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Abstract

This paper investigates the optimal efficiency of the multi-
level dyvnamic load balancing scheme for OR-parallel pro-
grams, using probability theory

In the single-fevel dynamic load balancing scheme, one
processer divides the given task inte several subtasks,
which are distributed te the other processors an demand
and then executed independently. We introduce a formal
model of the execution as a queuing system with several
servers. And we investigatle the optimal granularity of the
subtasks Lo attain the maximal cfficiency, taking account
of the dividing costs and the load imbalanes among the
processors. Thus we obiain the estimates of the maximal
eflicisncy,

We then apply these results to the analveis of the effi-
cieney of e multi-lecel dynamic load balancing scheme.
which is the iterated application of the single-level dy-
namic load balancing scheme in a hierarchical manner.
And we show how ihe scalability of the load balancing
scheme is thereby improved over the stngle-level oo,

Key words,  parallel processing, load balancing, effi-
cieney, gquening Lheory, isoefficiency.

1 Introduction

The purpose of parallel processing is to accelerate the ex-
ecution of time-consuming tasks by ulilizing & powber of
processors. The efficiency, defined by the speed-up di-
vided by the number of processars, indicates the perior-
mance of parallel processing. It depends not only on the
alzorvithm itsell, bt also oo the namber of PrOCessors,
the problem size (the amount of computation reguired by
the best sequential algorithan for sobving i), and others,
In general, for a given task, the efficiency decreases as
the number of provessons mereases, as Amdabl’s law illus-
trates, Therefore it is important to analvze how the effi-
ciency depends on these lactors. In particular, as larger
and larger-seale multiprocessors are heing developed re-
cently 4], the scalability analysis of the efliciency is be-
coming more and more important,

In general, the efficiency may deteriorate due to the
load imbalance among the processors, the lalency of inter-
processer communication, or other overheads associated

with paraliel execution. In particular, if the algn-rilhm s
composed of many parts requiring unpredictable amount
of computation., as is usual with many combinatonial
search problems, load balancing is not an easy task and
have a great influence on the efficiency. 'Thus the load bal-
ancing 15 one of the central issues of parallel processing. A
number of dyvnamic load balancing techniques have been
propesed [1, 2. 5.

Furaichi et wl []] proposed the multi-level dynamic load
balancing scheme for OR-paraliel programs, and evalu-
ated it performanes wsing the Multi- P31 a distribured
memaory paralle] computer with 64 processors, Their ba-
sic strategy i3 to divide a given problem into mutually
independent subtasks, aupd distnbute them to the other
processors on demand. The en-demand distribution will
balance the loads among the processors. However. when
the number of processors increases. the number of the suh-
tasks should corvespondingly increase. Uherefore. if the
dividing is entrustedd Lo one provessor [ he single-lecel dy-
mawiee foad balancing scheme), it will become a bottleneck.
S0 they proposed to divide the problem iteratively in a hi-
erarchical manner { the multi-feced dynamic load bafancing
scheme). And their experiments show that the latter s in
Faet e "sealalile” than the former,

The purpose of this paper is to theoretically investizare
the optimal efliciercy of such a dyvnamic load balancing
scheme, We define a formal model of the single-level dy-
nante losd balancing as a gueving system with several
servers. and analvze itz hehavior using probability theory.
We then apply these results to the analysis of the muli-
level dvnamic load halaucing scheme. Among others. we
show:

L. With subtasks of random size, the optimal efficiency
is worse than that with subtasks of exactly the same
size. In tevms of isocfficieney function®, the difference
typically appears as an extra log p factor. where p is
a nnsnher of processors.

2. The multi-level load balancing scheme is indeed more
“scalable” than the single-level one, The difference
appears as a sinaller ractional order of p in the iso-
efficiency function.

fsoefficiency function indicates the rate at which the problem
size muet grow in order to maintain the efficiency as the number of
processors increases [2].



3 I the tree configuration of he processors in the
multi-level dvaamic load balancing scheme. a pro-
cessor at a higher level shoubd have a larger fan-out
degree than one at a lower level. The order of their
ratio is a fractional power of log g In particular, the
noive tree configuration with the same degree at all
the level is nof optimal.

For conciscness. we make a compromise i rigidity and
give only intuitive proofs in this paper. A rigorous treat-
ment will appear in [3].

2 Model of the Single-Level Dy-
namic Load Balancing

We introduce a formal model of the single-level dynamic
load balancing. based on which we will discuss the optimal
efficiency. .

