_ICOT Technical Memorandom: TM-1008

TH- 1008

A Study on Boolean Constraint Solvers

by
S. Menju, K. Sakai. Y. Sato & A. Aiba

February, 199]

© 1991, 1ICOT

Mita Kokusai Bldg. 21F (03)3456-3191 5

" :D I 4-28 Mita 1-Chome Telex [COT 132964

Minato-ku Tokyoe 108 lapan

Institute for New Generation Computer Technology

A Study on Boolean Constraint Solvers
Satoshi Menju, K6 Sakai, Yosuke Sato and Akira Aiba

ICOT Research Center
1-4-28 Mita, Minato-ku, Tokva 108, JAPAN

Abstract

Seme Boolean constraint solving algorithms, for example Boolean nnifi-
cation and a modified Buchberger algorithm, calculate simple formulas
representing all solutions for given Boolean constraints. First, we present
another algoritlin, which is based on a concept similar to that of Boolean
unification but uses no extra variables, Second, we report a comparison
of these algorithms. namely the modified Buchberger algorithm, Boolean
unification. and the new algorithm, in a few examples. Thas result shows
that the new algorithm is the most efficient for many problems in which
constraint relations are sparse.

1. Introduction

We are developing a Constraint Logic Programming System called CAL at 1COT
[Sakai 89]. The current CAL system solves a Boolean constraint using a modification of
the Buchberger algorithm [Sakai 90, Sakai 91). In this paper, we report another Boolean
constraint solver that has the following good properties of Boolean unification [Martin
86, Biittner 87):

1. It is mare efficient for many problems in which constraint relations are sparsc.

2. If there i1s a unique solution, then the solution is calculated. If there are many

solutions, then a sel of formulas representing all solutions are calculated. In this
case, we can easily get a solulion by assigning arbitrary values to free vanables in
the calculated formulas.

3. We can cut down the computation of unimportant variables.

The new solver has several more advantages. For example,
1. Berause it uses no extra variables, it is easy to understand the calculated formulas.
2. We can calculate the relations of the designated variables, if any.

3. If we apply a special reduction to the calculated formulas, the reduced formulas .
take a canonical form of the given constraints.

In the next section, we present the basic notations and properties of Boolean alge-
bras. In Section 3. we discuss the new algorithm for Boolean constraints. In Section 4,
we compare the new algorithm with Boolean unification and the modified Buchberger
algorithin in a few examples.

2, Preliminaries

We assume that the reader is familiar with Boolean algebras (see [Halmos 63], for

example).
For a Boolean algebra (B, v, », —. 0.1}, we define two operations + and x as follows:

X+Y Y (X A=Y)vi=XAaY),
XxY ¥ Xy

As usual, we define that the connective of » is stronger than +’s, and omit = symbols
for convenience when there is no confusion. Thus, expression XY + Z is an abbreviation
of (X =Y)+ 2. Algebraic structure (B, +. =, 0, 1) forms a conunutalive ring with unit,
which iz called a Boolean ring, with the following properties.

XX = X,
X+X =0,
X(Y+72) = XY +X2Z

Note also that both = and + are associative, commmutative,
On the other hand, any formula of Boolean algebras can be translated into a formula
of Boolean ring in the following conversion:

XaY = XV,
AVY = XY +X4Y
—1_‘:‘ =] + X-.

Therefore, we can assume every Boolean constraint is represented in polynomial equa-
tions on the corresponding Boolean ring.

If a part of a Boolean expression match the left hands of the above, the part can be
replaced to the right hands. A Boolean expression « is said to be reduced to another
expression (7 if o is converted to 3 by a finite number of applications of such replacement.
For example r*y+x(y+z) can be reduced into rz. A Doolean expression called irreducible
if such replacement cannot be applied to it. Any Boolean expression can be reduced to
a unique irreducible form, which we call its normal form.

In this paper, we denote variables for elements of B by z,y, z, ..., Boolean polyno-
mials by A, B, (', ...

We introduce some notations to present the new algorithm. Let < be an arbitrary
total order over variables.

Definition 2.1 We define that a vaniable y 15 a ~;-variable if y 15 smaller than = with
respect to <. We define that a polynomial A is a <.-polynemial if every variable in A is

a < -variable.

Definition 2.2 Let Ar = B denote a Boolean polynomial Ar + B and alse mean that
both A and B are <, polynomials.

In what follows, we denote semantical equality by = and syntactical equality by =.
Definition 2.3 We deline the normal Boolean polynomials recursively as follows.

1. Two constants 0,1 are normal.

2, If A and B are normal <_-polvnomials, then Az ¢ B also is normal.

