) ICD_'I'__TechnicaI Memorandom: TM-0988

TM-0983

An Apphication of Structural Modeling
and Automated Reasoning 1o
Real Time Systems Design
by
5. Honiden, N. Uchihira,

K. Matsumoto {Toshiba)

December, 1990

© 1990, 1COT

Mira Kokusai Bldg, 21F (0313456-3191~5

I G OT 4-28 Mia 1-Chome Telex ICOT 132964

Minato-ku Tokve 108 Japan

Institute for New Generation Computer Technology

The Journal of Beal-Tune Systems. 1. 3153-331 (1990)
1001 Kiluwer Acndemic Publishers. Manufactueed in The Metherlands.

An Application of Structural Modeling and
Automated Reasoning to Real-Time Systems Design

SHINICEH] HONIDEN, NADSH! UCHIHIEA. KAYUNOR]I MATSUMOTO, KAZDO MATSUMURA
AND MASAHIED ARAI

Svirems & Software Engineseing Labornry, Toskiba Corporation.

A ¥wagi-cho, Soiweni-kp, Kaowasebi 200, Japan

Abstract. Thee paper presents an apphcarion of structm| modeling and automated rextoning a5 a4 software
development covironment for real-time systems. This application satsfies van major requirements for such an
et arenment: () w syarhesize an absalutely correct program and, (21 w increase software productivity, The real
time svstems, which consist of Concurient programs, are deseribed e s Pralog based concurrent obyect orienied
laryage. called MENDELET. As s trpavad concurrent program consises of twe pats. functissid and synchmniztion
parts: the furctional part in the reasable compunent o be registered in a libery will be gencrated by 3 structml
mieling thrngh rhe use of struciuring functions wilh sespeot e dat fows, The synchronizanon por will be
syathesized froin tempotul lugie specifications by the use of an awtomated reasoning mechanism. This paper also
deseribes the MENDELS ZONE implementes) on a Proleg machine, which is the working hase for the presented
application method

l. Introduction

As the complexity of real-time sysiems increases. greater demands will be placed upon
a software development environment. Generally, thers are two major requirements for the
software development environment,

i) To synthesize an absolutely correct program.
() To increase software producrivity.

The real-time sysiems consist of concurrent programs. A typical concurrent PrOgram Consists
of a functional part and a synchronization part. The functional part is correspondent (o
the task or process content and the synchronization part indicates the timing and temporal
relation among tasks or processes. Therefore, synthesizing a correct program is with respect
e [unction and HmMing correctness.

Concurrent programs have various difficult inherent problems, such as synchronization
and dead-lock problems. Solving these problems hecomes major work for programmers, in
order to develop correct application software. Methods such as the theorem proving method
(Manna and Waldinger 1980), which synthesize the program from formal specifications
by automated reasoning, have been presented in solve these prublems. However, a common
obstacle among these methods is the compurational complexity problem, which is propor-
tional to the size of the program to be synthesized. As a result, only toy-level programs can
be synthesized efficiently. It is evident that these methods will not satisfy the second require-
ment of a sofrware development environment, which is to increase software productivity.

34 EOHONIDEM, N UCHIHIEA, K. MAISUMOTD, K MATSUMURA AND M. ARAI

High
Correctness productivity
Software
(D reuse fair good
method
Automated
@ reasoning £ 0od b a d
i method
@+ 2 | good g£ood

Figure | Software reuse methaod and automated regsoning method integration

Therefore, if the automated reasoning method is o be adopted 1o synthesize the correct pro-
gram, 1t has to be fused with anotheér method, which can ¢ontribute to mgh-software produc-
tviry. Omne such method, known as the software reuse method, has been considered and
used in the sequential program domain, such as the business application and several other
domains, as onc of the most effective methoeds o increase software productivity (Honiden
etal. 1988, Jones 1984). Therefore, one of the candidates for satisfying both reguirements
for 3 software development environment is the integration of software reuse method and auto-
mated reasoning method, as shown in Figure 1. In arder 1o satisfy both the ahove mentioned
requirements for a software development environment, the authors’ approach presents the
automated reasoming method w complemnent the disadvantage of the software reuse method

The authors” software development environment: the MENDELS ZONE iz based on the
presented approach and has been developed on 1COTs Prolog machine PSI-II {Honiden
et al. 1989). MENDELS ZONE represents the infelligent zone for the nucleus language-
MENDEL/87, which is a Prolog based concurrent ohject-oriented language (Honiden et al.
1986, Uchihira et al. 1987). Each reusable component is written in MENDEL/ET. Therefore,
the OBJECT in MENDEL/ET is the rensable component and the svnchronization part is
realized by message-passing among OBJECTs, This paper focuses on an application of &
structural modeling and automated reasoning method to real-time systerns design. First,
the structural modeling method is used to generate the MENDEL OBJECT. Then, the
automated reasoning method is used w retrieve and interconnect the MENDEL OBJECT:
and to synthesize the synchronization part among the OBJIECTs.

