient problem solving techniques

CAL : Contrainte Avec Logique

Contrainte — Constraint Programuning
Cutline +
& Logigue — Logic Programming
Features
¢ Very High-Level Declarative Programming Language
* Powerful Problem Expression and Solving Ability
* Can be parallelized similarly to Prolog — KL1
@ : *| Pre-processor
T programs/
queries/
commands
Internal Forms
System
Configu- Answers T
ration Jnference Engine
Constraints Cannonical Forms
Constraint Solvers

—349—

+ Pony and Man Problem

e This problem consists of :
Number of Ponies,

Number of Men,
Total Number of Heads,
Total Number of Legs,

e Two Relationships among them:
Number of Ponies+ Number of Men = Total Number of Heads

4% Number of Ponies+ 2X Number of Men = Total Number of Legs

pm(Ponies,Men,Heads,Legs) :-
alg:Ponies + Men = Heads,
alg:4*Ponies 4+ 2¥Men = Legs.

Now we can ask various questions:

1. Ponies =2 Heads = 5
=

Men =3 Legs = 14

2. Heads=6 Ponies = 3
=

Legs= 18 Men = 3

t a i L s (279

If you use Prolog.....

pm(Ponies, Men, Heads, Legs) :— int(Ponies), int(Men), !,
Heads is Ponies + Men,
Legs is 4*Ponies + 2*Men,

pm(Ponies, Men, Heads, Legs) : — int(Ponies), int(Heads), !,
Men is Heads — Ponies,
Legs is 3*Ponies + Heads.

pm(Ponies, Men, Heads, Legs) : — int(Ponies), int(Legs), |,
Men is Legs/2 — 2*Ponies,
Heads is Legs/2 — FPonies.

pm(Ponies, Men, Heads, Legs) : — int(Men), int(Heads), |,
Ponies is Heads —Men,
Legs is 4*Heads — 2*Men,

pm(Ponies, Men; Heads, Legs) : — int(Men), int(Legs), !,
Ponies is Legs/d — Men/2,
Heads is Legs/4 + Men/Z.

pm(Ponies, Men, Heads, Legs) : — int(Heads), int(Legs), |,
FPonies is Heads/3 —Legs/6,
Men is 2*Heads + Legs/6.

pm(Ponies, Men, Heads, Legs) : — int(Ponies), |,
Men = Heads — Ponies,
Legs = 2*Ponies + 2*Heads.

pm(Ponies, Men, Heads, Legs) :— int(Men), |,
Ponies = Heads — Men,
Legs = 4*Heads — 2%Men.

pm(Ponies, Men, Heads, Legs) : — int(Heads), |,
Ponies = Heads — Men,
Legs = 4*Heads — 2*Men.

D e t a i 1 5(3/?3

% Heron's Formula

surface(Height, Base, Area) :-
alg:Base*Height = 2¥Area.

pythagoras(A, B, Hypotenuse) :-
A~24-B72 = Hypotenuse™2.

triangle(A, B, C, S) -
alg:C = CA-CB,
pythagoras(CA, H, A),
pythagoras(CB, H, B),
surface(H, C, S).

surface: pythagoras:

Hypotenuse
A
triangle: -
Base E

A H B

1
CA CB

C

352—

D e t a i 1 5 f‘fcf"q}

Handling Robot Kinematics

—393—

D e t a i 1 5 (5_.-"?}

ex. Vector Sketch of a Robot
(3 Joints and 6 freedoms)

l

/ANRI= (0,0,2z1)

Vﬁ= (0,0,23)

A

/H
G = (5.0.0)

0 (0,0.0)

¢ &/)

AMF BERTHATRAN

?_

obotd:

robot ([[cos3, sin3,0,0,23,0,0,1],

[cos2,sin2,x2,0,0,1,0,0],
[cosl, sinl, 0,0,21,0,0,1]],
5,0,0,1,0,0,0,1,0,

DX, PY. PZ, aX, ay, az, ¢X, ¢Y, ¢z).

sin5"2 = l-cosb"2 .
sind”2 = 1-cosd"2 .
sinl”™2 = I-cosl”2 .

PX
PY
Pz
ax
ay
az
X
cy

cZ’

i

yes

coslfcos2%z3-5%cosl¥sinZ*cos3+sinl¥x2+5%sinl*sin3
cosl*x2+5%cosl*¥sin3-sinl%cos2%z3+5%sinl*sin2*cos3
zl+5%cosZ2%cos3+sin2#z3 .
~1#%cosl#sinZ%cos3+sini*sind .
cosl#sind+sinl*¥sin2%cosd .

cosl*cosd .
—~1%cosl*sin2%sind3-sinl#*cosd .

-—l%cosl¥cosd+sinl*sin2#sind .

cos2*¥sind .

35r

1 s (V)

Yes
7- robot3d:
robot ([[cos3, sin8,0,0,23,0,0, 1],
[cos2, sin2,x2,0,0,1,0,0],
[cosl, sinl, 0,0,21,0,0, 1]],
5,0,0,1,0,0,0,1,0,
40, -30, 20, 1/83,2/3,-2/3,-2/3,2/3,1/3)

sin1"2 = 1/5 .
cos2 = -5/3%sinl .
.sin2 = 2/3 .

cosl = —2#%sinl .
'zl =6 .

cosd = 2%sinl .
sind = ~l%sinl .
z3 = 26 .

x2 = 105%sinl .

Yes
?2—

=356 —

(*r9)

+ Count 1's : Boolean Constraints

circuit(X1, X2, X3, X4, X5, Y1, ¥2, ¥3) -
bool:ll = X1&X2, boolll2 = X1vX2, boolll3d = X3&X4,

bool:14 = X3vX4, bool:l5 = ~I1, booll6 = ~I2,
bool:17 = ~I3, boolI8 = ~I14, bool:19 = I1VI3,
bool:110 = 11&I13, bool:lll = I6vI8, boolll2 = I6&I8,

bool:113 = ~X5, bool:114 =-15&I12, boollls = I7&I14,

bool:Il6 = ~I14, bool:Il17 = ~I15, booll18 = I15VI16, .
bool:119 = 114VI17, booli120 = I114VI15, booll21 = I16VI17,
bool:122 = 194148128 X5, boolI23 = I11&I174&:158:113,
bool:l24 = X5&18&19, bool:l25 = 113&120&121,

bool:126 = 122VI10, booll27 = I26VIZ23VIZ,
bool:¥1l = 126; boolY2 = ~I127, booli¥Y3 = I24VI25.

X1 >
L~ ,
xz 5 n
l Y2
X3 -
EENEN] . h—\
x5 .

—357—

D e t a i 1 s (q,/?}

Conclusion

¢ In Constraint Logic Programming, problems are described simply and
straight forwardly

® The system will find a method to solve problems given their deseriptions

* (Constraint Logic Programming increases programmer productivity

338 —

Title . . . -
Molecular Biological Database in IKappa
We are providing a new-concept DBMS, together with several tools, for
the effective use of molecular biological data. We are planning to integrate
Purpose molecular biological databases on our database management system. First
we stored GenBank and PIR; now we are researching the best way to use
them together.
Demonstration Outline:
(1) Nested relational schemas for molecular biological database
- of GenBank
- of PIR
(2) Finctions and performance of the user interface of Kappa
Outline - Display Data
& — Data Retrieval
Features | (3) Examples of tools, their simplicity and perlormances
(Functions of the program interface of Kappa)
— Feature Expression
- Similarity Judgment
Metadata User Interface Program Interface
Manipulator for Nested Relations to ESP
) Display Feature
Expression
5 PIR r——
ysten Data Simularity
Configu- Retrieval - Judgment
ration ’ l [| l I
KNappa
Nested Relations

D e t a i 1 s (14

1 Preliminary

1.1 Kappa

Kappa (Knowledge APPlication-oriented Advanced database management system)
is one of the ICOT KBMS projects, and aims to provide DBMS for Knowledge
Information Processing Systems (KIPS). Kappa is the DBMS on PSL-II/SIMPOS,
while Kappa-P, which we are now developing, is the parallel version of Kappa, on

PIM/PIMOS.
Kappa is 2 DBMS with the following features:

(1) Nested relational model is employed.
(2) Large amounts of data are effectively accessed.

(3) An user interface tuned for nested relational model is provided.
(4) ESP program interface and extended relational algebra ave provided.

(5) Program interface can be customized for each'application.