We consider here one of the simplest on-demand load
distribution technique: — given a task, ome producer
processor divides 1L into mauleally independent subtasks,
which are transmitted to the consumer procossors on de-
mand and then executed. We assume that the granularity
of the subtask can be controlled. namely, we can divide
the task inlo more subtasks of smaller size or fewer ones
aof larger size at will,

For example, let us consider an OR-parallel exhaustive
search of a tree © — the producer searches the tree up to
depth d and produce subtasks, each of which is the search
of a subtree with its root at depth d. Then we can rontrol
the granularity of the subtask by choosing the depth d.

[n order to attain good efficiency. we have to choose an
adequate granularity. With the fewer subtasks of larger
size, the load imbalance among the consumers may occur,
On the other hand, with the more subtasks of smaller size,
the producer may become a bottleneck. Taking these into
account, we define our formal model as [ollows,

Nuw we begin with preparing the necessary notations
and the related assumptions.

# p=1 0 number of consuners.
Note that the number of processors is p+ 1 herealter.

o Iy =0 random variahle. representing the size of
the given task [ CPU time required for executing it
using [ processor ).

o 1y = EiTy) @ espectalion of the task size.

We have in mind a family of the “problem spaces™ pa-
rameterized by 4, the average size of the instance in each
space. We may choose a “problem space™ with adequate
mean size according to the number of available processors
so that we can expect a good speed-up. We assume the
task, or the target problem. is given randomly from the
space. Note thal we do not know the exact size of each
instance task before execution.

random variahle, representing the
number of subtasks,

e r=FE(N)>1 : its expectation.

We may choose adeuate v or adeguate granularite of
the subtasks, according to the expectation of the task siee
and the number of processors. Note that we cannotl con-
tral N itself in general. For example of the above tree
search, N, the number of the subtrees with their roots at
depth d would not he known before execution. although
its expectation mav be estimated beforehand.

We divide the task mto probabilistically equivalent sub-
tasks. Note that we don't require them to be of exacily
equal size,

« A, random variable, representing the size of the
n-th subtask [ CPU time required for executing it .

{fala=1.0.. ¢ independent identically distributed
_ﬂl-.l---.+ H_-,.n . — T!

o [, random variable, representing the CPU time
required for producing the n-th subtask.

{0 ezt ¢ independent identically distributed

Definition 1 Given My el o Uy and poas
above, we define the single-level dynamie load balancing
model, in which the erecufion fime T, should be deter-
mined as follows :

T

max ¥,
leme N

where ¥, and others represent the lime specified below.
a, = E Uy - buwth of the n-th subtask
E=1

Xo=max(0),.2,]) : enstl of erecuting the n-th sublash

Yo=X.+ f, : completion af erecubting n-th sublask
r Igliq-fl{lrl,l.l_,fn—l ]{Tgan-x—l T [P <mz.d }
a{n = 4] aman 1

] (1<a<p)

where Z, represents the time when at least aue af the con-
sumers becomes vrudy to erecute the n-th sublosh,

Here we assumed that the subtasks are immediatelr
transmitted from the producer to the consumers when
demanded and available. Note that Z, depends only on
| ST Yoo, and hence these are determined Iy mduction
on n. This model can be regarded as a quening svstem
with p servers.

in the following we define scveral other characteristics

of the model,
. % = E(L.): average time for producing a subtask
1 i .
s —=—=F{R|: mean subtask size
i) I
. p= — ratic of the production rate to the con-

sumption rate of the subtasks.



We tvpically suppose that producing a subtask is just to
compute an “address” which specifies the portion of the
search space to be assigned. We also assume that this
address shoull be computed in a reasonable ameunt of
tirne — in & pelvnomial time of the deseription length of
g Maanely,

% = D[I:J{rgp]“] for some k& = 10

[n tree search, asubtask. £ a subtree. can be specified
by a path of length & fram the root of the entire tree 1ol
own root. [ the nodes of the tree have hounded degrees,
the “address” of a subtask can be written down in CHd)
tirne. And we should choose d = Olog p) in order to
produce a polvnomial aumber of subtasks in p (Later we
can see ihal the sptimal ¢ i= polvoomially bounded in p
[ Coratiary 1)) :

Finally, we define:

. iy, = Epr] S pnean execution time

o s, = o mean speed-oup
tﬂ
8
v .

vy == mean elliciency
j.’

* Tpas = s'u.*p glp, b, e) o maximal mean efficiency

Note that the alternative definition of the mean specd-up
might be E(T, /T.) in its literal sense. However, since this
guantity is hard to analyze, we did not adopt this defi-
nition. We believe thal Lhe present defimition still serves
as a useful indicater of the mean speed-up, The mari-
mal mean effictency fma 13 the mean efficiency when we
l'.lILJH.".Tf I.I'll". IIFIT-IIEIH-] [ ["I' Ei\rﬂi'l i.' l[lll I..

