ICOT Technical Memorandom: TM-0984

Thi-0954

Parsing as Constraint Transformation
an extension of cu-Prolog

by
H. Tsuda & K. Hasida

December, 19940

w180, 10T

Mita Kokusa Bldg, 21F (FE)3456-319]1 ~3

I c DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parsing as Constraint Transformation
— an extension of cu-Prolog

TSUDA, Hirosha

HASIDA, Koiti

Institute for New Generation Computer Technology (1CO'L)
Mita Kokusai Bldg. 21F, 1-4-28 Mita, Minato-ku, Tokyo 108, JAPAN
Tel: +51-3-456-3069
E-mail: tsuda@icot.or jp, hasida@icot.or.jp

Abstract

Natural langnage processing involves a very complex
flow of information which cannot be stipulated in
terms of procedural programs. This necessitates some
sorl of consbraint programiming

In arder o emhbody this picture, we have developed
a constraint logic programming {CLP) language cu-
Prolog. Unlike st CLP systems, co-Pralog allows
wser defined and dvnamically defined predicates to
represent symbolic/combinatorial constraints. The
conatraint satisfaction in cu-FProlog is regarded as a
sart. of nnfold /fold transformation of logic program-
ming. This paper extends cu-Prolog and presents
a constramt-hased approach bo seotence comprehen:
SH0T,

First, Incal constraints on the feature structure of
categories of the unification-based grammar such as
HPSG and JPSG are treated as constraints of cu-
Pralog. In this respect, mamly feature constraint is
processed not as procedures but as constraints,

Second, the constraint transformation method s
extended here, by incorporating global variables and
a tabulation technigue, so that parsing of a context-
free language is subsumed in constraint transforma-
tion. This process naturally corresponds te chart
pArsing.

Finally, these two aspects naturally fit cach other
in our constraint-hased approach. unlike most NLP
systems, which have distinet procedure modules to
deal with the above two aspects of parsing and make
them intoract. Some examples are provided which
demwomstrate homogencous treatment of feature struc-
ture and phrase structure.

1 Introduction

One serions difficutty in artificial intelligenee in gen-
eral and natural langnage processing{ NLP) in partic-
ular is that it is practically impossible to stipulate
which type of information (such as syntactic, seman-
tic, and pragmatic) Lo process in what order, given
the innumerable, unpredictable pieces of information
coming into play. It does not appear at all useful to
tallor a procedure o deal with only some types of

informmation. Thus, a parser to haodle just syvntac-
tic information does not contribute very much to the
total design of NLP svslems

A promising approach o NLFP, we believe, 15 not
bt have several procedures each dealing with one par-
ticular type of mformation, but to have just one pro-
cedure to deal with every Lype of information.' This
means that we should divide the entire task of NLP
into modules of constraints rather than modules of
procedures as has been done traditionally. We con-
sider that what the common procedire does 5 to
transform consteaints, 5o thal sentenee parsing. gen-
eration, semantic and pragoatic inferences, and so
om should ali be implemented o terns of constraimt
transformation,

To make this a reality, we have developed a
constraint logie progranuning (C1P) language cu-
Prolog. Unlike most CLP systens which deal with
numerical or finite constrainis on the basis of o fixed
set of reserved predicates, cu-Prolog allows user-
defined and dynamically defined predicates 1o rep-
resent symbolic, combinatorial constraints. The con-
alrainl salisfaction m cu-Prolog is regarded as a sort
of unfold/fold transtormation of legie progranuning,
A program elause of eu-Prolog is called CAHC (Con-
straint Added Horm Clause), which s a normal Horn
clansze followed by constraints,

Section ¢ outlines co-Prolog and treals constramt
in terms of feature structure of the unification-based
grammar. Section 3 applies constramnt transforma-
tion technigue to simple CFG parsing and shows the
charl parsing algorithm is naturally derived. Sec-
tion 4 appliss constraint transformation to CFG with
feature structure.

2 cu-Prolog

In [14], we introduced a symbolic constraint
logic programming {CULP) language cu-Prolog B
and indicated a JPS5G(Japanese Phrase Structure
Grammar[2]} parser as its application. By treat-

'"Thus we consider that GPS was basically en the right
track. [ta alleged failure was due te the immaturity of pro-
gramming technologies.