Let norm denote Lthe normalizing operation.

Example 2.4 f ¢ < b < a,
normi{{a Ab)+ ({bve) —cll =baz({c+ 1)b

Definition 2.5 We define a relation < on Boolean polynomials in the lattice sense, thal
18,
A< B+ AB=A

Anyv Boolean equation PP — @@ can be translated norm{(Pf + @) = Ar &= B — 0, It
15 known that Ax & H = 0 is satished if and only of 8 < & < A4+ B+ 1 are satishied,
Therelore, il AB = H, which is equivalent to B < A+ B + 1. is satishied. we can satisiy
Azx« B = 0 by putting the value of r between A and A+ H+ 1. Thus, we can decide the
value of each varable from the least to the greatest according to the order < one by one.
Hoolean unification algorithm uses this property. in which variable r is substituted with
value (A 4+ Hu 4+ B whoere w is an extra variable, The substitution is an representation
of B<r< A+ B+ 1.

3. New Boolean Constraint Solver

Our algorithm, which is based on the following idea, solves Boolean constraints in-
crementally. Let Ar ¢ B = 0 be a Boolean constraint which has been solved. 'This
constraint means B <z < A+ B + 1. Assume that another constraint Ce 3 D =0
is given. First, note that AD <+ BC = 0 since C{Az + B) = ACr + BC = 0 and
AlCzr + D)= ACxr + AD = 0. Since the new constraints means) <z < C+ D+ 1, we
gel By D <o <{A+ B+ AC+D+1)=(BD : B D)4+ {AC + A4 (") 1 1. That is,
a new constraint narrows the range of the variable x. From BO+ B4 0 < A" 4 A4 (7
we denote the constraint for x by (AC + A 4+ Cjz @ (BD + B + D) — 0 {that is,
(Av Qe 0 (BvD)y=0). When AC + A + ' = 1, the value of variable z is fixed on-
BD + B + D by those of <,-variables. The Boolean coustraint C'x @ D = 0 includes
Hoolean constraints for < -variables, for example (' + 1)D = 0. The included Boolean
constraints also narrows the ranges of <, variables as well as .

Now we present our algorithm more precisely.

Algorithm

When the algorithm is given an input set of Boolean constraints, C, it outputs a set
of calculated Buolean constraints, S, if C is satisfiable.

In the algorithm, we keep the solved form of Boolean constraints in a set D Rule
or a set W[Rule. DHRule consists of Boolean constraints that take the form r = A
where A is a < -polynomial. The equation = = A means that the value of variable r is
determined by those of < -variables. If an equation r = A is satisfied, we can substitute
the polynomial A for the variable r in any formula except ¢ = A. Hence let D Rule
subsittulion mean substituting each polyvnomial in the right hand side of an equation in
D Rule for the corresponding variable in-the left hand side.

N D Hule consists of Boolean constraints that take the form Az B = 0. An equation
Az () B = 0 means that the range of the variable r is B< o < A + B+ 1.

We use Temp for keeping the formula being dealt with, and Cons for keeping the set
of constraints still to be dealt with.

input C
Cons — C
DRule ND Rule «— {
while Cons # 0
choose an equation F' = (7 € Cons and remove F = G from Cons
let F" be the result oblained from F 4 G by DRule substitution
LTemp +— norm| F)
while Temp £ 0 and Temp £ 1
if Temp=xam D
then substitute D for z of DRule and N D Bule
normalize the substituted formulas
if Ar ¢ B=0¢ NDRule
then NDRule — NDRule — {Ar & B = 0]}
Temp — norm(AD + B)
else Temp + 0
end-if
DRule « DRule) {x = D}
else let Temp = Cz @ D where C # 1
if Ar @ H=0¢ NDRule
then NDRule — NDRule — {Az & B = 0}
if norm{AC + A+ =1
then substitute BD + B 4 D for = of DRule and ND Bule
normalize the substituted formulas
DRule — DRule U{x = norm{BD + B 4+ D)}
Temp «— norm(AD + BC) :
else NDRule — NDRule) {norm{(AC + A+Clz&(BD+ B+ D)) =0}
Temp — norm{AC L) + BC + CD + D)
end-if

else NDRule — NDRule U {Acip B =0}
Temp +— norm{ AB + B)
end-if
end-if
end-while
if Temp=1
then stop and fail
end-if
end-while
S «— DRule UNDRule
output §
stop

The termination of the algorithm is obvious. The soundness 13 proved by the next
two Lemmas,