In this paper, Section 2 describes the concurrent reusable component and its descrip-
tion language MENDEL/ST; Section 3 describes an overview of the presented method:

AN APFLECATIUN UF STRUCTURAL MODELING AND AUTOMATED REASONING 315

Section 4 describes the MENDELS ZONE behavior using a simple example; and Section
5 includes unigue features of this methad,

2. Concurrenl rewsable component
20 Baffwdre reuse iR CONCLFFERD PRORIM

‘The reusable component can be regarded as a concurrent processing umit, which is called
d sk, or a process, in a concurrent program. Individual contents in a concurrent process-
ing unit are accomplished sequentially.

Most real-time systems consist of many concurrent soflware modules. Sofiware reuse
methods have been considered among the most effective methods in increased software
productivity and are used in several domains. When adopting the software reuse method
in the real-time systems domain, several prublems which relate to the retrieval and inter-
connection reusable components need 10 be solved,

First, various specification methods. such as keyword, case grammar, and formula have
been presented for use in retrieving the reusable component. However, these methods can
only retrieve ene reusable component using one specification statement at a time. The size
of the specification is then proportional to the number of desired reusable components.
Therefore, the size of the specifications necessary to retrieve the reusable components must
be as small as possible.

Second. a software reuse method does not always synthesize a correct program, even if
the reusable components are assured to be correct. This 1s because real-time systems usually
consist of several reusable components for which the interface program among reusable
compomnents is required to be imposed by some means according to pertinent applications,
This work is comparatively easy in a sequential program, but is extremely difficult in a
concurrent program. Each reusable component is a concurrent processing unit in the con-
current program. Therefore, a synchronization problem among reusable components may
occur, unless each reusable component has a synchronization part which includes the timing
and temporal relation to ether components. When registering reusable components in the
library, it is possible 1o impose the synchronization part to a reusable component. However,
since synchronization is an important relationship among the reusable components, imposing
this in a reusable component during registration causes a decrease in the reusable component
generality. If the reusable component generality is low, this means that the reusable compo-
nent is used only under limited applications, In typical concurrent programs, the interface
part. which includes the synchronization part, is realized by a relatively small scale program
and is required to be absolutely correct. Therefore, it may be possible to synthesize the
synchronization part by the automated reasoming method,

2.2, Role of register and reuse persons

There are several view poinis regarding software reuse. One view classifies software reuse
according to the user. Users who take part in software reuse are classified into two groups: a

316 § HONIDEN, M. UCHIHIRA, K. MATSUMOTO, K. MATSUMURA AND M. ARAIL

JSER
PORTIN
CLASSIFI- USER ROLE SUPPORTING
CATION METHOD
. Generation of reusable camponents STRUCTURAL
Register which correspond to a functional
Person part MODELING

Retripval and
interconnection FLANMING
of the

| Reuse Reuse of the functional part
' Persan reusable components

Synthesis of the THECHREM
synchronization

FR
cart OVING

Figure 2, Relovionship hetween users and MENDELS £UNE.

reusable component registration user, who generates and registers new reusable components,
and a reusable component user, who retrieves and interconnects the reusable components
o satisly his requirement. In this paper, the former 1s referred 1o as a register person, the
latter, a reuse person, As mentioned previously, if the register person takes into considera-
tion the synchronization of a component with other reusable components during registration,
the genvrality of this component decreases. Hence, when generating and registering in the
library, the register person should not take into account applications in which the component
15 used together with other components. This means that only the register person should
consider and generate a functional part in the reusable component.

On the other hand, the reuse person uses several reusable components o satisfy his require-
ment. Thus, synchronization among these components, according o pertinent application,
must be determined by the reuse person. In other words. the synchronization part among
the reusable components should be generated only by the reuse person. As a result, the
reusable component 1 be retrieved and interconmected in a library is correspondent o a
funitional part. It does not include a synchronization part among the reusable components.

According to the user classification mentioned above, a system which supports the software
reuse has two major functions, as shown in Figure 2,

(i} To generate a reusable component, which corresponds 10 a functional part.
(i1) To reuse a reusable component,

In the authors’ approach, in order w implement these functions, a structural modeling method
is applied ro gencrate a reusable component. An automated reasoning method is applied
o eneble reusing of the reusable component. The conceplt of reusing the reusable component
function, that is, the above mentioned function (ii), includes the following two sub-functions.

AN AFPLICATION OF STRUCTURAL MODELING AND AUTOMATED REASONING n

Kethod = Praduction Hule

maliage @

/

¥
"N

{ method t{attnbute '?x.] attribute 217] |

—
[=- ®=0 Yis® + 1, write Y] nl. |
- [—— .
by
<guand > b
YTV Input "

: Qutput
|\ Commitiment DuanV
{ 7 \,';
LHS RHE

Figure 3 Method part i MENDEL OBJECT.

(i a) Fo retrieve and interconnect reusable components, which correspond o the func-
tinnal part.
(1i-b) To symthesize a synchronization part among reusable components,

This means the automated reasoning method is applicd w both sub-functions.