2 cu 15 an abbreviation of consfraint unificotion]d]

ing grammatical principles or ambiguity of palysemic
words or homonyms as constraints, syntactic and
semantic ambiguity s integeaied i the constraint
transformation process. Therefore a special tech-
migue for storing ambiguily is not neceszary.

CAHC

cu-Frolog handles a Constraint Added Horn Clause
(CANC), which i a normal Horn Clawse followed by
a semicolon and constraints {Rody or Constesind can
he eliminaied):

2.1

I e Hady
—~— - & “ - -
H . I;I-H::.----Hn:{'lh{j ----- (m-

Conairiint
i

Note that above CANC is equivalent to the [ol-
lowing normal Horn clause in terms of declarative
semantics.

H - B].Hﬂ....,ﬁn.f_-'h{-.'_n.--.{.-Lr".

The Prolog part (before the semicolon) of CAHC
15 processed procedurally like in Prolog, and the con-
strainl part is dyvnamically transformed with the un-
fold /fold transformation [10] during the execution of
the former part. The following is the inference rule

of ru-Profog
AK,C L A:—=L:D.,

#=mgulA, A'),C" = mfICOH, D)
L9, K8, C'

A and A are atomic formulas. K, L, €.
D. and €' are sequences of atomie formu-
las, mgulA, A') is the most general unifier
hetween A and A°,

mf{C) iz a modular constraint that is cquivalent to
C. If C s inconsistent, the application of the above
inference rule fails hecanse mf(C) does not exist.
When € is divided into equivalent elasses in terms
of the vartables as

C=Ci+- +C,y

then,
mfC) = mf{Cy),... . mfiC,.

For example,
m f(menb(X, [a,b,c]), memb(X, (b, c,d]), app(U.V})

returns a new constraint e0(X) ,app(U,V}, where the
definition of <0 is

c0(b). cole).
and (Let memb he member predicate.)
i f{memb(X, [‘l b, ¢]), memb(X, [kr l,,II]”

ig not defined.

2.2 JPSQG parser in cu-Prolog

In cu-Prolog, the unification-based grammar such us
HPSG{Head-driven Phrase Structure (Grammar|[8])
or IP5G is naturally impleimnented by adding con-
straints to the program elavses representing lexical
citries or phrase structure grammar. Here, we show
two examples of JPSG representation in CAHC.
The firsi is an example of the lexicon of a Japanese
polyscmic noun “hast” thal means hridge, chopsticks,
or cilge. However, such ambiguity is unified by at-
taching ronstrainls o one lexical entry and the am-
bigurty s reduced during the parsing process.

lexiconihasi,|. . sem{SLT SEM)|):hasi_sem(SIT, SEM).

and predicate hasi sem s defined as follows,

has:_semistructure, bridge),
hasi_sem{tool,chopsticks),
hasi_sem{place,edgel.

In mormal lexicon 18

divided

into separate program clauses or the constraint

Prolog. such
hasi sem(SIT,SEM) i processed as a procedure. In
any cases, the process may be mmeffective,

Tin the secomd example, various feature principles of
unification-hased grammar are embedded in a phrase
structure rule as constraints, The following rlanse
shows the foot feature principle of JP'S5G: the foot
feature value of the mother unifies with the union of

those of her daughters.

psr{[foot(MS)], [foot(LDS)], [foot(RDS))); unien(LDS, RDS, MS).

In Prolog. the processing order of literals is in-
evitably fixed in advance and hence the process may
be ineffective,

Figure [shows an exampie of the JPSG parser pro-
cessing an ambiguous sentence. ®

3 CFG parsing as constraint
transformation

The JP5(parser noted in the previous seetion 2,
however cannot handle ambiguily on syntactic parse
trees * because the parsing algorithm is written pro-
cedurally 1n the Prolor part of CAHC. This seciion
iniroduces the extension of the constraint transfor-
mation of cu-Prolog, called Dépendeucy Propagation
(DP)[5] which regards constraint transformation as
computation. As an example of DP, a simple CFG is
parsed only with constraint transformation,

Yew-Proleg is implemented in the © language on UNIX
4.2/3B5D15]. This example is on SYMMETRY.

