ICOT Technical Memorandom: TM-0998

Thel-(F98

Time-homogeneous Parallel Annealing
Algorithm (Extended Abstract)

by
K. Kimura & K. Taki

January, 1991

@ 1ea], 10T

Mita Kokusai Bldg. 21T {03)3456-3191~5

I C DT 428 Mita | -Chome Telex ICOT 132964

Minuto-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Time-homogeneous Parallel Annealing Algorithm
(Extended Abstract)

Kouichi Kimura Kazuo Taki
kokimurafiicot.or.jp takificot.or.jp

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

Abstract

We propose a new parallel simulated annealing algorithm, Each processor maintaing one
solution and performs the annealing process concurrently at a consfant temperature that dif-
fers from processor to processor, and the solntions obitained by the processors are exchanged
occasionally in some probabilistic way. An appropriate cooling schedule is automatically
constructed from the set of temperatures that are assigned to the processors. Thus we can
avoid the task of carefully reducing the temperature according to the time, which is essential
for the performance of the conventional sequential algorithm.

In this paper we propose a scheme of the probabilistic exchange of solutions and justify
it from the viewpoint of probability theory. We have applied our algorithm te a graph-
partitioning problem. Results of experiments, and comparison with those of the sequentind
annealing algorithm and the Kernighan-Lin algorithm, are discussed.

1 Introduction

Simulated annealing is a general and powerful technigue to solve difficult combinatorial opti-
mization problems [7]. It consists of many iterative steps: each modifies the current solution
randomly and accepte it with probability min{1,exp(—AE/T)}. Here —AFE represents the gain
obtained by the proposed modification in terms of the energy (objective function) E, and 7' > 0
is the temperature which is gradually reduced according to a cooling schedule.

Unfortunately, the theoretically optimal cooling schedule, which guarantees the convergence
to the optimal solution, proves to be too slow for practical nse [4]. Cooling schedules with
geometrically decreasing temperatures are often used in applications. To obtain more elaborate
cooling schedules is an active area of research [8).

In this paper we propose a new parallel simulated annpealing algorithm. 1t automatically
constructs an appropriate cooling schedule from a given set of temperatures.

2 An Annealing Algorithm Parallelized in Temperature

2.1 Outline of the Algorithm

The basic idea is to use parallelism in temperature, to perform annealing processes concurrently
at various temperatures instead of sequentially reducing the temperature according to the time.

The outline of the algorithm is as follows, Each processor maintains one solution and per-
forms the annealing process concurrently at a constant temperature that differs from processor
to processor. After every & annealing steps, every pair of the solutions from the processors with
adjacent temperatures are exchanged with some probability p, which is distinct for each pair.

1

The algorithm can he stopped after any large number of steps and we will find a well-optimized
solution on the processor that has the lowest temperature. We refer to f = 1/k as the frequency
of (probabilistic) exchanges and p as the probability of exchange.

Since exchanging the sclutions between processors with different temperatures is nothing but
changing the temperature for each participant solution, each solution will select its appropriate
cooling schedule dynamically through successive competitions with others for lower temperature.
However, since the temperature on each processor remains constant, the algorithmn itself is time-
homogeneous. Thus we can avoid the task of carefully reducing the temperature according to the
time, which is essential for the performance of the conventional sequential annealing algorithm.
In other words, this algorithm automatically decides how many steps should be taken at each
temperature: the majority of steps should he devoted to some eritical temperatures.

However, it is necessary to allocate an appropriate temperature to each processor beforehand.
Namely, we have Lo specily a set of temperatures, lrom which the algorithm will construct a
cooling schedule. This set should be chosen wisely according to the estimation of the equilibrium
(static) relation between the temperature and the energy. It must cover the region of tempera-
ture, only in which the equilibrium energy varies virtually. Here the concepts of the scales by
5. White will be useful [10] .

2.2 Probability of Exchange

Investigating the necessary condition which the probabilistic exchange must satisfy, we determine
the probability of exchange.