1.2 Nested Relational Model

The definition of the nested relational model (which is employed by Kappa) is intu-
itively as follows:

NRCE; x...xE,
Eiuz=D] oNR
Compared to the relational model:
RCDyx...xDy
where D; is a domain, R is a relation and NR is a nested relation.

Relational:

Group

Tour Schedule |I Name I Member |
(Date [To | Group [Setting.G [Sugino

90.6.4 | ANL | Setting.G || Lecture G | Ichiyoshi

90.6.25 | ANL | Lecture.G || Lecture.G | londo
Lecture.G | Susaki

MNested Relational:

Tour Schedule

Date To ﬁmup
ame Member

90.6.4 | ANL [Setting_G [Sugino
90.6.25 | ANL | Lecture_G | Ichiyoshi
I{ondo
Susaki

=360—

i | 5 {Q/E)

1.3 Molecular Biology

DNA sequence: It can be considered as a string, whose length can be more than
several hundred thousand. It consists of 4 characters, namely A,T,G,C.

amino acid sequence: Protein may also be considered as a string. It consists of
20 characters, which represent amino acids.

protein coding region: It is part of a DNA sequence. It is translated into
amino acid sequences by a certain rule.

exon and intron: Protein coding regions of some organisms include sequetices
which are not translated into amino acid sequences. We call them introns,
while exons are the translated parts.

genome: The ‘full set’ of DNA sequences of an organism. Notice that each
buman possesses two genomes in his chromosomes. -

resiriction enzyme: We use it to cut a DNA sequence to a modest length, to
read DNA. The position it cuts is called restriction site.

1.4 Molecular Biological Databases

1.4.1 GenBank

There are two major databases of DNA sequences: ‘GenBank!'and EMBL?. They
and DDBJ® have agreements on dividing tasks of data collection and exchanging
data collected. The distribution forms of the data are flat files, in MT, FD, CD-
ROM, or through networks. Some portion of distribution will remain in the flat
file for the time being, while it will soon be something hierarchical, and exchanged
between DBMS. GenBank began to manage. their data on 2 relational database jut

1939.

142 PIR

PIR? is the representative database of protein sequence. It contains a DNA sequence
database in a similar format. It also uses flat file distribution. It is distributed with

access methods on VAX/VMS, called NAQ and PSQ.

1.4.3 Other Databases
Protein Structure PDB® is the database of atomic coordinates of amino acids,
namely 3-dimensional structures of proteins.

Maps of DNA We have maps of restriction sites, which are used as physical maps,
and of relational distances between genes, which are used as genetic maps.

!Genetic Sequence Data Bank, IntelliGenetics Inc, and Los Alamos National Laboratory, US
*Nucleatide Sequence Data Library, European Molecular Biclogy Laboratory, EC

ADMNA Dala Base of Jajan
*Protein Lifornution Rasource, National Biomedical Researeh Faundation, US

4Protan Data Bank

—J6]-

D e t a i 1 s (‘3.«-”53

2 Specifications

2.1 Schema of GenBank in Kappa
The schema based on the nested relational model for GenBank is shown in Fig.
in detail.
gene : main table which has locus name, definition, accession, keywords,
identifiers to the other tables, and so on.
reference : table which has authors, titles, journals in which the paper

was published, and so on.

feature : consists of a region of the sequence and its feature.

seqdata : sequence data represented in string form.

2.2 Schema of PIR in' Kappa
pir.gen : “main table which includes names, placements, sources and se-

quence data.
table which has authors, titles, journals and so on.

. pir.ref :
consists of a region of the sequence and its feature.

pirfea :
Schema for PIR is shown in Fig. 2.

2.3 Stored Data
GenBank | Release 60.0 (89.6.15) "
26323 entries, 32 M bases

PIR Release 21.0 (89.6.30)
6158 entries, 1.7 M residues

—~ 32—

D e t a i | 5 (#fg}

3 Demonstration
3.1 Display Tables : Kappa User Interface
3.2 Retrieve Data

Example: make a gene table which consists of entries (records) whose reference Dr.
Woese wrote,

'?Trcf_jd(ﬂ' authors='Woesa*' (refereu Ee)) M gene

8.3 Feature Expression
3.4 Similarity Judgment

Flowchart is shown in Fig. 2.

Translation We.select a DNA sequence in the feature table to translate into an
amino acid sequence. The sequence is translated according to the table shown
in Fig. 4.

DP matching - We compare the ‘translated’ sequence with another {seiccted and
translated) sequence. The sequences are compared according to the table se-
lected by the user shown in Fig. 5, for example.

—d63—

D e t a i I s (24)
— locus (line) name (+) Ej_:d' (+)
length features (*)
strand key_names (+)
molecule_type region (*)
shape from_mark
divizsion from
date year to_mark
— definition month to _
— accession (*) (4) day cstrand flag
— key_words (*) (+) description (+)
—— segment segment Mo,
L total_No. ' — refoid (+)
abbrevialion — rel.comment

—— source T
organism —E orgformal — base_range ‘-E relfrom

— refblock "}—E ref_No. orglevel {+) ref to

L— feafureid (+) & refid (+) — authors (*) (+)

— comment L title (+)
— journal (+)

— bass_count a
- — standard —E std_degree
£ std level
t
n
— gequence T origin segdala.id (+)
hlu:k_("}—[queue |: data (*)
data.id (+)
Fig. 1 Schema of GenBank in Kappa
—— id.code id.code
— Lype_seq Erea.l'.ure {*)
— title ————ec_number position (*)
—— altername (*) idfune
— date name.lunc
— placement — superfam ext
fam
— source (*) id.code
— accession (*) id.rel
— lost (*} — sub_comment

— comumnent [*) —— authors (*)

— genetic — name — journal j-name
position ele. E j-year

— keywords () j-page
L sequence — title
L— comuent {*)

Fig. 2 Schema of PIR in Kappa (ezcerpt)

— 364

(GenBank DNA)
a.tggttgaclgggcmtggacgtacactq

|

r/’ Translation Phase

(Another Amino Acid)

atg = start(in)
: mvwpldhg

gar.+=:-d _ l
Ela = v J

(DP matching Phase

Lng,!.a.a,lg;a = end.)

mv-wpld-hq
! TRITTY

mvdwamdv-q

, mvedwamdvg —_—
(Amino Acid) .)

Fig. 3 Stmilarity Judgment between DNA's

Fig. 5 Mutation Table (Feng)
Fiz. 4 Tmnslation Table

Mutability € 5 ¢t p a g n d e
lst 2nd 3rd c: cysleine &
(Send) | TIC | A]G || (Fend) £ serine 4 &
T [{s|¥jec|T t: threonine= 2 5 6
C p: proline 2 4 4 6
i 1" A a: alanine 2 5 5 5 &6
*lw || G £: glyeine 3 8 2 3 5 &
o L jp|bk|e)T n: asparigine 2 5 4 2 3 3 6
[C d:osparticacid |1 3 2 2 4 4 5 ¢
q | A ciglutamicecid (0 3 3 3 4 4 3 5 6
G q: glutamine 1 3 3 3 3 2 3 4 4
A i L [nfs (|T h: histidine 2 3 2 3 21 4 3 2
L C r: arginine 2 3 3 3 2 3 2 2 2
R A k:dysine 0 2 4 2 3-2 4 21 A
m G m: methionine 21 3 2 2 1 1 01
G viajd|z]T i: isoleucine 2 2 3 2 2 2 21 1
C I: leucine 2 2 2 313 2 21 11
€ A ¥: varine 2 2 3 3 5 4 2 3 4
G I phenylalanine } 3 3 1 2 2 1 1 10
{* terminale codou) ¥: tyrosine 3 03 2 2 2 2 3 21
w:tryptophan |13 2 I 2 2 3 0 0 1

—365—

A Functional Programming Environment Supporting Execution,
Partial Execution and Transformation

John Darlington, Peter Harrison, Hessam Khoeshnevisan, Lee McLoughlin, Nigel Perry,
Helen Pull, Mike Reeve, Keith Sephton, Lyndon While & Sue Wright

Department of Computing,
Imperial College,
London

Abstract

The Functional Programming Section in the Department of Computing at Imperial College has been
conducting tesearch aimed at making practical the theoretical benefits inherent in pure functional
programming, i.e. more expressive programming languages, software development based on formal
program derivation and parallel execution. This work has led to, amongst other things, Janguage design
and implementation, the development of some of the carliest program transformation systems and the
construction of ALICE a el graph redoction machine.. °)

Recently some of this work has been carried forward within the Flagship project. Flagship is 2

collaborative project, funded under the United Kingdom's Alvey Programme and running from 1986 unul
early 1989, The partners involved are ICL (International Computers Limited), Imperial College and
Manchester University. Flagship's overall goal is to develop an integrated application development and

execution technology based on declarative programming languages (both functional and logic).