‘For example, the ambiguity in “I saw a man with a
Lalesreope™ .

_i=pl[ken,ga,ai,surul).

v[Form_ 675, AJN{Adj_677}, SC{SubCat_&679}]:SEM_681-—- [suff_p]
|

--plgal :ken---[adjacent_pl
|

|
|
| |--nlnl :ken—— [ken]
| |
|
|

|
I

|

r

|

} |__plga, AJA{n[n]}]:ken---[ga]
|

|

I

|-—w[vs2, SC{p[wal}]:[leve ken, Obj0_4158]---[subeat _p]
|

ovwlvs2, S0{plgal, plwol}]:[love, ken Objo_415]-——[a1]
_wiForm_675, AJa{vive2, SC{plwal 1}, aJN{aAd;_ 677}, SC{SubCat_678}]:3EM_6GB1-——[surul
cat(v, Ferm_&7T5, []1, 44j_e77, Sublat_ 679, SEM_g81)

cat

cond c7{Form_675, SubCat_678, ObjO_415, Adj_6T7, SEM_BE1)
Troe,

CPU time = 0.050 szec

:—cT(F,8C,,h,SEM).

SC = [eat{p, wo, [0, [1, [, Objo0_30}]
[1, [I, inet{ObjOD_38, Typed_36))]

4 = [] SEM = [love,ken,0bjo0_30];

F = syusi

F=rentai 5C =[] & = [cat(n, n, [],

SEM = inst{ObjOO_38, [and,Type3_38,[love, ken,Dbjo0_3811)
no.
CPU time = 0.017 sec

The first line is a wser's input. "Ken ga ai suru’ has twe meanings: "Hen loves (someone]” or “{someone) whom Ken

loves” .

The parser draws a parse tree and returns the category and constraind of the tap node In this example, the ambiguity of
the sentence is shown in the two solutions of the constramt =7(F 8¢, ., &, 5FM)

Figure 1: An example of in ambiguons sentenee

For the sake of expository simplification. here we
restrict ourselves to Horn clauses, although D s ol

zn‘.'[.u;—l”:.' so limited.

3.1 Definitions

Ax a tnigper of constraint transformation. DP con-
siders dependency among literals. A variakle aceur-
ring in more than two distinet non-vacunus places i
a clause has dependency. When an arguieent place
of & predicate 18 a variable in all of its definition
clanses, the argument place iz called a vacuows ar-
gument place. For example, the first argument place
of member defined below is vacuous,

(1) & member(E,[E|_J}.

b, member(E,[_15]) :- membexr{E,5).

We put # after the vacuous variable that has de.
pendency with other literals as Tollows:

(2] member{X#, Y),c0(Y,2}

In the above, though variable ¥ occours in two places,
there is no dependency because the first ¥ is vacuons,

P also introduces a fransclawsal variable that cor-
respands to a global variable of Pascal or C Program-
ming Language and is treated as if it were a constant

i some context, We put # e front of a transclausal

varianhle as follows.

()
s=wpl#V0, B, #V0=[seel|*V1],*vi=[a, man| *VZ] .

Clonstraint transformation s executed so as to
cluninate dependency of goal clanses or a body of
progran clanses, therefors is more general than Far-
ley deduction [7] which executes the hody of each

clause in the fised lefi-to-right order,

3.2 Penetration

I'e process vacuous variables and transclausal vari-
ahles, we introduce penefration operation in addition
to the unfold ffold transformation.

Dawnward peneiraiton 13 to replace a literal that
contains transclausal varniables with a new literal that
rontains no transclansal variable defining a new pred-
teate with unfold /fold transformation. For example,

{1 a. :=-p(+v0,B),+Vo=[a|sVi].
b. p(lalX],X).

e, p(X,Z2):-p(X,¥),p(¥.2).

15 transformed to {5). p0 is a new predicate and po(B})
1= equivalent to p(#¥0,8}. The dependency concern-

ing #V0 in Lhe first goal of (43 s dissolved,

r

(5] a. :-pO(B),#VO=[a|*Vi].
L pO(+Vi).
. pO{Z):-pl#Vi, Y}, plY,2}.