Lemma 3.1 Let (A + 144 = 0. Then

Ar @& B =10 — (AvCla+(BvD)=0
Ced D=0 ACD 4+ BC +CD+ D=0

Lemma 3.2 Tet (44 1)H = 0. Then
ACD+ BC+CD+ D=0 = ({AVC)+1)(BVvD)=0

In the algorithm, when a new constraint C'r ¢ [J = 0 comes, we replace Ax (0 B =10
in NDRule with {AV Cle (B Vv D) = 0 and obtains a constraint eguation A +
BC + CD+ D = 01n the case that € £ | and A"+ A+ C # 1. This process is verified
by Lemma 3.1. The other cases are special cases of this. Lemuna 3.2 guarantees that the
assumption of Lemma 3.1 is kept true for every Ar+ B = 0in N D Rule, throughout the
execution of the algurithin. Hewce, we can conclude the soundness of the algorithm:

Theorem 3.3 C is equivalent to §.

The algorithm successively composes constraints that consist of fewer variables. The
constraints that take the form z ¢ 8 = 0 influence other formulas by unifving r with
I while the constraints that take the form Az ¢ B = 0 do not. el us congider the
following example:

Example 3.4 lfa <6 <¢,
Luputs ab =0, abe = ¢
Outputs (1 +able=0,ab=0
Hecause the constraint ab = 0 does not influence (1 + abje = 0 in our algorithm, we

cannot gel ¢ = ().

To relieve this somewhat we introduce the following special reduction.
Reduction The form Fr is reduced by the formula Az & B = 0 as follows.

Fr—-r+BF+B (FZ 1, norm{AF + A+ F)=1}
Fr—=(A+1)Fx+ BF (FZ£1, norm{AF + A+ F) £ 1, norm{AF) £ 0}

Then we can get a canonical form of C in the sense of [Sakai 90}, il we reduce both
~,-polynomials €' and [of every formula ('y & I) = 0 in S such that < y, by each
consiraint 4z & B =01in 8.

Example 3.5 If a < h < ¢ < d.

lnputs ab =0 b=d, abc =¢
Outputs (not reduced) (1 +abje =0, ab =0, d=b
{reduced) e=0.ab=0.d=4

4. Comparison

In this section we will compare our new algorithm with the modified Buchberger
algorithm and Boolean unification in an example applying to a digital circuit, 5-Queens
problemn and a puzzle by Lewis Carroll [Colmerauner 90]. Each algorithm is implemented
as a solver of CAL system in ESP (Extended Self-conlained Prolog) [Chikayama 84] on
PS1 (Personal Sequential Inference machine) that was developed at 1COT [Taki 84).

We have to notice that when we unify a variable with the corresponding polynomial,
we do not use the unification function of ESP language (similar to Prolog), but we rewrite
the variable to the formula and reform the whole rewritten formula for a technical reason.

Since the canonical forms of Boolean constraints in each solver are different from one
another, the outputs from each solver also are different when there are more than one
solutions. In the tables of the following examples, Buch means the modified Boolean
Buchberger algorithm, Unif means Boolean unification and New means our new algo-
rithm.

A Digital Circuit

We will show the first example applying to a digital circuit that counts the number
of 1s in five inpul signals to the circuit, and outputs it in the form of a three-bit binary
number. In the program, each A operation, each WV operation, each + operation and
each — operation corresponds to an and component, an or component, an erclusive-
or commponent, and a ne! component in the circuit respectively. Each variable in the
program corresponds to each input signal or output signal of the circuit. We executed
it four times changing the input signals and the output signals of the circuit.

The execulion times (msee) are as follows.

l]nput signal | Output signal || Buch | Unif | New
4

1 Variable 36 65 T
Variable oo 1342 | 737 | 288
Variable 001 1317 | 843 | 266
WYariable Variahle 9975 | 197 | HO8

We show the output from each solver in the third execution, that is, the input signals
to the circuit are variables a, b, ¢, d, €, and the output signal from the circuit 1s 001, In
the outputs from Boolean unilication, a term p{ X'} means an exira variable,

Buchberger Algorithm
a = 1+dtbtatc
b#d = O
axd =
ax*h =
c#d =
c*h =
c¥a =

L I o B e I e R o |

New Algorithm
e = l+c+a+b+d
{a+b+d)*c = 0
(btdi=a = 0
d*b = 0

Boolean Unification

e = 14(1+(1+(1+(1+p(-34))*#p(-33)+p(-34))+p(-32)+{1+p(-34)) . ..
c = (1+p(-34))*p(-30)

a = (((1+p(-34))=p(-33)*p(-32)+(1+p(-34))*p(-33))*p(-31)...
b o= ((14p(-34))%p(-32)#p(-31)+(1+4p(-34))*p(-32))*p(-30)...