Imperial College's contribution involves Janguage design and i:uujzle.mmatiun and the constmucdon
of a program development technology and associated tools based on the idea of correcmess-preserving
program transformations. This has led to the development of a range of transformation technologies for
functonal programming languages and the implementation of a pro ing environment that supports
these technologies. Details of the transformation technologies themselves have been published clsewhere
and so they are only summarised here. In this paper we will concentrate on the integration of these
technologics into the programming environment.

First we deseribe our functonal language, Hope*, and inroduce an extension to the language that
allows the use of logical variables. We then briefly describe each of the wransformation technologies that

have been developed. Mext we show how these are integrated into an environment that supporis
tansformational programming. We give some examples of transformational developments conducted in the
environment and show the preliminary results of experiments conducted in developing program forms

suitable for efficient execution on ALICE and the FIassh.i parallel machine. We conclude with a review of
the current state of our activities, a discussion of the implications of our work and an outline of our plans

for the funire.

Keywords: Functional programming eavironment, program transformation, partial evaluation, paralle] execution.

—366—

1 Introduction

The Funcdonal Programming Section in the Deparmment of Computing at Imperial College has been
conducting research aimed at making practical the theoretical bencfits inherent in pure functonal
programming, i.e, maore expressive programming languages, sofiware development based on formal
program derivation and parallel execution. This work has led to, amongst other things, language design
and implemenzation, the development of some of the earliest program transformation systems [BD77] and

the constructon of ALICE [CDFET][DaREL), a parallz]l graph reduction machine,
Recently some of this work has been carried forward within the Flagship project. Flagship i5 a

collaborative project, funded under the United Kingdom's Alvey Programme and running from 1986 until
early 1989, The parmers involved are ICL (Intemnational Computers Limited), Immpedal College and
Manchester University. Flagship's overall goal is to develop an integrated application development and
delivery mchnch@y based on the adoption of declarative programming languages (both functional and

logic). Towards this goal Flagship is developing:

a hardware emulator for 2 parallel graph reduction machine [WaW88][Tow87).

a series of compilers for a range of declarative and symbolic programming languages onto the
paralle]l machine via the intermediate graph rewrite language DACTL. [GE587).

a system architecture and sysiem software capable of suppeordng 2 range of relevant applications and
interacting with other existing systems [Bro87). :

extensions of functional langnages and efficient sequental implementarions,

a program development technelogy and associated tools based on the idea of correctness-preserving

program transformations.

The last two tasks are the prime responsibility of Imperial College and have led to, amongst other things,
the development of a range of transformation technologies for functional programming languages and the
construction of a programming environment that supports these technologies. In this paper we would like

1o introduce these technologies and the environment.
The starting point for our current work was the language Hope developed at Edinburgh University

[BMSE0). We have developed a compiler for Hope, the FP/M compiler, that on sequential machines gives
performance comparable with conventional imperative languages. Within Flagship ouf first step was to
extend Hope, in a conservative manner, to a language Hope* that was used as the implementation language

within Flagship. Hope* differs from Hope in having:

- real numbers and vectors lazy daw construciors

« recursive let and where best-fit pattern matching (FHW87)[Whigg)
* continuations [StW74](Per88] for all input/output including language interworking

From this basis we have developed the language and transformaton technologies and implemented them 1o
provide an integrated programming envirenment that directly supports transfermational programming. In

36T —

sections 2-4 below we introduce the language and transformation technologies. Secton 5 discusses the
aims of the environment and how these are realised. Secdon 6 briefly introduces the graphical interface
provided by the environment. Section 7 describes how the environment is constucted. Secton 8 gives an
example transformational development carried out in the environment aimed at developing 2 program form
suitable for cfﬁc{:ni_:xuuh’m on both the ALICE and Flagship parallel machines. Preliminary resolts of
experiments carmed out on ALICE arc presented. Finally section 9 reviews the current state of our activides
and discusses the implications of our work and plans for the futurs.

2 Hopet With Unification

Absolute Set Abstractdons were inooduced into Hope* to increase the expressive power of the language
[DFPRE). In any functional lanpuage, function definitons exhibit directionality, i.c. under normal
execution mechaniems they accept input values in the domain of the functon and return ourput values in the
range of the funcdon. We relax this, however, when a funcdon applicadon appears in an Absolute Set
Ahstracton (ASA), and have implemented an algorithm based on narrowing to execute this language
w.astruct (evaluaton of all other constructs is by redvction). Thus, we provide a2 mechanism for writing
executable high level specifications, and incorporate the full power of logic programming into Hopet,
An example of an ASA is the following function which retums the set of sublists of its arpument.

dec sublists : list & == set (listcx);

—-sublists | <= {vwilhu , v, w0V wal);

Here v, v and w are logical variables bound by the enclosing braces. Informally, the expression denotes the
ser of values obtained by evaluating the expression to the left of the with for each distinet uple {u, v, w)
which satisfies the constraint to the right of the |. A full, formal semantics is given in [Guo88][DaGEE].

The algorithm for evalvating ASAs is based on lazy narrowing and executes a complete, fair search.
We repeatedly select an equation from the body of the ASA, atiempt (o unify the equation and apply
substitutions if successful. If unification is not possible then namrowing is performed undl unification can :
proceed. Under lazy narrowing, this means that an expression is only narrowed undl it has a constructor at
the outermost level, allowing failure of unification to be established early. [Guo88)[DaG88) show thar this
n. .owing strategy is both cormect and optimal for the solution of these equations.

Narrowing inroduces all the potential inefficiencies of any non-deterministic programming
language. Rather than demand that the programmer understand the intricacies of the implementation, and
structure his program accordingly to cope with this (as is the case with Prolog), we provide a complete
implementation of ASAs and wherever possible use ransformation to convert ASAs into efficient
cquivalent deterministic programs which execute by reduction.

The fact that ASAs provide full support for logical variables means that symbolic execudon,
exccution with non-ground values, is subsumed. Execution can be extended to provide a full
transformation capability, equivalent to the classic unfold/fold system [BuD77], by the incorporation of a

— 368 —

few exma rules, e.g. the application of laws and folding. Transformaton thus becomes a superser of
execution and the same mechanism, lary narrowing, can be wsed for its support. This simplification alsg
brings with it extra power, for example the fact that nammowing (not patiem matching) is used for unfolding
and felding means that the correct instandadons of the unfolded (folded) sub-expressions are often
generated avtommatically.

We have also developed a mechanism that allows the execudon of Hopet programs to be
controlled. A set of execution control primitives together 1._;.-i1_h combining forms are provided as the Hope+
data type scripl, These are applied using the meta-programming facilifies outlined in section 5. As
transformation is now a superset of execution, the transformaten conwol primitives are similarly a superset
of the execntion control primitives. Thus a uniform program development methodolegy is supported
whefeby efficient execution strategies for a program can be explored by developing appropriate seripis and
applying them 1o specific executions of the program. Once an efficient execution strategy has been found a
transformation scripl can often be developed by a systematic medification of the exeention scripl,
Applying the transformation script to the source program verifies and implements the transformarion,
returning a ransformed program which will execute in the prescribed manner without further explicit

conmol.
A fuller description of the unification of execution and transformation enabled by ASAs and the use

of seripts can be found in [DPE7],

3 Algebraie Transformations
3.1 Asxiomatic Approach, FP Form

The unfoldffeld transformation methodology is very general in that most known opdmisations can be
expressed as a sequence of its primitive steps, but its scope for automation is limited since the step
sequences tend to be lengthy; this has lead to the semi-automadc procedure using scripts, However,
consideration of the object domain of a function need not be crucial to the analysis of the function itself,
which is the real objective of our optimisation, and may well obscure it. The algebraic approach to
transformation derives theorems which state generic identities between functions by establishing the
carresponding equalities between function applications to objects in the underlying semlantic domain, A
transformation then becomes just an instance of an applicatic;: of a theorem in a term-rewriting system.

This approach has three main advantages:

Reasoning at the ‘funcdon-level’, we have no need to be concerned with the auxiliary domain of
objects and the functional expressions acquire a simpler strueture - we use the EP style of [Bac78).
. Powerful transformations can be derived relatively casily because of the simpler syntax of the

functonal expressions,
The grain-site of the transformations is increased since the theorems equate whole funcdon

definitions rather than repeatedly making appropriate variable substitutions.