Imagine that the annecaling process is performed independently at each processor at a dis-
tinct constant temperature. Then the distribution of the solution in each processor approaches
Holtzmann distribution of the respective temperature [8]. The lower the temperature is, the
better the solution that will be found, but after a longer time.

Now we introduce probabilistic exchanges of the solutions between the processors and intend
to accelerate the convergence of the solutions so that we can find a better solution at the lowest
temperature more guickly,

Let p(T, E,T’, ') denote the probabhility of the exchange between two solutions with energy
E and E', at temperatures T and T'. Since we expect a better solution at a lower temperature,
we define p(T, E, 7', E') = 1 if (T - T'}(E — E') < 0.

On the other hand, if (T-T'YE—-E"} = 0, p(T, E, 1", E") is uniquely determined as follows.
In order to accelerate the convergence, a probabilistic exchange of the solutions must not dis-
turb the equilibrium distribution. Henece the detailed balance equation must hold between the

distributions before and after the exchange:

1 E 1 E' o1 B E
ﬁﬂﬂ—f?'mfx?{—ﬁl -p{T,E\T', E') = ﬁexp(—?] ' mﬂxPE—F] ‘1

where Z(T') denotes the parlition function. Therefore we obtain

T ET'. E" = 1 if AT-AFE <0
T, E T, E) = exp{——i‘-—ﬁ?‘j‘E]l otherwise

where AT =T=T, AE=FE~FE

Note that p(T, E, T, E') > (0 for YT VE ¥T' ¥E'. This means that a solution can go throngh a

non-monotonic cooling schedule,
This probability is quite different from that of choosing a solution-temperature pair in the

systolic statistical cooling algorithm by E. Aarts et al. [1]. The advantage of the former is that
it does not contain the partition function and hence can be computed easily,

2

2.3 Monotonic Convergence Property

We verify that cach probabilistic exchange of solutions in fact accelerates the convergence of the

algorithm.
Let p denote the distribution of the solutions at an arbitrary time. Tt will change into pA

after one annealing step at each processor, or into pC after one probabilistic exchange for each
pair of solutions, where A and ' are the respective transition probability matrices [6]. Let =

denote the equilibrium distribution. It can be shown [6] that
D{w|lp) = D(=|lpA} and D(=||p) > D(=|pC)

where D(x|p) denotes Kullback-Leibler divergence of « and p, which represents the discrepancy
between them [2]. Here strict inequalities hold unless p = w. Moreover D{w|[p) — 0 follows
from the observation in the subsequent subsection.

Hence the distribution of the solutions monetenically approaches the equilibrium distribution

during the execution.

2.4 Time-homogeneity

The above algoritlun is fime-homogeneous: it has no control parameter to change over time.
This has two implications.

Firstly, the behavior of the algorithm is described in terms of a time-homogeneous Markov
chain. In general it is an irreducible and acyelic Markov chain over a finite state space. Hence

we can easily establish its convergence property [6].
Secondly, in executing the algorithm, we can stop it at any time and examine whether a

satisfiable solution has already been obtained. If one has not, we can resume it again for a
better solution, and can just continue it as long as we like. In contrast, in the conventional
simulated annealing it is necessary to re-schedule the temperature when we resume it, once it

has entered the lowest temperature.

3 Experimental Results

We have implemented our algorithm for a graph-partitioning problem on the Multi-PSI/V2 [9],
an MIMD parallel machine with 64 processors.

(graph-partitioning problem) Given a graph G = (V,£), define a label on the vertices
AtV — {£1} s0 as to minimize E, where

E=- 5 MuMv)+e-(d Mv))*, (e> 0: constant)

{u, v} vV

This is an NP-hard problem [3). Kernighan-Lin algorithm efficiently gives its approximate
solutions [5].

For a random graph with 400 vertices and 2004 edges, we compare the results given by
our algorithm with those by other methods [Fig.1].

(a) Time-homogeneous parallel annealing: All 63 processors performed 20,000 annealing
steps each at distinct constant temperatures. The highest and lowest temperatures are deter-
mined empirically, and the other temperatures are determined so that adjacent ones have the
same ratio. As for frequency of exchanges f, we examined various values ranging from 1/20,000
to 1/2. Each point represents the average over 30 runs with different sequences of random

numbers.