Upward penetrateon is to redues a uni elanse con-
taining transclausal vaniables so as to change some
argument places to begin vacuons. For example, let
(6] beall the elavses that contain p0. The argument
place of p0 s not vacuous because the transclausal
variabic *V1 in the first clause i3 considered as a con-

stant,

(i) n. pO(=vi}.

b. po(Z3:-pol(¥),p(¥,Z).

Hy replacing po(#V1) with a new predicate ploand
(6] is transformed 1o (7)

(7 a. pl.

b pO{Z):-p1,pi*V1,2),
rop(Z):-pl(Ye) p(¥,2).

The‘n |.||P ATENTE N !IllHI'I" lir p-ﬂ lseronws varuous,

3.3 Parsing an ambiguous CFG

Lot as consider the following simple ambiguous
comtext-free grammar, Thas corresponds to the syn-

tactic ambiguity of “T see a4 man with a telescope.”

(5] VP — LA

Ve —-Vvrre
NF — NP PP
Vo= gae

NP — a man
PE — with aielescope

Parsing program in terms of this grammar can be

formulated as follows.
(CO) *VO=[ses|wVi],

*Vi={a man|®Vv2],
sVi=[with,a,telescope|*V3],
*?3':IEIL 3

i—vpl*V0, B},

vi{[eaa|v] W).

npi[a,maniw] W), '
pp(lwith,a,telescope|W] W),
vp X, 2) :—v(X,¥Y#) np(Y.Z).
vpik,Z) i-vpl(X,¥#),ppiY.2).
ap(X,Z) :=np(X,¥#},pp(¥.2).

(C1)
(o)
(cz2)
(C4)
(CE)
(ce)
{CT)

There is only one dependency to e eliminated: Vo
m (€1,
as vpO(V) = vp(*Vo,V). By downward penelration,
(€1} is replaced with the following clauses,

Here, we introduce a new predicate vpo

(€1} :i-vpo(B).
(CB) wpO{V):-vp(#V0,Y)},pp(Y,V).
(co) vpl(V):-v(*V0,Y),np(Y,V).

Ry folding the first literal in the body of {CB), we
have

(c8') wpO(¥):-vpo(Y),pp(Y,V}.

Kext, we process the dependency concerning Vo
i the body of (€2). Let v0(V)=v{=V0,Y} and hy
downward penetration, we get

(Co') wpO(V):i—vo(Y) ,mpl¥Y, V).
(C10Y wO(*¥1).

As w0 has only one definition clause (€100, then it

15 reduced,
(C8°) vpO{Vi:—np(*Vi V),

Let npd (Vi=nap(#¥1,V) and by downward penetra-
L,
(C9") wpO(V):-npl(V).

{C11) npli=va).
(C12) mp1(¥):-np{*V1,Y), ppl¥, V).

Fold the first literal of the body of (€120, then
(C12') ap1(V):-npi(Y),pp(¥,V).

The argument place of apl s not vacuons, then
we apply downward penetration to npi. Here,
npl2=npl{*V2).

(C11') mnpiz.
(CL3) npi(V):-npli2, ppl*V2,V},
(C12') npa1(V):-np1(¥), pp(Y.V}.

We have to consider the dependency of the serc
ond literal of the body of (C13). Here, let
FR2{V)=pp{+V2, V),

(C13') npl(V):-npi12,pp2(V).
{Cc14) ppgiwwaj_np PP

pp2 has only one definition, then is reduced.
(€13"} np1({+¥3},

The remaining definition of apd s (C11°) and
(C13"), Then (C9") is reduced.

(Co-1) vpO{=¥2),
(Co-2) vpD{+V3),

Apply upw:_trd penetration to (C&'), (C@-1),
(Co-2) introducing a new predicate as
vp02=vpO(*V2) and wp03=vpO(=¥3}, then the defi-
nition of vpl becomes as follows:

H.[H‘I

vpll.
vpba,
vpOiV) i -vp02Z,pp(*V2, V).
vpO{V} : —vp03,pp(*V3 V).
vpO(V):—vpO(Y),pp(Y. V).