2.3 MENDEL/ST

Each concurrent rensable component is written in MENDELSET. In real-time systems, the
comhbination of declarative knowledge description and actor-hased object modeting is con-
sidered to be one of the effective methods 1o describe the reusable component. The inter-
relationships among obyects are described by actor-based object modeling and the inner
hehavior of each ohject is described by declarative knowledge. The authors adopt MENDEL
as the executable specification lanpuape to satisfy this requirement. MENDEL is a Prolog-
bused concurrent object-onented language,

Since the OBIECT in MENDEL is a concurrent processing unit, the ORIECT can he
regarded as a wsk or a process. Each OBJECT consists of one working-memory and several
METHODs, which are declared as follows and shown in Figure 3.

METHOD {attribute™ariable. . .attribue!variable)
< — <guard> | Prolog clauses.

318 5 HONIDEN. N, UCHIHIEA, K. MATSUMOTO. K. MATSUMURA AND M. ARAI

Ripe
T
J attribute
mE's:-..-u_;u . _:1
el t
Figure & lndereonnection amang MENDEL QBIECT:,
Each message consists of an anribute name. an inputfoutpul identifier— 7" or “!", and

a variable name. If a METHOD's variable aller an attribute “7 has been received. that
METHOD's Prolog clauses are executed. When the METHOD is executed, the variable
after an anribute 1" will be unified and sent to the other OBJECTs. Each METHOD s
regarded as a production-rule and is used hy the forward inference mechanism. A METHOD
consists of a lefi-hand side (LHS) and a right-hand side (RHS). The LHS contains the input
miesssages and the RHS contains the output messages. Both LHS and RHS contain internal
state variables which are stored in the working-memory. The bady part in a METHOD
consists of Prolog clauses. As the Profog system can be regarded as a backward inference
engine, cach METHOD includes the backward inference engine. The overall architecture
is a distributed production system, in which each OBJECT has inherent working-memory
and both a forward and a backward inference mechanism.

Each OBJECT has finite pipe caps and can transmit messapes only through the pipe caps,
as shown in Figure 4. An altribute is assigned 10 each pipe cap and is used to identify input/
Oulput messages. Messages are ransmitted berween OBJECTS through the transmission pipe
connected to the pipe caps. Each pipe has one gate only, which controls the message stream.
In MENDEL/8], a simple synchronization mechanism is achicved by using a METHOD sel
ection mechanism, similar to Dijkstra’s gusrded command. The OBJECT is suspended, until
it receives all required messapes. However, the mechanism is so simple that, for a eompli-
cated synchronization, it will require complicated pipe interconnection, Therefore, an addi-
tional synchronization mechanism, using the gate and the gate controller, is introduced. The
gate is used for message stream control. The gate opens, lets only one message pass through
and then shuts. These three actions constitute an atomic action of the gate. With no MEssaps
at the gate, the gate cannot be opencd. The gate is similar to the fransition in a Petri Net
model. The gate controller, which controls all gates, is called the synchronization supervisor.

In MENDELS ZONE, the OBJECT in MENDEL/87 corresponds to a functional part,
and message-passing among OBIECTS, which is controlled by the gate controller, cortespaonds
to the synchronization part, as shown in Figure 5.

320 5 HONIDEN, N UCHIHIRA, K. MATSUMOTO, K. MATSUMURA AND M. ARAl

<>

i Generaie abjects { Functional pam) I__“' : .
==
e

H?ije.:-[y | Retrievs and intesconnect the obiects J
libary { Functional Part)

—— g™
[\-__ A

Synrhesize the synchronization pan
among the objects

|

Ercoute the MENDEL program |

_ =
{, Stop)

Figare 7 MENDELS ZONE process,

I Generation of the funcrional part in reusable components

The object in the object-oriented modeling is regarded as the conceplual instance, w enable
el iy of the function or knowledge included in an actual subject. Such an object should
be carrespondent to the functional part in o reusable component, Structural modeling meth-
odds have been used 1o obtain functions from software requirements. Hence, such methods
cin be used W generate a functional part. As the functional part is realized as an OBJECT
in MENDEL /87, this section describes the structural modeling method, used to obtain the
MENDEL OBIECT candidae.

The structural modeling method, used 1o obtain functions from the software requirements,
is called the SCI (Structuring by Cross-Interaction) method (Arai, Tamura and Mizutani
19815 Matsumura, Mizutani and Arai 1987). SC1 is used to extract correct [unction concepls
frum the software reguirements. The system iself can be regarded as incorporating commen
concepts between two sets of descriptions. By comparing two elements included in these
scts, a relation is defined when there is a common concept in both elements. By pairwise
comparisons, edges between the two sets are obtained in this manner. These edpes, with
the clements included in the sets, form a graph called a bipartite graph. Since an cdge
represents a common concept, included in the two different viewpoints, all the edges repre-
sent the system itself. Therefore. when a set of elements includes all the edges, it describes
the system. Sets X and ¥ in Figure ¥ are obvious examples. Set (X1, ¥1) is another example.

AN APPLICATION OF STRUCTURAL MODELING AND AUTOMATED REASONING 34

concurrent
concurrent
program reusable MEMNDEL/BY
components
functional part reusable objects
components
synchronization | interfacing among message-passing
part reusable among objects
components

Figure 5. Funcrional nnd synchronization pans in concurrenl program.

Temporal Logic Functional
Specification Specification
Synthesis | by THEOREM Generation | by STRUCTURAL:
PROVING MODELING !