—369—

Based upon a sound semantic analysis, the theorems arc adopted as the syntactic axioms of a term-
rewritng system which applies them to function definitions with the appropriate form.

There are several mansformation schemes based on the FP algebraic approach. One scheme
addresses the transformation of a class of linear functions into imperative language loops, or equivalent tail
recursive forms [Ha.}-_CEE]. There are also schemnes that transform centain classes of non-linear functions into
linear form, one of these vsing memoisation with dynamic organisation of the memo-table storage, as
described in section 3.2. Using an extended algebra which includes axioms for many-valued functions, itis
possible to synthesise mechanically inverses for a significant class of recursive functions and we discuss
this in secdon 3.3,

These algebraic transformations have been developed with the support of the UK. Science and
Engineering Res¢arch Council and carried out in close collaboration with the Flagship project.

3.2 Memoisation

Memoisation is a route to the efficient implementation of non-linear functions. A memo-function, originally
inwoduced by Michie [Mic68), is like an ordinary function except that it remembers all the arguments it has
been applied to, together with the corresponding results computed from them. If 2 memo-functon is ever
re-applied 1o an argument it does not recompute the result, but just re-uses the result computed earlier. Thus

moisation can be used to replace a potentially expensive compuration by a simple table lookup. The

classic example is the Fibonacol functon;

dec fib : num -» num @
—~fon<=inweithenielselib (n1)+1fib{na);

Since each call to fib generates two recursive calls, the cost of computing fib{n) is exponential in n,
Hurwcrj-f:r. memoised fib will execute in linear time, since for each value n, fib{n} is computed only once.
The difficulty radidonally associated with memo-functions is the issue of controlling the size of the
memo-table. It is difficult to know when an entry for a particular argument can safely be deleted from the
table and thus the able may grow continuously, interfering with garbage collection and also increasing the
cost of the table lockup operation. We have developed a variant of memoisation where memo-tables
manage their own storage by deleting (or reusing) enwies when it is known that such entries will never be !
referenced again, The function definiton is statically analysed and a rable-manager function is generated.
Faor a funceion f of type o -> [}, the table-manager labl is of type o -» list &; given an element x in the
jain of I, the exprassion labf(x) specifies which entries can safely be deleted from the table when an
entry for x is added to the table. Furthermore, the size of the memo-table is guaranteed not to cxeeed &
compile-time constant. For our flb example above, the table-manager functon is Ax.[x-2] and the

transformed functon fib" is:

dec {it' : num & table { num & nom)} .= nem F lable { num & nem }

e fib' {n, 1ab0) w= il M=
then (1, 1abo)
else let found res == Joockup ([n, lab®) o [res | labl)
otherwisa 8l { r1 , labl) == fib' { n-1 , 130 } in
lgl (12, tab2) == fib’ { n-2 , 1ab1) in
lel res == r1 + r2 in
[res,inserl {n, res 1ab2 Ax[x2])};

This improvement in space usage is achieved by increasing the cost of the insert operadon by a small
amount, since inserl now has to execute the table-manager each time an enmry is added 1o the table.
However, table-managers are guaranteed 10 be non-recursive and furthermore, no extra appararus is needed
to exccute them since they can be expressed in the functional language itself,

The entire memoisation operation is auiomaic, The definidon of the memoisable class of functions,
the proofs of correctmess, the synthesis of table-manager functions, details of variable-free analysis and

further examples are given in [Kho87).
3.3 Function Inversion

Despite their advantages, functonal programming languages lack the ability to use reladons in several
modes, as in logic languages. This ability has been incorporated into Hopet by the means of Absolute Ser
Abstractions, but supporting unificatdon within a language is less cfficient than the reduction system vsed
for implementing pure functional languages. The implementation of relations would be facilitated by
Jfuncron inversion, a5 a funcon together with its inverse consdutes a reladon. Inverses can be synthesised
from ASAs by a series of unfold/fold steps. The analysis outlined here provides a way of auromarically

generating the inverses of many first-order funcdons,
The analysis requires some extensions to the normal FP language; in particular, we extend the

language to include logical variables and funcdon-level unification which are needed to express the inverses
of some of the FP constructs, Rules are defined to invert each of the FP consoucts along with a number of
standard Hope® functions and the user is required to specify the inverses for any functions which are not
buili-in to the system, The resulting expressions are simplified vsing a term-rewritng system along with 2
set of axioms designed to perform transformation-time function-level enification, thus removing logical
variables from the expression which are inroduced by the inversion process,

Full details of the modified FP language #long with the rules vsed for inversiof and the term-
rewriting system used can be found in [Kh389). A more theoretical basis for the inversion process and

axioms reladng to function-level unification can be found in [HaKE88].
An imporant use of functon inversion is in the optimisation of data type representadons, Given an

abstract daw type o, its concrete representation & and a function abs of type o' -» o that formalises the
representation reladonship, a funcdon T working on the concrete data type can be synthesised from the

definidon of an f which works on the abstract data type by
f=absofoabs

This relatonship is shown in Figure 3.1,

f
S

@
-1
absT abs
-
@ r

Figure 3.1: Commutative Square for Data Type Mappings

This idea, described in [BD77)[Hak89], enables the programmer to work with problem-specific absmact
types without worrying about efficiency as functions implemented on the (primed) concrete types can be

generated avtomatcally, An example of this use of inversion is given in section 8.4,

4 Temporal Synchronisation of Functional Programs

One of the intrinsic advantages of declarative languages is that they free the programmer from the need to
specify any explicit ordering on the evaluation of his program; a program is simply a mapping from input
values to output values. This in tum leads to such benefits as the formal manipulation of programs and
parallel evaluation. However, for some classes of applications the behavioural component of a program is
as important to its correctmess as the value returned by its execution. For such applications the programmer
needs some way of exerting control over the behaviour of his program, i.c. of (at least pardally) controlling
the order in which reductions occur during its execution, Typical cxamples of such applications are where
the pr;:g;mm has to communicate with the "real world”, e.g. to control plant machinery, or in transaction
processing systems where common resources have to be scheduled between multiple users.

Qur approach to the problem of specifying temporal behaviours for declarative programs is to use @
remporal logic meta-language, SIAN, to describe the required relative eccurrences of critical events ina
program’s execution. SIAN is a standard discrete-time temporal logic [MaP81] augmented with the ability
to define predicates in Hope* over the numbers of events occurring during a program’s execution. A
“itical event is defined 1o be the use of an identified rewrite rule in the program to reduce a redex in the
piogram graph, Contral is thus expressed at the level of 2 single function rewrite. The programmer
constructs a SIAN expression describing the requirements on the relative occurrences of the setof critical
events; an exccution behaviour for a program is comrect relative to a SIAN expression if the expression is
true at every point in the execudon, Le. at every rewTite,

This specification is implemented using program transformarnion techniques, combining the original
declarative program and the associated SIAN expression into a single (almost) declaratve program which
has the same meaning as the original program (i.c. it retums the same value, or more generally in the
presence of non-determinism, a non-empty subset of the original set of possible values} but whose

behaviour is guaraniced to observe the requirements stated in the ternparal logic part of the spesificarion,
The first stage of this ransformadon is o reduce the SIAN expression 10 its rormal form represeniadon,
using a complete and confluent set of mansformadon rules. The normal form for a SIAN expression
comyprises a list of implications, the consequence of each being a conjuncton of events indicating which
events must por occur in the current reduerion eyele. The impomance of the normal form (and what
distinguishes it from a general STAN expression) is thar it is defined in such a way that for each implicadon
the condition is testable from what has happened in the invmediare past and the consequence is enforceable
simply by preventing cenain events occurring in the pres ent, The latter can be achicved via the normal
rewrite-rule s2lection mechanism. Thus at each step of the execution an event which would cause any of the
implications to become false can be djsal]:J-Wtd:This mezans that a normal form expression can be
expressed as a finite-state machine (FSM), the state of which contains all the informadon necessary 1o
preserve the tuth of the associated SIAN expression and the transidons of which represent the occurrences
of the permitted critical events. The FSM can be represented as a data sucture and incorporated into the
original program being controlled. A rewrite rule for the FSM is derived for cach crideal event and the
equation for each evenr is ransformed to include a panern on the s1ate of the FSM and to vpdate the FSM
whenever it is used in 2 rewrite,

As a simple example of this technique, consider the following Hope* function which merges two
lists of objects non-deterministically, i.e. it does not specify which list should be given precedence when
both are non-empty (this is in fact a slight generalisation of the normal Hope* pattern-matching scheme),

dec merge list o # list @@ -> list & ;