d =

(14p(=34))*p(=31)+p(-30)+(1+p(-34)) *#p(-31)

5-Queens problem

In Lhe program each variable corresponds to each square on the 5 x 5 chesshoard.
The value of the variables corresponding to the squares on which queens arve put is 1, the
value of the other variables is 0. We executed the program in three conditions: (1) all
solutions, (2} solutions putting a queen on the top left square, (3) solutions not putting
a queen on the top left square. We conld not obtain the execution time in Boolean
unification, because it took too much time in our implementation.

The execution times (msec) are as follows.

E Condition || Buch I New |
| 152915 | 2044640
2 4076 ®al
3 BOOHT | TO0622

Puzzle by Lewis Carroll
We have eighteen sentences about sixteen propositions a, b, ...

(fA-e)— g (aho)—b (kAR) —n
(g A~d) — =f (pAhR)—3 (g Ad)—+h

(i A=p)— m (en f}—h (nAj)—(gnl)
(kAg)—1 (pAenl)y—e (kA =ah=b)—==f
(1A =e) — —i (aAmhd)—g (ghj)— —e
(nid)—p (mo A ~m) — =k (tnh)—={(gVvy)

T'he problem is to find the relations among the designated propositions, if any. Let
us try this problem by the modified Hoolean Buchberger algorithm and our new algo-
rithm. We represent each proposition by a variable, translate each sentence to a Boolean
constraint, and let the order of the designated variables be lower than others. Then we
can get some formulas that consists of only the designated variables, if any.

For example, among three variables a, f. ¢, there are no relation, while when we
designate three variables f, n, p, we get n+p+ [= n+ [by the modified Boolean
Buchberger algorithm. and (f * p+ f) # n = 0 by our new algorithm.

The execution times | msee) are as follows.

| P:I‘DPUSILIUIIE | Buch | New |
i, f.i 34521 | 379
{,n,p 378303 | 291

5. Coneclusion

We presented a new Boolean constraint solving algorithm that is based on the similar
concept te Boolean unification. The algorithm has some advantages to other solvers., For
example, it uses no extra variables, and computes a canonical form of Boolean constraints
in the sense of [Sakai 90]. Moreover, as shown in the previons section, our new algorithm
is fast in problems such as the first and the third examples. in which constraint relations
are sparse. Our algorithun secins 1o be slower than the modified Boolean Buchberger
algorithin for problems with dense constraint relations such as N-Queens.

Recently. we have been developing SetCAL, a solver of set constraint [Sato 90]. It can
deal with finite or co-finite sets, and the symbols such as €, C, {-}, N, U, -*, and 50 on.
The current solver is based on the modified Boolean Buchberger algorithm. llowever, if
our new algorithim is used in it, 1t 1s expected to solve probleuws [aster in many cases,

References

[Bittner 87] W. Bittner, H. Simonis : Embedding Boolcan Expressions into Logic Pro-
gramming, J. Symbolic Computation 4, pp.191-205, 1987,

[Chikayama 84] T Chikayama : Unique Features of ESP, Pree. Fifth Generation Com-
puler Systems 84, pp.292-298, 1984,

[Colmerauer 90] A. Colmerauer : An Introduction to Prolog 1II. CACM 33, pp.69-90,
1990,

[Halmos 63] P.R. Halmos : Lectures on Boolean Algebras, T).Van Nostrand Company,
1963,

[Martin 86] U. Martin, T. Nipkow : Unification in Boolean Rings, Proc. 8th Conf on
Automated Deduction, LNCS 230, pp.506-513, 1986.

[Sakai 89 K. Sakai, A, Alba : CAL: A theoretical background of constraint logic pro-
pramming and its applications, J. Symbolic Computation 8, pp.589-603, 1989.

[Sakai 90] K. Sakai, Y. Sato : Application of Ideal theory to Boolean constraint solving,
Froc. Pacific Him International Conference on Artificial Intelligence 90, 1990.

[Sakai 91] K. Sakai, Y. Sato, S. Menju : BHoolean Griobner base, to appear (1991).

[Sato 91] Y. Sato, K. Sakai, S. Menju : SetCAL - a solver of set constraint in CAL
system, to appear (1991).

[Taki 84] K. Taki, et al. : Hardware Design and Implementation of the Personal Sequen-
tial Machine (P81}, Proc. Fifth Generation Computer Systems 84, pp.395-409,
1984,