Synchronization)

] part | Retrieval and
] | Intercanmection

Reusable | [Reusable Object

companent component by PLANNING library

2 I
L/—;I

Functional Fart Concurrent Program

Figure 6 An overview of MENDELS ZONE.

1 Method overview

This section describes an overview of the proposed methad which supports the software
development environment #s shown in Figure 6.
The propaosed method consisis of four phases, shown in Figure 7, as follows:

Phase 1@ Generale a functional part in a revsable component

Phase 2: Retrieve and interconnect reusable components, which correspond to the func-
tional part

Phase 3. Synthesize the synchronization part among reusable componcnts

Phase 4: Executs visually

AN APPLICATIHON OF STRUCTURAL MODELING AND AUTOMATED REASONING

(System Concept)

]

T

(X, &),
(. Y),
(%1, Y1),

4

Viewpoint (X} Viewpoint (¥} {Descriptions)
Figure & Multi vigw points,
o
5
p'" "-'bt ‘U
e ba‘ LS W
Data & * tﬁm}ﬁ LDL é:r n‘ lﬁ""ﬁnﬂﬁn
e ¢
Sl state EF\QFJ‘ .4"".' ‘“znpb" Qﬁuﬁfﬂfﬁ}
Function e B AbRY, 2 ab e."?f" a‘n/ "' b'“ fﬁ,/
I, Arceptance 7 (7 |8 ‘31 |3 te |7 f7 |7
I, Shipment delivery Iy 7 E] 7
(3. Empty Containar Mo, autpur ? 7 |3 ? E]
fd Inventary rmaster file Up dating 7o & 3 |3 7 '
5. shipment request Reiponse 7 9 |3 |3 '7 7 El
6. Carge order processing Tole [3 |3
1. Sterage) El 5 18 |
f3. Ualivary of Containe: El 2 |9
19, Shipment 3 1T AT 7 ’
f10._Shiprment ef qeods in stock '3 7l K 7 _
f11. Carrying out of empty container |3 |17 | | 7 7

9 paints

? F-H.'Hﬂt!l wF mb
T A e o

Create/update Storage data
Inputigutput 1Emporaty data

Other relationshog

Figure 2 Tunction-data relatnonsbup @,

321

Thus, when two sets, X and ¥are given, there are many sets describing the svstem. These
sets ure called coverings in graph theory. In this way, a system is deseribed by its correspomnd-
ing coverings, and a structure can be extracted from the set of coverings,

In 5CL, it is possible to find a MENDEL OBJECT candidate by making a structure of
Junctions as Sets X and data as Sets ¥ in the following manner. For example, consider the
stocker-OBJECT which accepts several products, holds them. and delivers them by request. In
the first step, the functions and data are separated from cach view of the reguirements specifi-
cation concerned. The relationship between function and data are defined on the stock.
Points are then assigned to the functions and data on the matrix, as shown in Figure 9.

ax S HONIDEN, N, UCHIHIEA. K. MATSUMOTD. K. MATSUMURA AND M ARAl

Group 1

/J -f;—-- —-;»
ZAINN
f24 3] ia IR

Group 2 Group 3 Gmu;-ﬂl Grn.up"!'r Group B

Mote T shows the higher-lower relationship between groups.

Fignre 10 A sample of function strucluring by SCIL

For example, Acceprance and Shipment delivery are typical functions of the stock. Shipmeny
request and Carge onder are typical data stored in the stock. The matrix numbers show
the degree of the relationship between function and data. Then, we find the set of functions
and data, based on the relationship information by structural modeling method SCI. In
SC1, the functions related to the same data form one group. Next, the group of functions
related 1o many data, including the above mentioned data. is placed above the first group.
In this manner, SCI implements the structure among the groups, Figure W illustrates a
result of structuring by SCI. From this result, it is possible to find the most typical OBJECTs
candidate. Figure 11 gives a sample OBJECT candidatc, based on the structuring result.
The higher group (groupl), being related to more data items than the lower group, becomes
a MENDEL OBJECT candidate. The lower group, related to the common data part, is
ofien regarded as s METHOD candidate in the MENDEL OBJECT. In this example, Figure
II as & whole, shows the candidate OBJECT with five functions as its METHOD. As the
result, it is possible to construet a skeleton of the reusable component stored in the library,
using the structural modeling method.

1.2, Reusable components recrieval and interconnection

The OBJECT in MENDEL is a concurrent processing unit, which also corresponds to the
concurrent reusable component. Each OBJECT has finite pipe caps and can transmit messages
only through the pipe caps. In MENDEL/ET, binding between pipe caps is accomplished
auomatically by the planning method. which selects the necessary OBJECTs and binds
the transmission pipes to create the message passing route from input specifications to output
specifications.

Planning carries out the automatic retrieval and interconnection, according to the fol-
lowing principles:

— 10 —

AN APPLICATION OF STRUCTURAL MODELING AND AUTOMATED KEASONING i3

Figure I, Example of o MENDEL ohject candidate.

{a} A pair of pipe caps, having the same or similar meaning atiributes, can be interconnected.
(b} All required output specifications must be able to reach from given input specifications,
through connected OBJECTs and pipes.