— merge {(nil , x) ==x;

-~ merge { ¥, nil) <=x;
ML: — merge {x 2y ,2) smxumerge(y,z};
MA: - merge (v, x> 2) cwxumerge(y,z)

merge { listi | fist2) ;

The event names ML and MR are associated with the two critical equatons and can be used in a SIAN
expression 1o refer to uses of those equations, This function could be constrained in many different ways
according to the behaviour required by the partcular applicadon. Suppoese the requirement is that frems are
merged from the two lists alternately, This can be expressed in SLAN with the expression:

ML —=TMR MR =TML,

The first implication states that if an item is merged from the first list in the present cycle, i.c. foday, an
irem must be merged from the second list in the next cycle, i.e. tomorrow (denoted by the modal operator
T). The second implication states the converse. The normal form corresponding to this expression is

Y ML — not ML , Y MR — not MR ;

where the Y operator denotes the previous cycle, Le. yesrerday, and is the inverse of T. This expression is
represenicd as a finite-state maching and incorporated into the original funcdon, giving as the final result:

—373—

dala slale == ST { truval # truval } ;
dec marge : state # lisl o # lista - lisl a ;
- merga { _ , nil , x)

- merge { _ , 2, nil }

ML: - merge { ST (false , _},xy,z) <=x
MR: "";?FDEfST{_.faIsEJ.'.l".I-‘!I]""11~'“"E’§'E"-'E.T”alse'wﬂ"r';

merge (ST (false , false) , listi , liSt2) ;

<= X 0

== X
smerge { ST {frue , false) ¥y, 2]
}

Each elerment of 'the state ‘records’ the current value of the condition of one of the implications in the
normal form expression. The top-level call to merge will ailow either equation to be used inidally butitis
casy 1o see that after the first rewrize ML and MR will be used alternately undl one of them fails to march.
The final transformed program is non-functional in the sense that for the critical events to
communicate their occurrences to each other, the data stucture representing the state of the FSM is shared
between them and updated in-place using destructive assignment. However, the whole transformation
process from “program+3SIAN expression” to the final program is totally automatde, so the programmer

need not be concemned with the implementation details.
Full details of this approach and associated issues can be found in [DaWET][Whiss],

3 The User's View of the Environment; Meta-programming

The developments outlined above provide a potentially powerful battery of technigues to support functional
programming and ransformational developments. The task in designing the environment was to present
this capability to the user in the most vnified and simple way possible. The design criteria for the

environment included:

The environment should, as much as possible, follow the functional 'style’. That is simplicity
should be favoured over complexity and powerful constructs should be built by the uniform
zpplication of & small number of simpler constructs. More technically a swong typing discipline
should be enforced.

. "Normal” programming and transformational program development should be supported unifermly.
Transformatons should be checked avtomatically for correcimess. It should be impossible for 2 user
to construct and have implemented an incorreet transformation.

Transformational developments should be represented by a concrete, analysable and storeable object.
Transformations should be directed by and comprehensible to the user. We are not aiming for an
entrely "automatic” programming system but one where the user is in strategic control and the
system provides high level support for checking and implementing his plans.

Completeness should be preferred to cleverness. We should aim, initally, for a system capable of
supporting a wide range of interesting transformational developments, even at the cost of some effort
from the user, rather than a system that is able to automadeally accomplish a more limited range of

ransformadons.

374 -

The environment should be extensible. An ordinary vser should be able 10 define more powerful
transformarion capabilinies and other environment enhancements with safery guarantesd atall imes.

The technique we used to meet these design goals was to incorporaie the ransformanon capability into the
Hope* with Unification (HwU) interpreter via mera-programming. In this way, normal (HwU)
programming and transformational programming are the same, they invelve defining and applying
functions in the normal manner, it is just that the functions operate on objects of different types.

Thus the type program is available as a system-provided data type; an object of type program is 2
user program module, that is a set of functions and type definitions together with import and expont
declarations. Access to objects of type program is controlled to ensure safety. A set of mera-funciions are
provided that take an object of type program and retumn an object of type program, These correspond 10 the

basic transformation operations.
The basic meta-functions currently provided are apply_script, trace_search, build_tree, memoise,

invert and synchronise. Their rypes are cverloaded to permit flexible use.

denote a function identifier of type cc->

denaote an expression of type num
denote an expression whose type is relative 1o the type of the comresponding 1 in the

following expressions

Iet f
E denote the name of a new functon (a list of characters)
m denote the name of an existing module
P denote an object of type program
5 denote a script
t denote a SIAN temporal logic expression
11
[

Then the following arc all the valid forms of expressions of type program.

- madules can be named

apply_script (s,p)) »
the seript 5 is applied 1o (some function definitions from) the program p

trace_search (s,p)
the seript s is applied to the program p and the wansformadon i3 mraced

build_rree (=, p)
the script s is applied to the program p and a data structure representation of the ransformartion

is rerumed

memoise ({,p)
the function f is memoised. If the system cannot detect that the function is memoisable the

program is returned unaltered

memoise (f using managerc, p)
- s above but with the table manager provided explicitly

memoise { { using referencen , p)
as abowve but with the table reference count provided explicitly

—3a75—

invert (f giving g, p)
anew funcdon g is created which is the inverse of §

invert { f given [f) inverts toey, .., [yinvens_toe,] giving g, p)
as above but using the informadon that inverses exist for functions used in the definidon of |

synchronise [t, p;:l
the synchronisation constrainis specified by t are incorporated into the appropriate function

definitons in the program p

All of the above funcrions alse simplify the module retumed. Any existing equations that are completely
subsumed by new cquations produced by the transformations are discarded. All of the above meta-
funcdons act as first class HwlJ functions so they can be composed in any type-correct manner and used in
the bodies of other functdon definitions. Thus a ransformation plan can be constructed simply as a HwlJ
function definition. Applying the funcdon to the appropriate program object implements the rransformadon,
producing the ransformed program object. Safety is guaranteed by the fact that the basic meta-functions are
the only ones able to construct objects of type program and they are correct by construction and comecmess
{1.e. meaning preservation) is preserved by function composition. Transformation is thus uniform with
execution, it is just the types that are different. Our environment thus uses an amalgam of ideas from LISP
and Prolog environments [Gre84){CFL88] and the ML/LCF Theorem Proving System [GMW77].
The function definitions produced by the application of a meta-function are similarly first class
citizens and can be used as normal for execution. Before this can happen the newly produced modules must
be added to the environment's set of visible modules. To this end the user is provided with an environment

updatng infix operator = of the following form

mi=p
In this case m must be a new name, not the name of any module currently visible. The way we like to think

of = is as if it had the declaraton
dec := : module_name # program # enviranment -> environment ;

where environmenl is a mapping from names to objects including environments and programs. If we
enforced this and also ensured that all other 'system’ functions, e.g. editors or program executors, had [n
be passed the environment explicitly we could claim that our whole environment was functional, However
we concede that this would be tedious and accept for the moment a single updateable environment and use

he normal 'medule’ and "uses’ commands of Hope* to load definitions.
We have funther enhanced the extensibility of the environment for the user programmer by

providing him with access functions to the Hope* data structure representing the absmact structure of
functon definitions. These allow the forms of function definitions to be analysed and more general
transformation functions to be defined, comespending to MLVLCF tactdcals. These functons have ype

program -» { program -= program)

Itis by the definidon of such functions that we envisage the general Yintelligence’ of the environment being
increased. Generally such functions will employ a searching strategy, guided by heuristics and

~376--

ransformational knowledge, 10 attempt o produce a specific wansformation applicable to the given
program, from 2 peneric class of oansformadons. Note thar safecy is sdll guarantced by the fact thar such

functions only seck 10 affect the given program by using existing meta-functions and return a compositon

of these meta- functons,
With the apparatus outlined above we fecl we have met most of our design criteria. The user can

define and implement 2 ransformation simply by writing a functional program which is, of course, a
storezble and re-useable object. Transformations of significant complexity can and have besn defined vsing
this apparatus. Some examples are given in section & and an initial set of tacticals have been wrinen.

é The Graphical Interface to the Environment

The graphics interface gives a visual n:pr:.s:utatinn to the objects in the wnderlying module system of
Hope*. It was implemmented in Hope* using the Hope* interface to the X Windows System [DGNBE). The
Hray toolkdt [HP86) was used to provided the higher-level graphics faciliges.

On starting the environment the user is presented with two windows. The first is a terminal
emulator (titled “xterm’ slave). The second Is a window represendng the "open” modules and is tidled
‘environment’. Figure 6.1 shows a view of a typical session, specifically associated with the
transformational development example described in section 8.