Finally. it is transformed to

vph2.
vpdi.
vpo3.
vpdiV} —vpO (Y} ,pplY, V).
The twi occurrences of vp03 correspond to the two
micanings of T se¢ a man with a telesrope™.

3.4 Complexity

Tlis subssection reviews the complesity of parsing on
ramsirmnt transtormation. (9 15 & simple CHFG ex-
ample mentioned n 5],

(M P —
PR

Parsing 1l string “#a .. .a" (length 12 n) under this
gramat may be formulated 10 terms of a ser of con-

atramts i LU},

[H” = P[ll.bB]! 'u"-'-l:ﬂ.lﬂl:ll - l“_|=[ﬂ|*”].
pilalxl, x).
plX,2) o= plX,¥), p{¥,2).

Aller some transformation steps, (11) 15 finally ob-
tained.

i1y =g, aU=Tala'd, -, A" '=[ala"].
q o= anB"}.

q - poi. B'SA (0« i<m)

P (Z) 1= pig, MILZ). (U< j<n)
BilZ) - pel¥), pOY.Z). (00 < n)
Piitr- (0<icm)

Fie = Pigs Piv- (=i j<kan)

Fart of (11} amounts to a well-formed substring
table, as in CY'K algonthm, Earlr.:."ri H.LE!:}EilIIIII l]l,
chart parser, tabulation techaique [11], and so on.
For instance, the existence of clavse py g :—=pi 5, pis.
means that the part of the given string from position
it to position & has been parsed as having category
#oand b5 subdivided at position § into two parts,
cach having category F. Note thatl Lhe compirtational
complexity of the above process is ({n®) in terms of
beath space and time.

Mareover, the space complexity is reduced w O(n”)
if we delete the liverals irrelevant to instantiation of
variables, which preserves the semantics of the eon
straints in the case of Horn programs. That is, the
resulting structure would be:

(12) :-

q. A'=[ala'], -, A" '=[ala"].
g = pafB").

q :— B=a%. l_'ﬂ-t-:tlf;)

pt'i:z:f e p_r'{z}- {nft(—jfﬂ}
pe(Z) = pi(Y), p(YV,Z). (D i< m)

pij. (W< j<n)

The process illusteated above corresponds best to
Larley’s algorithm. Chur procedure may be gener-
alized to emplov bottom-up control, o that the re-
sulting process should be regarded as chart parsing,

fefi-corner parsing. and so on.

4 Parsing CFG with fea-
ture structure as constraint
transformation

This section tries to handle various types of con-
straints such az the constraints on feature structure or
an phrase structures mentioned in the previous two
sections. We have to investigate some heuristics to
determine which constraint s processed earlier than
the others.

Heuristics

4.1

Tt fosllowing discussion, we consider only Horn
clanse constrainl. and teo Lypes of linguislic eon-
straint: constraint on feature structure and on phrase
structure.

Thi=

henristic Euar antees that bl r_'1_1||:jE||_.|Lul,'|u|:|; faakess Plar_':_-

Fallowing is a hewristic used in this paper

in such a way that it may be fooked upon as phirase
structiure computation annotated with constraints on
feature structures as in the approach of Section 2, just
as people would like to TI'E;FLTI.J PRI, Provesses L L,

¢ A variable occurring in both types of consteaint

does not have dependeney.

& Dependencies concerning feature stroctures
should be ehminated earlier than those concern

ing phrase atructures.

Literals concerning phrase structures should be
unfolded frst when you attempt to eliminate de-
pendency between literals abont phrase stroc-
tures and literals ahont feature structures.

4.2 Example

The program helow is another formulation of the sim-
ple CFG (8). We consider only one feature called pos

¥ that takes a part of speech such as np,vp, pp,and
50 o1, pes feature follows the constraint that corre-
spemds to the first three rules of [8)

The combination of the value of pes fea-
ture of mother, left daughier, and right
daughter category 15 (vp,n,np).(np,np,ppl,
or | ¥p, VP, PP

In the followmg, constrants concerning phrase
structure (predicate cst) and those concerning fea-

Lure steucture [predicate p) are separated by '] °.