3 Analysis of the Single-Level
Dynamic Load Balancing

We call the medel defined in the preceding section defer
ministic when we know the exact size of the given task
and can divide it into an arbitrary number of subtasks of
exactly the same size using a constant time per subtask :

=4
. 1 o
Nzv. Ro=-=2 (,=- for¥e=12..
B ¥ A

Proposition 1 (deterministic model)

2

I

=14 —
+.-I'|E|

Nenax

Here =~ represents that the left-hand side and the right-
hand side differ only in & lewer order teem as p — oo,

IXTUITIVE PROOF: The producer hecomes a bottleneck

and hence the efficiency will be deteriorated, when and
ouly when p = 1 [6]. S0 we assume p = 1, Sinee each of

the p consumer processors completes g subtasks per unit
time,

- [} L
[onsct time of execuling the last subtask] &= =———
“p

The last subtask will require 1/ p computation time. hence
v—1

S
T oup

i
o, e
P A

L

|-

| i !
1_ply o
i :! -"“l
Choosing p = 1, we obtain the desived vesult. 1
We call the model erponenfial when the size of the task
(subrtask) has exponential distribution and the noomber of

the subtasks has geometne distnibution :

1
PireT, <r4dr= !—P\'p[—i{:ub' for Wr >0
1 1

Filr = K, <r+dr)=pe™dr for ¥r =10
e |
F[.‘%’:a:]:i(l—i) for ¥n = 1,2.3....
15 €4

Note that the last two of these equations implies the first.
Hence this is a consistent assumption.

Theorem 1 (exponential model)

W oR l o’

fl} !‘-ﬂr"ﬂ"p}] :f_]_—-}'—‘rl.-logp

" 1 r

(i) ForD<W¥p<l 214 = logp
i Aty

INTUITIVE PRrOOE: (i} Since p > |, the onset time of
executing the last subitask 5 the same as in the proof of
Proposition 1. We may assume that all the p consumer
processors are busy at this time, otherwise the “producer

Pt t e k™ 1. Henee.

from the following Lemma,

st have gecorred dnospite of g

- , . 1
{remaining execution time) = " logp

Therefore.

-1 1 t
fp = !)——-"'l"—']l'r":"'ﬂ’_“—.l"'
i P

PP
— - log
e N g

1 1 !
—=F—£:1+':+-
-]

/1 'rl. LOE P
(i) can be proved similarly and we omit the details.

Lemma 1 Let XN, ... Ve be metanlly independent
rvedem varfables with identfical erponential distribution
with mean o:

Plrae XN €r4+de) = Lexp[—iid'.r Jor¥e =0
i =]
Then. for¥a =0,
EiX-a|X>za)=0. E({{X-a)|Xza) =2+

and

(1} E{%_\;,]za-mp



Proof: The first claim can be verified directly, The proof
of the last claim is sketched in Appendix. B

MNow, compare the result in the deterministic model
with that in the exponential model. In the latter an extra
factor of log p appears, which comes from the load imbal-
ance due to the diversity in the subtask size,

Next let us proceed to the general case, If we admil-
ted an excessive diversity in the subtask size. it wourld be
hopeless to try to achieve reasonable efficiency and the re-
suits would be mtintrrealing to us. Hence we assuyme Lhe
following, which indirectly limits the diversity,

We assuime that sacl submitted subtask should be car-
ried out “steadily”™ in the following sense: - the expecta-
tion of Lhe remaining execution time of a subtask shauld
never exceed the initially expected exccution time too
rwich. and the variance of the remaining exerution time
should stay maderate. Nanely,

(Moderate diversity in the subtask size) Forv n.

1 {1 T'GI:—E'}} for¥u =0

E(R. —al| _
{ “ B [ fog ul

R, =

a) =

E({Ra=a)? | Ry 2 a) = oc“lj} Jor¥a =0

as p =+ oo and g = 0. Here E{X|C) represents the
canditional expectation of .\ under the condition

For example, if B, is uniformly distributed over o, E.I"F-]-
this condition 15 satisfied,

On the contrary, imagine a typical situation in which
the above condition does not hold: search of a highly im-
balanced tree. Among the subtrees with their roots at the
same depth, only a few of them are exceptionally larger
than the others. Accordingly, the average size of the few
large subtrees is far larger than the overall average. Here,
the above condition is vialated, and the few exceptionally
layge subtasks will induce fatal luad imbalance. A remedy
for such cases might be to subdivide the subtask, which
has been found to be too large. Such a load balancing
scheme is bevond the scope of discussion here.