The terminal window provides the keyboard/screen-based interacdon with the environment. All of
the prompts and mn:‘ssagcs from the environment are displayed in this window. Replies 1o the prompts,

new scripts and Hope* functions are all typed in here,
In the module window titled 'environment’ each "open” module is represented by an icon. To lock

at the contents of one of these modules the mouse is clicked on its icon, Clicking the mouse on a module's

icon causes a new module window 1o appear, titled with the name of the module, that contains an icon for

cach funcdon or rype defined in the meodule. All module windows, except the ‘environment’ window, can
be removed from the screen by clicking on the “close box"™ beside its title.

The definition of a function or type can be viewed by clicking the mouse on its icon, This will cause

" 2 browser window 1o appear containing the code for the function (or type). The browser program can be

chosen by the user before entering the environment.
There is no limit to the number of icons that may be in 2 module window so there are scrollbars w

move the window over the icons, Similarly there are no limits to the number of modules or browsers that
may be open at any one time. These windows are ordinary windows under the X Windows System and
can be moved around by the window manager of the user's choice,

—a377—

sirrm alawr

T P P p———p— e pe———— . e TR
wesalmn L, Fobrusew 1797

wm—nk
i sewlipscrlel | peest_tr_seriet . - -
spnly serien | smest_scried o “gemet™ 1R

1 Nim &
- 1
e e AR

3 Pty e

[TETILLl

re——a
P T R e
Seonhr e S |

=

"
— ettt I T
& et L T 1 B

[(EELLELD)

T el b Rl o Lers, lv—l‘lll-l'lu'lﬂ'l-l"i
e e puade § el . plR 170
M £

Figure 6.1: A User's View of the Environment

7 Systemn Architecture

The transformation environment described in this paper was written in the language Hopet and compiled to
run on a2 SUN3 machine using a compiler which was also developed at Imperial College [Pe587]. The
undeslying system on top of which the transformation sysicm is built was originally developed as a
compiler for the language Hope™. The system consists of a number of individual building blocks such asa
parser, type-checker, interpreter, ransformation tactics, eic. which are linked together by a piece of "glue*
which handles the interaction berween the various parts. The separate modules communicate informaton
about the program via a symbol table. Due to the modular nature of the existing compiler and the various
other 1ools, it was possible to integrate the system with relative ease. Figure 7.1 shows an overview of the

software architecture of the system.

7.1 Continuations

Continvations provide & way of performing I/O and other system related operations within a functicnal
language without having to resort to functions which have side-effects [StW74][PerE]. The system

provides a data type confinuation which is used to give “instructions” 1o the underlying operating system.

=

oy
e

Figure 7.1: Software Architecture of the System

Each continuation includes a function which is to be called once the operating system task has been

performed. For example, 10 read a line of text from the keyboard:

—379—

Gelling { lambda (input , status } == Processinpul inpul)

Within the environment, continuations are used for inputfoutput to the terminal and individual files; westng
whether files exist and arc readable; detecting whether errors have occurred whilst performing 1/O
operatons (this is particularly important in the case of saving programs, as failure 1o wriic a file might
otherwise result illx the user losing his program); handling signals so that the user may type Conuol-C o
interrupt the interpreter; and interlanguage working 1o link up with the graphics package. All of these
operations can bc'pcrfanncd without having to worry about the system deadlocking (as can be the case
with strearns), or operations being performed in the wrong order (2s can be the case with side-effect TO),
A full description of the continuations supported by Hopet can be found in [Per87].

8 A Simple Example of Parallelism Exploitation on a Flagship-style Machine

8.1 Example 1: Transformation and Optimisation

Many applications naturally involve the fist data soucture, However, the list is not a good data strochure
ar paralle] evaluation; its elements are most naturally accessed sequentially from the head. An alternative

data structure is parlist, a tree whose dps contain lisls:

data pariisl @ == fip { lisl @ } ++ node [parlist o # parlist @ } ;
The relatonship between parlisis and lists can be formalised by defining a function abs:

dec abs : parlist @ - Jist & ;

— aghs {lipl) <= | ;
- gbhs {node (11,12)) <=agbs{l < abs 2

where <> is the built-in Hope* function which appends two liss together,
A sequential list can then be represented as a parist by breaking it up and distributing it across the

tips of the parlist. If the number of tips can be made equal to the number of processors available, the “Tn
of the parfist data squcture will allow parallel processes o be executed on individual processors, requiring
aceess only to the segment of the list stored locally. Such a style of execution ideally suirs a machine of the

lagship style which is a muld-processor, shared memory machine with closely coupled local store
segments [WaWE6][Tows7].

However, it would be awkward for programmers (o have to directly code applicadons using the
parlist structure, arising as it doss purely from the machine’s physical characteristcs rather than any
applicadon consideradons. Instead, we can use transformation wechniques to allow the programuper to use
the appropriate, applicaton-priented, dara souctures and then systemadcally convert such programs (o

versions that operate on the efficient, machine-oriented, strucrures,
For example, consider the function count, that counts the number of elements in a list:

dec count @ list @ -= Awm ;

-—- count nil <= 0
— pounl { x 1) <=1+ countl;

The definiion of an analogous functien on parlisis, countpar say, is induced by the parlist representaton
of lists, abs, described earlier:

dec countpar : parlist & -> num;
—- counfpar pl <= count { abs pl } :

Executing this definition directly would of course produce no benefit as it would convert the parlist to a
sequential list before carrying out any operations on it. However we can use simple transformations 1o

produce a direct definition of countpar operating solely on parlisis:

countpar { fip 1) = count { abs {tipl)) instantialion
= count | unfold abs
countpar (nade (11 ,12)) = counl (abs { node (11,12) }) ingtantiation
= counl (abs 11 <= abs 12} unfold abs
= couni (abs 11) + count [abs 2}
vsing lemma:
count (1T < 12) = counl 11 + counl 12
= counlpar 11 + countpar 12 fold counipar
Thus our definiton of counipar becomes:
—- countpar { tip 1) <= count | ;

— countpar (node { 11 , 12 } } << coundpar 11 + counipar 12 ;

We can improve things even further by converting the call to count in the base case of countpar into a call
to a tail recursive version of count. On ALICE. these tail recursive calls can be compiled to imperative loops
that run sequentially on one processor in fixed space.

Thus we have converted our program into a coarse-grained collecdon of sequential processes
ideally suited to the target machine, The program can potentially make optimal use of the machine's
resources, by executing each recursive invocation of counl on a single processor aj'nd minimising
communication, ¢.g. by execuring the + on the same processor as one of the recursive calls to count, To
cnsure that this potential is realised, we can use meaning-preserving annotations to indicate the optimal
positoning for the processes. The route wsed to produce the transformed version of count is ilustrated in
Figure 6.1.

The benefits gained by incorporating the above transformations and optimisations into the count
programn have been evalvated experimentally using ALICE [CDFE7)[DaR&1). Three cases were studied; the
sequential count program, couniseq, the ransformed parallel count program, eounipar] and the optimised

transformed parallel counting program, while_counlpar,

—381—

8.2 The ALICE Machine

The ALICE machine logically consists of three types of units. These arc processors {or packet rewrite
agents), stores (or packet pool segments) and a switching netwerk. ALICE was specifically designed to be
a flexible l:xperir:r}__cnm! vehicle which can be configured in differcat ways for different exccution modes, [t
can be parameterised at program invocation time to operate in one of several load-sharing modes. The ones
used for the count example were uncoupled-random for the countseq program and close-coupled for the
countpar and while_countpar programs. The uncoupled-random load-sharing mode involves running the
program across all the agents and stores, with the agents locking for werk and storing any new packets
generated randomly across the stores. In close-coupled load-sharing mode each agent has a store logically
associated with it, its local store, the number of agents and stores being equal. The agents then look for
work and store any new packets in their local store only, unless explicidy directed to do otherwise by
annotations appearing in the optimised mansformed program.

The Flagship machine is itself designed around the noden of close-coupled processor-store pairs
upon which programs annotated with the required load-sharing strategy can be run. Thus analysing the
three versions of the count example on ALICE provides a way of predictng the potential benefits of the
transformation and optimisation route adopted for the count program on the Flagship mechine.