In some cases, it might happen that no candidate would be found, or that many candidates
would be found. To deal with this problem, the authors adopt a kind of semantic network,
which represents the attribute structure and defines a metric to assign priorities to the can-
didates on the semantic network (Uchihira et al. 1987).

Generally, planning achieves the generation of an action sequence or action program for
an agent such as a robot (Nilson 1982). Input for planning includes the initial world, a
set of actions which change the world, and the final world. The cutpul from planning forms
a sequence of actions, which is an acyclic-direcied graph. As cach action can be regarded
as a reusable component and the world can be as input and output specifications, the sequence
of actions is the set of reusable components necessary to satisfy the input and output
specifications. Each reusable component has specification iself, named Frule (Nilson 1982),
Frule consists of precondition, add formula, and delete list. Precondition corresponds o an
input message inte the reusable component, add formula corresponds to an ouiput message
from the reusable component, and delete list includes the input message not present in add
Jormula. For the acyclic-directed graph, each node corresponds 1o a reusable component
and each arc corresponds to the data flow between reusable components in the acyclic-
directed graph. By using the planning methad, the user can retrieve and interconnect several
reusable components at one ume, by giving input and output specifications only.

324 S HONIDEM, N, UCHIHIRA, K. MATSUMOTO, K. MATSUMURA AND M. ARAI

MENDEL also introduces a hierarchical planning mechanism, similar to ABSTRIPS
{Sacerdeti 1974). In MENDEL, the assignment strategy for criticaliny values 1o the literals
of an F-rule’s precondition is based on the design informativn from the reusable COMPONEnt
generation process. by structural modeling method SCL In SC1. at first, the relationship
betwesn functions and data is defined by assigning points which indicate the degree between
them. The result from SCI forms the higher group. in which a principal function among
several functions. is clearly defined. As each OBJECT identifies princapal function., the
message associted o principal function can be recognized and the highest value is assigned
as criticality value 1o this message of an F-rule’s precondition.

L3 Symthesis synchronization part

The synchromzation part is synthesized from a formal specification using the auntomated
reasoning method. The synchronization part is the scheduler which controls the messape
passing among OBJECTs. Message passing cun actually be controlled by opening or closing
4 gate. Hence, to synthesize the synchronization part, it is perurenl o give the specification
fur either opening or closing the gate. This specification is written bw KT-PTL {Real-time
Prapositionil Temporal Logic), which is an extension of PTL { Propasitional Temporal Logic)
(Wolper 1982) for introducing timing constraints. An atomic proposition in RT-PTL will
correspond o an atomic action of the gate in MENDEL/ST. This means that the statement
propusition g is true for the state implies gate g opens, lets only one message puss through,
and then shuts ar the siare.

Two kinds of constraints are considered in this paper. The first one js tming constrains:
maximum, minimum and duration constraints. PTL cannot describe timing constraints.
In some cases, it is necessary 1o give a specification, depending on a situation which changes
dynamically. It is difficult 1o give such specifications in PTL. Therefore, liming constraints
are introduced as follows (Dasarathy 1985}

{a) Maximum: no more than ¢ amount of time may elapse between the ocourrence of one
cvent and the occurrence of another,
{b) Minimum: no less than ¢ amount of time may elapse between two events,
{c) Duration: an event must nccur for ¢ amount of time.
Each of them (called timing constraints statements in this paper) is specified as:
(a) When p occurs then g ocours max = ¢
by When pr occurs then g occurs min = ¢
{cy While p occurs duration = «

Another constraint is temporal-ordering, which specifies the restrictions on ordering pates,
This constraint is given by PTL formulas. Four termporal operators are added to the proposi-
tional logic (PL) to get the PTL. Its fornulas are defined inductively as follows;

{z) Every PL formula is PTL formula,

(b} Next p. always p. eventually p, p until g, p and g, not p are formulas, if p and g are
PTL formulas.

— 1

AN APPLICATION OF STRUCTURAL MODFLING AND AUTOMATED REASONING izs

Other unusual logical connectives, such as imply, or, equivalent are defined in the usual
manner. Each emporal operator has the same meaning, which the English word indicates.
Precise defimuons of PTL semantics is available in (Wolper 1982).

The decision procedure for RI-PTL is the same as that for PTL, except for the timing
constraints treatment. The decision procedure for PTL (Wolper 1982) is an extension of
the tableau method which 15 a2 kind of theorem proving method. In the tableau method,
to decide the satisfiability for the given formula. a model graph, which is a state transition
graph, may be constructed. The arc on the state transition graph consists of the event and
the sction, where the cvent means the gate-opening and the action means the user-defined
processing time for the OBIECT caused by the gate-opening. 1f this graph cannot be con-
structed. the given formula is unsatisfiable. A stute transition graph is a collection of all
madels to a given formula. Scheduling rules are translated from this model graph. A state
transition on this graph for PTL formula is accomplished by implementing a fairess strategy.
In RT-PTL, it is implemented by evaluating timing constraints.

The decision procedure for RT-PTL is as follows.

(1) It constructs a state transition graph. disregarding timing constraints.