*Vo=[zee|*V1],

*Vi=[a,man|*V2],

#U2= [with,a, telescope|sV3],

#V3=NIL

t-p(*V0,B,C).

p(X,2,Cat) - =p(X,¥Y4,LC),p(¥,2,RC) |
cst(LC,RC,C).

pllsee|W] W, vi.

plla,man|W] W, np).

pllwith,a, telescope| W] W, pp).

est{v, np,¥pl.

cat{np,pp,np).

cat{vp,pp,vpl,

(PO}

(P1}
(F2Y

{Pa}
{Pa)
(P&}
(P8}
LFT)
(Pa)

The dependency to be processed 1s 1n terms of =¥0
e (FLY because LE and RS in (P2) do not have de-
pendencies. Process dowoward penetration. Here,
pO(B,C)=p{+V0,B,0).

(F1'] :-pO{R,C).
LPE] plisVi,v).

(P10} pO(B,C}:-pisVvo,¥e, LC),p{Y B, RC) |
cst{LC,HC.C?.

Fold the first hiteral of {(P10)

(P10*) pﬂ(E.Cat}:—pD{‘f.L\C].pf_?,ﬂ,l’l‘.ﬂ] |
cat(LC,RC,Cat).

Upwanl penctration. Let pol=p0(s¥1,v).

(PB) poO1.

(P11} pO(B,Cat):-p01,p(*Vi,B,RC) |
cet{v, RC,Cat) .

(P10} pO(B,Cat}:-po(¥# LC),p(Y,B,RC) |
cet(LC,RC,Cat) .

Unfold the feature constraint of (P11).

(Pi1') pO(B,vp):-pl1,p(+V1,B,np}.

Dowuward penetration. Here, p1{B)=p{*V1,B,np}.
(P11") pO(B,vp):-p01,pi(B).

(P12) pi(=V2).

(P13} p1{Z):-p(*V1,¥Y,np),p{¥,Z,RC} |
cst{np,RC,np).

Unfold the feature constraint of (P13) and fold p1.

(P13') pi(Z):-p1{Y),p(Y.2Z,.pp).

*It is different from pes feature of JPSG.

Upward penetration. Let pl2=p1(#*V2).

(P12') pi1z.

(P14} p1(Z):-pi12, E*V:.z,gp}.
(F13') p1(Z):-p1iY#),p(Y,Z,pp).
(P15) pO(#V2, vp):—pl1,pl2.

Downward pencieation p2(B)=p(*V2,Z,pp).

(P14°) pl(Z):-pl2,p2(Z).

(P16) p2(*v3).

(P17} p2{Z):-p(*V2,Y,LC),p(¥,2,RC) |
cst(LC,RC,pp).

Unfold the feature constraint of (P17}, how-
ever il fails because there is no clause matching

cat (LC,RC,pp). p2 15 reduced.
{P14") pi1i=v3),

By upward penetration wtroducing pi3=pl{*V3),
(F11') becomes

(PL1-1} pO(*V3 vp).

and 15 corresponds 1o “see (a man with a telescope).”
From (P15} let p02=p0{*V2,vp) and apply upward
penetrat won.

(P10") pO(B,Cat}:-p(*V2,B,RC) | cst(vp,RC,Cat).

Unfold the feature consteaint of (P1O").
(P10-3) po(B,vp):~-p(*V2,B,pp).

It 1= finally becones

(F10-4) pO(*V3,vp).

and corresponds to “{saw a man) with a telescope.”

5 Concluding Remarks

In this paper we have shown that various parsing
techniques are subsumed in a general procedure of
constraint transformation. Thus our conclusion is
that no parser at all is needed in natural language
processing. It is both desirable, as is discussed first
it the paper, and possible, as we have so far demon-
strated, for an NLP system to have no particular
module for parsing sentences, just as a car has no
particular part for driving towards the east or turn-
ing to the left.