8.3 Experimental Deiails and Results

The cwrent Imperial College ALICE machine has 16 agent boards and 26 store boards, thus in close-
coupled mode the maximum number of agent-store pairs which the machine can be configured with is 156.
Thus the countseq program was analysed with all agents and stores running whilst the countpar and
while_countpar programs had 16 agents and 16 stores operating. The length of the list used as the
argument to the count programs was 400, Therefore, the length of the list at each tp of the parlist for the
countpar and while_countpar programs was 25,

The execution Grmes for the three count programs when applied to a list with 400 elements are given
in Table 8.1. These show an increase in efficiency of approximately 9 fold in moving from the countseq
program to the countpar program and an increase of 13 fold from the counlpar to the while_countpar
programs, This produces a marked overall increase in efficiency of approximately 110 fold comparing the

countseq program o the while_counipar program.

Execution Time(ATUs*)

Program

countseq 1789
Countpar 214
while_countpar 16

* ATU = ALICE Time Unit = 20ms
Table 8.1: Execution Times for the Three Versions of the count Program

- 382

Also of interest is the percentage of local agent-to-siore zccesses with time for the countseq and counipar
programs (the countpar and while_countpar being approximately the same). These statistics have been
obtained and also show a significant improvement due 1o the mansfommadon. The percentage of local
arpesses for the countseq program 1ends 1o lie in the 5-10% range whereas that for the countpar program
tends 1o lie in the B0-90% range; lower figures are only found where work is being exported 1o build and
collapse the parlist respectively. This marked increase in local accesses can be of great significance to
machines configured in close-coupled mode, such as the Flagship machine, where the cost of accessing

locel wemory is Hkely 1o be much less than that of aceessing remote siore.
These results clearly show the potendal benefits of using program transformation techniques to

optimise fanctional programs which are to be run on a Flagzhip-style paralle]l machine, These benefits are
shown in terms of an increase in both efficiency and the number of local siore accesses for the trensformed

and optimised versions of the coun! program cormopared 1o the original sequendal version,
8.4 Example 2: Inversion of Data Types

Suppose we were 1o consider another function on lisls, map:

dec map : (o -> b) #list e -» fist B ;

—~-map {{,nil } <=ni;
—-map {f,xul) e=fxmap(f,1);

Rendering this funcdon into parlists involves the inverse of the representation function abs, rep:
dec mappar : [@ -= B) # padisl oo -> parlist B
- mappar ({, pl) <= rep (map ({, abs pl)) ;

As previously, we could use unfold/fold transformarions to generate a new version of mappar solely in
terms of parlists. This example, however, can be transformed auromarically using the inversion techniques
of section 3.3 to generate the definifion of rep. The first step is o invert the functon <= in the definition of

ahs, penerating the functon sphit:
dec split @ st o -> g8t (st & listl e) ;

- gplit nil <= {{mil,nl)};:
== 5phl { x 1) = {({mil ,xzl}}U{(xzu, v)]|(u,v)insplitt);

The same technique is then vsed to generate rep itself;

deg rap : fisl ¢ -> sel { parlist ¢) ;
~—repl<a{tipl}U{node (pu,pv)ipuinrepu,pvinrepv . {u,v)insplitl};

Note that repis in fact set-valued; this comesponds to the fact that there are several concrete representations
of any particular valuc in the abstract domain. It is in part the appropriate choice rna.a'r. between possible
representations which gives the concrete representation a performance advantage over its absoact

JB3I—

counterpart. We represent this in the definiton of mappar by adding 2 functon any, which selects a single

clement from a set:

--- mappar {{, pl) <= any (rep {map (f,abspl})):

g Conclusions

We have pn:.s::ntcd the technologies und:r]}-'mg the transformadonal development of programs being
pursusd by -c:ur group. These include a functional language that edmits ogical variables, fold/unfold
transformations, algebraic transformations and a temporal logic system for controlling a program's
behaviour, We showed how these are combined to provide a uniform environment that supports program
execution, partial evaluation and transformation by the concept of meta-programming. Meta-funcdons
Operalc On programs 1o produce new programs and control the evaluvadon swategy of the Hopet with
Unification interpreter itself, Finally we demonstrated how such an environment can be used to derive an
efficient program for & paralle! machine from an application orented but sequentdal specification,

The above system has been implernented {in Hope*) and is in day- to-day wse by our group. It has
also been shipped to our Flagship parmers for evaluation by their application writers, In addidon, a number
of joint projects with large commercial users who wish to quandfy the leverags the technology will give 1o
the development of "real world” applications are being established.

The group is continuing to do research at all levels: language design’ (syntax and semantics) and
implementadon; wansformaton technology; meta-programming; and parallel computer architecmure. Much
emphasis is being placed on gaining experience in using the transformadonal development process on large
applif‘:alians. Aside from highlighting any defciencies in the technology, it is hoped that this will reveal a
library of high-level strategies (heuristics) that will be widely applicable and can be captured by the

composition of me-funchons,

References

Backus, J. W., Can Programming Be Liberated from the von Newnann Seyle? A Functional Sryle and fis

—TH]
Algebra of Programs, CACM, 21(8), August 1978, pp. 613-64 1,

[ac81) Backus, 1. W., The Algebra of Functional Programs, Function Level Reasaning, Linear Equations and Extended
Definidons, Springer-Yerlag, Volume 107, 1981, pp. 1-43,

[BM3E0) Bursall B M., MacQuesn, D, B, and Sannella, D. T., HOPE: An Experimental Applicative Language, Intemal
Report CSR-62-B0, University of Edinburgh, UK., 1980,

[BrogT) Broughion, P., Thomson, ©. M., Leunig, S. R. and Prier, 5., Designing Sysiem Software for Parallel
Declarative Systems, ICL Technical Journal 53), May 1987, pp. 541-554.

[BuD?T) Burseall, R. M, and Darlingion,], A Trangormarion Sysiem for Developing Recursive Programs, 1. ACM,
24(1), January 1977, pp. 44-67.

[CDFET) Cripps, M. B, Darlington, 1., Field, A. 1., Hamizon, P, G, and Resve, M. I, The Design and [mplementation

of ALICE: A Parallel Groph Reducrion Mochine, Selected Reprints on Dataflow and Reduction Architecures, ed.
5. 3, Thakkar, [EEE Computer Seciety Press, 1987,

—3B4—

[CFLES]

[Coh83)
[CrGEE)
[D=RB1]

[C2WaT]
[DFF86)
[DP8TY

[DGNEBS]
[FHWET]
[GESET]
[Gre&d]
[GuoB8]

[HaKEE]

[HFES)
[GMWTT]

KeS81)

[Kh585)
[MaPil]

[Mics8]
[PerET)

[Frfid]
(Pe5E7)

(StW74]

[TowET)
[WaWas)

[Whigs]

Cosecla, P., Franceschi, P., Levi, G.. Sarde, G. and Torre, L., Mera-Level Definition and Compilation of
Inference Engines in the Epsilon Logic Frogramming Environment, Proceedings of the Fifth International
Conferznce and Sympasium on Logic Programming, Velume |, Kowalski, B A, and Bowen, K. A, (eds), The

MIT Press, London, 1988,
Cohen, M. H., Elimingting Redundonr Recursive Colls, ACM Transactons on Programming Languages and

Systems, 5(3), July 1983, pp. 263-259.

Daslington, J. and Gue, Y. E., Narrowing and Usificotion in Funetional Progremming, Inlemal Repor,
Functional Programming Section, Deparmment of Computing, Imperial College, London, Ocober, 1988,
Deslington, J. and Reeve, M, I, ALICE: A Mulriprocessor Reduciion Mockine for the Parallel Evolusrion af
Applicative Lenguages, ACMMIT Conlerence on Funclivnal Programming Languages and Compuler
Archiechrs, 1981,

Daxlington, I, and While, R. L., Controlliag the Behaviour of Functional Language Sysiems, Proceedings of the
Intermational Conference on Functional Programming and Computer Architecore, Portlend,, Cregon, 1957,
Darlington, 1., Field A. 1., and Full, HM., The Unificarion of Functional and Logic Languages, Logie
Programming: Functions, Reladons and Equadons, Degroot, D, and Lindsoom, G. (eds), Prendee-Hall, 1985,
Darlington, J. and Pull, HM., A Program Development Methadology Based on a Unified Approach 1o
Execusion, Parial Evaluation and Mized Computation, Proceedings of the IFIF YWorkshop on Fartial Eveluation
and Mixed Computation, October 1987, eds. Bjormer, D, Ershev, A P, and Jones, M. D, North Holland,

Della Fera, T., Gettys, J. and Newman, R., Xlib - C Language X faterfoce Protecol Version 10, Digial