(i) As traversing the state transition graph, it accumtlates the user-defined processing time
for the OBJECT and checks o meet the timing constraints such as allowable maximum
time between two events. 10 it finds arcs which violate the timing constraints, it deletes
or restricts them. As the result, the restricted graph is assured to meet the timing con-
straints. If the restricted graph becomes empty, the functional part which consists of
several OBJIECTs cannot meet the timing constraints,

As a result. the RT-PTL description consists of two paris: a set of timing constraint
statements and PTL formulas. Next, a simple example is explained.

Example.

There are one producer-OBJECT, two consumer-OBIECTS, and one stocker-ORJECT, which
15 generated in Section 3.1. A producer-OBJECT sends two produets to & stocker-OBJECT
("maie’ in RT-PTL proposition), the stocker-OBJECT holds these products {*make__ ok’
in RT-PTL proposition), and rwo consumer-ORJIECTS send requests to the stocker-ORJECT
for the product (‘regl’, ‘req2’ in KI-PTL proposition}, as shown in Figure 12. Synchron-
ization requirements are described as follows:

{a) always (make imply (not{regl or req2) until make__ok))
{b) always imake imply (next eventually {regl or reg2)))
(c} when make occurs then (regl or reg2) occurs max=30
(dy when regl occurs then req2 occurs min=15

(e} when req? occurs then reql occurs min=15

(f) while make occurs duration 10

Statements () and (b) are PTL formulas, which indicate the temporal ordering among gates.

For example, statement (a) means that ‘regl” and ‘req2” must wait to be received by stocker-
ORJECT, whilc ‘make” message processing. Staterments (c), (d), (e}, and () describe tirming

— 13

326 5 HONIDEN. N. UCHIHIEA, K MATSUMOTO, K MATSUMURA AND M. ARAI

Producer |
Make-ok Make
i
Stocker ‘

req 1 \EG 2

o
~ ™~
Cnn!-‘.umf!rl Cmnsumerﬁ |

Fguere {2 Example: Producer-consunmsr problem,

constraints, For ¢xample, statement (¢} means that no more than) amounts of time may
elapse between the occurrence of *make” and the occurrence of ‘regl” or ‘req2’. Also, state-
ment (c) restricts the number of particular loop on the state transition graph, which was
generated from statements () and (b), 1n order to satisfy allowable maximuom time between
‘make’ znd reql’ or 'reg2”

Fd Visua! execution

Exzcurion is pseudo-concurrent on one CPU. The gate is implemented as a mail box. The
mterpreter selects one of the ORIECTs waiting at the mail box and allows it o receive a
message according to the scheduling rules derived in previous steps. Through such a visual
execution, the user can determine the system overview, which has been constructed from
reusable components and synthesized from RT-PTL specification. This method supports
the software prototyping. Therefore, is is possible 1o return o an arbitrary step which had
previously been accomplished, if the system behavior does not match the user'’s require-
ment image.

4. MENDELS ZONE: A sofiware development environment for real-time systems

This section describes an overview of MENDELS ZONE using a simple example. MENDELS
ZONE is a sofiware development environment for real-time systems, which has been imple-
mented on Prolog machine PSI-II. MENDELS ZONE provides five windows as user inter-
face, as shown in Figure 13

3

AN AFPLICATION OF STRUCTURAL MODELING AND AUTOMATED REASONING

=OpufE JoR[EE eERE|d 1§

Burpuly oljmesoine g [enues 1w sEwa|e g

SOPUER e R

=% dJdae gm

E
—
—
S @dEn "
EL L
guga | |
e Tty
- -
”u:.i . W._
2"

T
yErpod

@7 UDTIRIRE EJIAJI0 BYEE B]TUs

Sl=UlE §IR308 (bl Byl EINO00 FhEd kg

Sledln 00 FOEJ UNY] ELRD00 [hEd b

[10 " RCFLEET

(Zhid 40 [hEd) Usgy FJNI00 SRS UM
Ll lTERd a9

[hoap Rjpwnjusss jumuy Ajou) eyew) cRes]e
L e L)]

11iun (goks 4o Jbmiy Ajoa) owemy n:!._ﬂ

$TEE Q100 OpUM JEE)o #ARE oW

FRLL] JRETD

ke Dine T e TP

Jaded oy Wuey oy 2 Eaady

980 BuryonajEuns 3 @ yoqes

EjurbLoomon Kiies 2w ETL F]

WRJEDJ4 Bawdap) O oW WaEdmos

g lGad QESBE F g F o305 Far P
wbivow p g ¢ = 8 FopREiEE |

0 JeENEUED puW JECTROLD 3 3 EUoD0 Ll

epnol esopoud 3w Jesnpoad

Hl_,_u.ilw 1y mau pusdos AewuE T

L2ysnpnsd

£T3INpE0LA

Ednbes - janpals

PR

FyrTran FET] viep] Ut
. : e oy

shisid da) [awego pe-geu.ed

Figure 13 MMI of MENDELS ZONE.

L

3R S HONIDEN. N. TICHIHIRA. K MATSUMOTO, K. MATSUMURA AND M. ARAL

{a} System window, in which the user inputs his command 0 MENDELS ZONE and
receives the messages [rom MENDELS ZOMNE.