(b) Sequential annealing: The cooling schednle consists of exactly the same sequence of 63
temperatures as above, 20,000 annealing steps are performed, which are divided equally between

the 3 temperatures.

(c) Simple parallel annealing: Each of 63 processors executes the sequential anpealing al-
gorithm described in (b) using a distinct sequence of random numbers. The result is the best

golution obtained by them.

(d) Kernighan-Lin: Kernighan-Lin algorithm is repeatedly applied several times until con-
vergence.

We made the following observations from [Fig.1].

1. {a) gives the best solutions for a wide range of the frequency of exchanges: 1/1000 < f <
1/2. Hence this algorithm is not sensitive to the value of f except for values that are
too small. However a too large value of f incurs a high cost in exchanging the solutions
between the processors. The execution time for f = 1/100 was less than 8% greater than
that for f = 1,/1000 [6].

2. Since 20,000 annealing steps are relatively small, (b) gives a worse solution than (d).
However, in (a), the algorithm probabilistically selects an appropriate cooling schedule
with 20,000 steps and gives a better solution.

3. Note that the total number of annealing steps in (a) and that in (c) are the same. (a)
outperforms {c) unless f is too small.

4 Conclusion and Future Works

We have proposed the time-homogeneous parallel annealing algorithm, in which an appropriate
cooling schedule is automatically and probabilistically constructed from a given set of tempera-

tures.
The behavior of this algorithm is theoretically tractable, since it is described in terms of

a time-homogeneous Markov chain. In particular we have proved its monotonic convergence
property.

We have experimentally observed that this algorithm automatically constructed a better
cooling schedule than that which assigned the same number of annealing steps at each tem-
perature. We also observed that this algorithm is robmst for the choice of the frequency of
exchanges.

The following require further investigation.

(i) How many processors should we use?
(ii) How should we assign temperatures to the processors?
(iii) How do we find the optimal frequency of exchanges?
(iv) Does this algorithm probabilistically select the theoretically best cooling schedule, the best
assignment of the annealing steps to each temperature?

5 Acknowledgments

We would like to thank N. Ichivoshi, K. Rokusawa, and E. Sugino for valuable discussions.

4

™

References

[1] E. H. L. Aarts et al., “Parallel Implementations of the Statistical Cocling Algorithm,” Inte-
gration, 4, (1984},

[2] S. Amari, “Differential Geometric Methods in Statistics,” Lecture Note in Statistics 28,
Springer-Verlag, (1985).

(3] M. Garey and D). Johnson, “Computers and Intractability, A Guide to the Theory of NP-
Completeness,” Freeman, New York, (1979).

(4] B. Hajek, “Cooling Schedule for Optimal Simulated Annealing,” Math. Oper. Res., 13 (1988).

(5] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,”
Bell. sys. tech. J., 49, (1969).

[6] K. Kimura and K. Taki, “On a Time-homogeneous Parallel Annealing Algorithm,” ICOT
Technical Report, 565 (in Japanese) (1990).

[T] 5. Kirkpatrick, C.D. Gelatt, and M.P. Vecci, *Optimization by Simunlated Annealing,” Sei-
ence, vol.220, no.4598 {1983).

[8] T.J.M. van Laarhoven and F.H.I.. Aarts, “Simnlated Annealing: Theory and Applications”,
Reidel, (1987).

[9] K. Nakajima et al, “Distributed Implementation of KL1 on the Multi-PSI/V2", Proc. 6th
Int. Conf. en Logic Programming (198%).

[10] 5. R. White, “Concepts of Seales in Simulated Annealing,” Proe. IEEE ICCD (1084).

Fig.1. Energy vs frequency of exchanges

-1620
1640 F i\ (b) sequential annealing
-1660 | (a) time-homo. paraliel annealing
-1680

SR (d) Kernighan-Lin
-1720 | . (c) simple parallel anneaiing
-1740
-1760 NPT BT BRI rre PR R

10° 10* 10®° 10 107 10°

frequency of exchanges in (a)