Equipment Cnrp-a:»mnur MIT/Projest Athena, January 1986,
Field, A, J., Hunt L.5. and While, B. L., Bex-fTt Pottern-matching, Intemal R:.p-an Funcdonal Frogramming

Sestion, Dc.]:lamenl: of Computing, !mp-:na] College, London, December 1987,

Glauert, J. B W, Kennaway, J. R., Slesp, M, R., Holt, M. P., Reeve, M. I, and YWatson, L, Speciffeation af
Core DACTL], Internal Report SYS-CBT.09, University of East Anglia, UK., 1587,

Gresablat, R, D, The LISF Maockine, in Interactive Programming Environmenis, Barstow, D, K., Shrobe, H

E. and Sandewall, E. (eds), M;Gmw—Hi]J 1984,
Guo, Y. E., An Execwtion Mechonism for a Functional Language with Urr-l;,l":dnd'n. BCS FACS Wn‘r.’qhnp on

'Ic:m Fewriting, Bristol, September, 1986,

Harrisen, F. G, and FKhoshnewizan, H., Efficiens Compilation of Linear Recursive Funciions fnte Qbfect-feve!
Loopsr, Procesdings 1986 SIGPLAN Sympasivm on Compiler Construction, Palo A, June 1986, °

Hamrison, P, G. and Khoshnevisan, H., On the Syathesic of Function Inverses, Internal Report, Functional
Programming Section, Deparmment of Compuoting, Imperial College, London, April 1588,

Harrison, P. G. and Khoshnevizan, ., The Mechanical Trangermation of Deta Types, Comp. J., 1989, 10

Hewlet-Packard, Programming with the X-window Sysiem, Internal report, Movember 1986,

Gordon, M., Milner, . and Wadswonth, C,, Edinburgh LCF, Report CSR-11-77, Computer Science
Department, Edinbuwgh University, 1977,

Keller, B. M, and Sieep, M. R., Applicative Cacking: Programmer Control of Obfect Sharing and Liferime in
Distributed fmplementations af Applicative Langunges, ACM Conference on functional lanpuages and eompuler

archilecture, Portsmouth, 1981, pp. 131-140.
Khoshnevizsan, H., Awomarle Trangformarion Sysiemy Baged on Fungilonal-Level Reasoning, PhD thesis,

Funcuonal Programming Section, Deparmment of Compudng, Imperial College, London, 1987,

Khoshnevizan, H. and Sephton, K. M., fnvX: An Awremaiic Function faverrer, Conference on Rewriting
Techniques and Applications, Chapel Hill, Morth Camlina, Apnl 1989,

Manna, Z. and Prueli, A., Verifieation of Concurrent Program! the Temparal Framework, Computer Science

Deparvment, Stanford Universine, U.S.A, 1981,

Michie, D. “Memo™ Functiont and Machine Learning, Namre, No. 218, 1968, pp. 19-22.

Pemry, M., Hope+C A Continuation Extension for Hope+, IC/FPRAAANG/LS.1/21, Intemal Report, Functional
Programming Section, Department of Computing, Imperial College, London, 1987,

Perry, M., Functional Language 10, 1C/FPRALANG/2.5.1/27, Intemal Report, Functivnal Programming
Section, Deparement of Compating, Imperial Coliege, London, 1987,

Ferry, M. and Sephion, ¥. M., Hope+ Compiler, IC/FPR/LANGS2.5.1/14, Intemal Report, Functionat
Programming Section, Department of Computing, Imperial College, London, 1987,

Strachey, C. and Wadswarth, C. P., Confiruationr - A Mathematical Semaniics for Handling Full Jumps, PRG-
11, Programming Rescarch Groop, University of Oaford, 1974,

Townsend, P., Flagship Hardware and Implementation, ICL Techateal Journal 5(3), May 1987, pp. 573-594,
Watson, [. and Watson, P, Graph Reduciion ia a Paralle!l Virtual Memary Enviroameds, Proceedings of the

MOCC Graph Reducdon Workshop, Santa Fe, Mew Mexico, Springer-Verlag, 1986,
While, R. L., Behavipural Aspects of Term Rewriting Systems, PhD thesis, Fonctional Programming Section,

Department of Computing, Imperial College, Losdon, 1988,

—3B85—

Report on the Demonstrations

at the Second Joint ICOT/DTI-SERC Workshop
Tsutﬁl;llu Yoshioka

Ahstract

This repart summarizes the demonstration session held oo the last day
{October 17, 1890} of the Second Joint ICOT/DTISERC Workshnp.

1 Participants
Approx. 30 people atlended.

2 Demonstrations

Though the demonstration session took rather long, the audicnce watched it
closely and there were active discussions.
The summary of the demonstrations is as follows:

2.1 ICOT side demonstrations

ICOT showed six parallel programs on the parallel inference machine prototype,
Multi-PSI, and two sequential programs on the PSL-II sequential inference ma-
chine. For details, please refer to 'Guide to the Japauese Demonstrations’.

* Pentomine — Packing Picce Puzzle Solver

This program solves a Packing Piece Puzzle, consisting of a rectangular
box and a collection of pieces with various shapes. This is one of the
parallel benchmarking programs running on Multi-PSI.

= Diestpath — Shortest Path Problem Solver

This program finds the shortest paths from a given starting verlex to
all other verlices in a graph. This is one of the parallel benchmarking
programs running on Multi-PSI,

- 3B6—

+ Go-playing program : GOG
I'his program is & parallel version of the Go-playing program having been
developed on PSI-IL

¢ L3I CAD (Routing)
This program cxecutes routing between modules on a LSI chip on Multi-
PG5l after the placement of each modules has been fixed. [t determines
the connection paths between terminals of each module.

+ L5I CAD {Legie Simulation)
This program simulates the behavior of logic circuite deseribed at the logic-
gate level on Multi-PSI, taking delay time of each gate into account, and
evaluates the virtual time mechanism, one of paraliel control mechanisms
for discrete event simulations,

Legal Reasoning program

This program deals with legal decisions by reasoning from precedents,
adapting old solutions to solve new problems. We evidenced that legal
reasoning can be modeled as case-based reasoning.

« Genome Analysis Programs
These programs solves multiple sequence alignment problems in genome
analysis, by 3-dimensienal D P-matching and by scheduleless parallel sim-
ulated annealing.
& Constraint logic programming language, CAL
This program is & constraint logic programming language system with
examples sboul contrelling rebots and logic circuits, running on PSI-11.
* Molecular Biological Database in Kappa

This program is a database system with molecular biclogical data, adapted
to a database management system, Kappa.

2.2 UK side demonstration

Prof. Dadington (Imperial College}, "Functional Programming Environment”

Prof. Darlington brought the demonstration programs in a carlridge mag-
netic tape (CMT), and installed them on a Sun-3 at ICOT.

He showed a programming environment of the functional language Hoped.

Hope+ is an extension of the functional language Hope, designed at Edin-
burgh University, by adding real and vector as data type, a lazy data construc-
tor, optimal pattern matching, ete.

—387—

The user interface 13 built on the X-window, and provides various facilities,
including editing of functional definition files, compilation, program transfor-
mation, ete.

In the demonstration, a few instances of program transformation were shown.

Though program transformation itsell is recognized Lo be useful, it is still
very difficult to transform programs fully automatically.

On the oiher hand, manual transformation is very cumbersoime and prone
Lo errars.

One of the features of this system is that the wser directs the system as
to whatl transforination is to he done and the system carries out the actual
transformation.

In the first example, a function front’, which returns the header list of an
input list was given. It was defined in a generate-and-test manner in a language
with unification as in logic programming. Prof. Darlington had the system
transform the function into a recursive definition in Hope+.

With the former definition, it took about 10 seconds to return a list of 3
atoms from a list of 5 atoms. The transformed version returned the result in a
fiash.

Mext, he showed a transformation of a "grep’ program as one of bigger size
examples.

One of the advantages of functional languages (or, declaralive languages in
general, including logic programming languages) is that the evaluation order of
fanctions need not he overspecified. This makes those languages amenable to
program transformation and parallel execution.

On the other hond, in application programs interacting with external woeld,
the relative order of evaluations of some specific important events must satisly
same constraints.

In the programming environment of Hoped-, the user can give a logical def-
mition of a function in Hope+4 and constraints on timing in a temporal logic
neta language called SLAN, and the system can transform them inte a program
which is ailmost declarative but is capable of describing the arder of events.

In the final example, Prof. Darlington showed how the system generated
a program to do flow control (such as handling of Control-5/Control-Q) by
transformation.

—388—