(b} Library window, which displays the reusable component, which is MENDELET OBIECT
registered in an OBJECT library,

ich Port window, in which the user determines the input and outpur specilication, which
shows functional requirement,

id) RT-FTL window, in which the user determines the synchronization specifications in
ET-PTL,

{e) Duagram window, which shows the retrieved and interconnected reusable COMPONCnts
and visual execution.

The authors synthesize the producer-consumer program, which is mentioned in Section 3.3,

Phase 1. In this phase, the OBIECT is gencrated and registeresd by the regisicr person.
It is assumed that there are various ORJECTs penerated by structural modeling and registercd
in an OBJECT library us mentioned in Section 3.1

Phase 2. In thas phase. the reuse person retrieves and interconnects the OBJECTs to salisly
his requirements, which are written in the input and output specifications, In this exam ple,
using the Port window, the reuse person determines the following specifications.

Input specification: product__request
Cutput specification: productl, product?

In the Diagram window, MENDELS ZONE shows several OBJECTs which have been
retrieved and interconnected automatically by planning to satisfy the above specification
as shiwn in Figure 14,

Phase 3. In this phase. the reuse person determines the synchronization part among four
OBJECT, Prodducer, Stocker, Consumerl, Consumer2, which were retrieved and interconnected
in Phase 2. In the RT-PTL window, the reuse person inputs the syachronization specification
in RT-PTL. In this case, synchronization requirement is mentioned in Section 3.3, These
requirements are written by opening or closing the gate and are described in RTPTL.

Braduo e

Presdwe Lo
Hegugs L

Proscue t
2

Figure 4. Retrieval and inerconnected OBIFECT:

AN APPLICATION OF STRUCTURAL MODELING AND AUTOMATED REASONING 329

Phase 4. In this phase, visual execution is displayed in the Diggram window. An execution
process is displayed in the Disgram window and the Svstem window. Selected gate and
activated OBJECT will blink in the Diagram window for easy recognition. The content
of the message. going through the gate. is displayed in the System window. An actual syslem
may consist of several hundred rewsable components and may have a hierarchical structure,
To deal with such a system, the MENDELS ZONE supports the hierarchical design of
real-time systems. This means that arbitrary OBIECTs, displayed in the Driagram windomw:,
can be folded or unfolded fively, und that folded OBJECTS can be registerad as one OBJECT
i o hibrary.

5. Related work

This section evaluates the presented method and compares the rolated work.

First, for MENDEL, the following twe discussions are needed, an executable specification
language, and & planning method. Various executable specification languages huve been
presented and used. They are classified into two groups: Operational approach, such as
GIST (Digz-Gonzalez and Urban 1989, PALSLey (Zave 1984), and PSDL (Lugi e al. 1988)
and Functional approach, such as MODEL (Prywers 1984) and RPS (Davis, 1982).
MENDEL helongs to the operational approach category, The disadvantage in MENDEL
is the verification weakness, because only the synchronization parl 15 verified using wemporal
loygic specification. For the combination of actor-model and declarative knowledge represen-
tation, one of the languages most similar to MENDEL is Ohrient 53/K {Ishikawa and Tokoro
1987}, which is an object-oriented concurrent programming language. The main difference
between MENDEL and Oricnt 84/K is that Orient 84/K has several parallel control mech-
AMsms as a programming language and does not Support tming constraints. For planning,
MENDEL' planning ability is the same as ABSTRIP's (Sacerdoti 1974), and the MENDEL
limitation includes that for ABSTRIPS,

Lamport introduced the clock variable into his temporal logic to discuss real-time events
(Lampuort 1983). The value of this clock variable is updated according w the amount of
task execution time. i all wsks in the system are serially executed, no problem arises relating
this clock variable. However. parallel execution of tasks may invoke wrong update of it
Anather approach to the formal verification of real-time systems is v use the first-order
language. Jahanian and Mok propose the real-time logic (RTL) based on Presburg arithmetic
which is the first-order language containing the natural number and their COMParison oper-
ators (Juhanian and Mok 1986). In RTL, timing consteaints can be verified. As it ig known
that the decision procedure for RTL formula needs high-computational complexity, applying
RTL to large scale real-time system seems quite difficult. On the other hand, RT-PTL is
designed for practical use. RT-PTL consists of PTL formula and timing constraints. State
trasnsition graph, except for timing constraints, is generated from PTL formulas by theorem
proving method and is assured w be correct. Timing constraints are used to restrict the
state transition graph to satisfy them. If restricted graph is empty, it unplies that functional
part cannot meet the timing constraints.

Several software develupment environments for real-time systems are presented, such
as SDL (Orr eral. 1988), STATEMATE (Harel ct al. 1988), ENVISAGER {Diaz-Gonzalez

330 5 HONIDEN. N. UCHIHIRA, K MATSUMOID, K, MATSUMURA AND M. ARAI

and Urban 198%9) and SREM (Aliord 1985). The mosi similar system among them is
ENVISAGER, in which the behavior of each of the objects, in terms of messages that can
be sent or received, is synthesized from temparal fogic. The main differences between
ENVISAGER and MENDELS ZONF are that ENVISAGER provides several visual func.
tions and adopts ITL (Interval Temporal Logic) which is validated by the simulation method,
but does not support software reuse.