For further research, an essential aspeet of ex-
tended LH parsing methods such as the Tomita
Parser [13] and the YAGLR method [6, 12] is au-
tomatically inplemented as a corollary of our trans
formation procedure,

Constraint hierarchy mentioned in the last section
is an important eoncept in representing and process-
ing patural langnage grammar. There are many types
of constraints to be evaluated (syntactic, semantic,
pragmatic, and so on) and there seems to be a com-
plex hierarchy between them. Tor example, semantic
constrainis sometimes work to reduce syntactic am-
biguity. butl sometlinnes overcome syntactic ambigni
ties in the processing of an ungrammatical sentence.
Wi are now considering a hierarchical canstraint logic
progranuning language (HCLF) as an extended ver
sion of cu-Prolog to deal with such probless,

Equipped with an adequate control mechanism
our approach will caplure sentence generation as well,
In this connection, Slhieber [9]. among others, has
also proposed a compubational architeciure by which
to unify sentence parsing and gencration, bot his
miebhod s primarily specilic o phrasestrne e syn-
ihesis. A sigoificant merit of our approach s that it
1= not in any way restricled Lo parsing or generalion
in context-free languages. Also, no additional mecha
misit s pedguiired Lo extend the nnderlying grammati-
ral formalism sn that grammiatical categories may he
I'LII!lli-il.“:!L feature bundles. as s the case with {-;Fﬂ“,
L¥F(:, HFSG, and so on, rather than monadie syvio-
baols. I such a more general case, the standard pars-
i.ll.l:'. H]HHFH.II]IIIH are n‘gardwi s IIHrf'iFl”:r' -H.]II'I-]'HIiI'IIHl-

ing DF in sentence comprehension

References

[1] Barlex, X, {1970} ‘An Efficient Context-Free
Farsing Algorithim’, Cemmunications of ACM,
Vol 13, pp. 94-102.

[2]

Gungi, T (1986) “Japanese Phrease Stroelure
Carmnnanr’, Resdel, Dendvechi, 1986,

Masida, K. (19886} “Conditioned Unification for
Matural Language Processing’, Froceedings of
the 1ith COLING.

[4]

Hasicdla, K. and Tshizaki, 5. (1987) ‘Dependency
A Unified Theory of Sentence
Comprehension and Generation’, Proceedings of
the 1th LICAT pp. GB4-6T0.

[4]

Propagation:

Hasida, K. (1930} ‘Sentence Processing as
Constraint
ECAII0.

Iransformation”, Proceedmgs of

Numazaki, . and Tanaka, H. (1990) ‘An Effi-
cient Parallel Generalized LR Parsing based on

[6]

Logie Programmung', Proceedmgs of the Logie
Programmang Conference 90, pp. 191 195

Pereira, F.C N and Warren, [0 H_D. (1983)
‘Parsing as Deduction’, Proceedings of ACLEY,
i 1AT-144.

[8] Pollard, . and Sag, 1A (1987) fafermation-
Hased Syntar and Semantics, Volume 1, CUSLI

Lecture MNotes No. 1

Shieber, S M. (1988} A Tlniform Architecture
for Parsing and Generation’, Proceedings of the
12th COLING, pp. 614-619

(9

Tamaki, H. and Sato, T. (1983) ‘Unfold /Fold
Transtormation of Logic Programs', Frocoedings
of the Second Tnfernafional Conference on Logue
Programeng, pp. 127-138.

[10]

Tamaki, H. and Sato, T, (1984) ‘OLD Resolution
with Tabulation”, Proceedings of the Thand fuler-

(11

natienal Conference on Logie Progrommang, pp.
Ra-48

[12] Tanaka, 1. (1990) "YAGLR method: Yot An-
other Generalized LR Parsing”. wnpublished,

Tomnita, M. [(1987) “Au Efficient Anginented-
Context-Free Parsing Algorithm®, Computs
tromal Linguestees, Vol 13, Noo 122, pp. 31-46.

[13]

Tauda, .. Hasida, K., and Siras, H. (1939)
JPSG Parser on Constraint Logie Programe
ming', Proceedings of the Ewropean Chapler of
ACLES, pp. 95-102

(14]

Tsuda, H., Hasida, K., Yasukawa, H. and Sirai,
H. (1990} "cu-Prolog V2 system’, [COT TM-252

(1]