6. Conclusions

This paper has presented a software development method for real-time systems and the

MENDELS ZONE based on this method. MENDELS ZONE suppoerts generation of the

functional part in reusable components, retrieval and inlerconrection of rewsable COmMpOnents,

synthesis of the synchronization part among reusable components and visual execution.
The unique features of this method are as follows:

(i) Generation of a functional part in a reusable component, using the structural modeling
method;

(i) Retrieval and interconnection of the finctional part in a reusable component and syn-
thesis of the synchronization part among reusable components, using the auiomared
reasoning method,

Acknowledgement

Parts of this work have been supported by the Japanese Fifth Generation Compuier Project
and its organizing institute ICOT, as a subpraject in the Jntelligenr Programming Systen.
The authors would like to thank Ryuzou Hasegawa of 1COT for his encouragement and
support, The wuthurs are also grateful tn Seiichj Nishijima and Tukeshi Kohno of Systems
& Sofiware Engineering Laboratory, Toshiba Corporation, for providing essential support,

References

Alford, M. 1985 SREM at the age ol eight The distributed computing design system, Compuier, 18, 4 1645

Armi, M., 5. Tamura, and H. Mizutani. 1981, A method for 8 facturs] mesdeling of complex systems. In Preg.
JEEE In. Confl Syst., Man, Cybern.. pp. 6 76681,

Cohen, D 9684, A forvand interfice sngine to aid in understanding specifications, Ln Proc. AAAL-84, pp. 5660,

Diaz-Caonzalez. TP and 1E. Urban 1989, Priwtyping conceptual models of real-time sysicms: A visual prerspective.
In Proc, HICSS-22,

Dasarathy, B, 19335, Timing corstraints of real-time SyElEmS. comsimints for expressing them, methiods of validating
them. JEEE Trans. Sofrware Eng., SE-Il Ri-R6

Davis, A M. 1982, Rapid predotyping using executable requirements specifications, ACM SIGSOFT 3044,

Hercl, D, H. Lachover, A Nagfmad, A, Pnoeli, M. Polii, B Sherman, and AL Shiui-Trauring, I9EK.
STATEMENTE: A Working Environment for the Development of Complex Resctive Systems. In Prac ok
ICSE, pp. 396-40

Honiden, 5. et al, 1986 MENDEL: Probog bised concurrent object-oriented lanpuage. Tn Proc. JEEE Campeon
B, pp. 230-234,

AN APPLICATION OF SIRUCTURAL MODELING AND AUTOMATED REASONING LK

Homiden. 5 et al. 19885 Sofware protetypimg with reusable composncnts, J, of information Processing, 9, 23-129.
(Alse m, Software Reuse: The Smte of the Practice. JEEE furoriol 19EE.)

Heniden. 5. e al. 1980 An application of structural modeling and sutomated FEASO0IRE 10 CONCUTIENL Program
desymn. Proc. HICES-22

Ishikawa. . ansd M. Tokione. 1957, Cinene 84780 An ohject-onented concurment programming lamgisage for knowledge
avaterm Oyject-Chriensed Concurrent Frogrymeting ted. by Yonczawn and Tokore), Cambradge, MA: MIT Press

Jahaman, F. and A.K. Mok, 1986 Safery analysis of timing propenties m real-time svstems. [EEE Trams. Sofi-
ware Eng. SF-12: pp. 890-904,

Jomes, T.C.. 1984, Heusability in programming: A survey of the stuie of the art. JEFE Thans. Safrware Eng.,
SE-9 4EE-d494

Lamport. L. Y83, Whar pood is temporal logic. In Proc. #98 Inform. Processing. (R.E. Mason, Ed.} Amster-
dam. The MNetherlands: North-Hol larsl.

Lugi. <t al. 1WkE Rapidly protoryping real-time sysienss. JEEE Software, 25-36.

Marni. 2 and B.J Waldinger, 1980, A deductive appoach to program syathesis. ACMH TIIPIAS, 2 00121,

Matsurera, K., H. Mizuzmni, and M. Arai. 1987, An apphicatien of arsctural modcling 1o software requiremments
analysis and design. JEEE frars Saftware Eng., SE-13, d6i-471,

Nilsom. N1 W82 Principles of Artificial fnrellipence, Springe e-Veriag,

Ore, BAL M. Morns, B Tinker, and O3V, Rouch. 1988, Tuuls for real-time systems design. In Froc i
MCEE, pp. 1E0-1%7

Priwers, N5, 1984, Aulwnatic program generation in distributed rooperative computation. FJEEE Trans, Svs.
Man, Cyber, M. 275286,

Sacerdoti, E.Lk |97, Planning in a hierarchy of abstraction spaces. Arnifieral Inreiligence 50 NS-135,

Uchihirz, N.. T. Kasuya, K. Matsuinots, and § Honiden. 1987, Concurrent program synthesis with reysable
compHients using temporal logee. In Proc, IEEE Comprac 87, pp. 455-464.

Welper, P 1982, Symhesis of communicating processes from temuporal logic specificnnon. STAN-CS-§2-925,
Stanford Univ,

fave. 1984, The operational versus the conventional approach (o sofiware develonment Come ACH, 77,
20 104-118.