Theorem 2 (general case) {Under the abore condilion,

2
Faml Je=0 st *_51-}1—’:—-[]03;;4-:]
1

1
U
INTUITIVE PROOF: According to Lemma 1. we may re-
gard the exponential model as one of the worst cases under
our assumption. Hence the efficiency in the general case
would pot be worse than the exponential case, for which
Theorem 1 provides the desirable bound. I

Corollary 1 Let p and ¢ az above. For 0 < Ve < 1, if
1 i

ty=- " (logp+e)
e A
then by chaosing 1+ such that

1
w=2op-llogp+e) (

we have

4 Isoefficiency Analysis of
the Multi-Level Dynamic Load
Balancing Scheme

The multi-level dynamic load balancicg scheme is an jter-
ated application of 1he single-level dvnamic load balancing
scheme in a hierarchical manner [1]. In our terminology.
il is defined as follows ba induction on the level {

The [-level dynamie load balancing is nothing but the
single-level dynamic load ha lancing. For { = 1. the ({+1}-
level dynamic load balancing is the single-level dynamic
load balancing with each consumer substituted by he pro-
eessors, which executes eacl suhrask using the {-level dv
namic load balancing scheme. We assume that the pro-
duction rate A is common Lo all levels,

We now apply the results in Section 3 to the isoefficiency
analysis [2] of the multi-level load balancing. Namely, we
investigate the size of the tash required to maintain the
efficiency when the number of processors increases,

We begin with a remark on the single-level dvnamic
load balancing. In addition 1o the Previous assumpilions,
we assume that the number A of the subtasks should also
have moderate diversity in its magnitude. Tlen it can he
shown that both the total task size T, and the parallel
execution time T, should also have the same property [3].
Thus we can apply the preceding analvsis iteratively to
the multi-level load balancing.

Theorem 3 (isoefficiency of the multi-level dy-
namic load balancing scheme)  With level €. for ar-
butrary ¢ = 0, there exials ¢ > 0 such that

¢

b2 s

3 0 (logp) T = g zl-ce

for infinitely many p. where p is the number of consumer
PrOCESSOTS,

ISTUITIVE PROOF:  Let 7{p) denole the isoefficiency
function of the flevel dynamic load balancing: — the
mean size of the task for which the -level dynamic load
balancing is expected to work with efficiency at least 5,
using p consumer processors, where 7y is an arbitrarily
given positive constant less than 1.

We use induction. Now assume that

! g Eh
relpp) ~ 3oyt (log pa)

for some € 2 1 and p; > 1. Here ~ expresses that the lefi-
hand side and the right-hand side have equivalent magni-
tude as p — +3¢. Note that Corollary 1 implies this for
{=1withe,=2 4 =1,

Regard the {{ + 1)-leve] dynamie laad balancing as com-
posed of the root producer aned py vietual “consumers™,
each of which is in fact composed of several processors us-
ing the é-level dynamic load balancing scheme with real p,
consumers. where p = p; - pa. Then the overal] efficiency
is maintained if and only if both the single-level dynamie
load balancing at the root producer and the {-level dy-
namic load halancing inside each “consumet”™ maintain
their efliciency,



Corollary 1 gives the condition for the former:

1
reaa{p) ~ -} -logpr - pu

1 m

—_— L
i1y A
where 1/, denotes the mean subtask size carried oul on
the “consumners”. Note that each “consumes™ & acceler-
ated in proportion to pz, when the flevel load balancing
inside 1t works efficiently.
O the ather hand, the induction hypothesis above gives
the condition for the latter:
1 1 .
L 3R Uog )

i

=

i3
From these equations we obtain

I i
Tesr(p) ~ 5 - P - (log pie
1 i

Qs = 2= — Jgr =14
crp Ty

Hence we obtain the following as desired.

4

This theorem implies that the multi-level dvnamic load
balancing scheme is fndeed more scalable than the single
level one in the sense of 1soefficiency.

The next theorem implies that a producer at a higher
level showld have more “consumers” than one at a lower
fevel. In particilar, the naive tree configuration of proces-
sors, in which a producer at every level has equally p*/*
consumers, s nof optimal.

Theorem 4 (optimal processor configuration) [n
arder {o attain Gy cbove we should have

{degree of the root producer) = O(pt - [10.!?]%1}

IvTuviTIvE PROOF: Note that the claim is trivial for [ =
I. From Equation 2.3 and 4 above, we obtain

pi o~ p"': +(log ::-}Ei = pRT - (log p)f

This is the desired result for ({ + Lp-level with £ = 1, &

5 Conclusion

We have investigated the optimal efficiency of the multi-
level dynamic load balancing scheme for OR-parallel pro-
grams, uau'ng probability t.hi:nr_v. In |:=a.rl.1'|.'.|.1|a.r1 we showed
how the multi-level dynamic load balancing scheme im-
proves the scalability over the single-level one,

It would be worthwhile to perform similar analvsis of
ather load balancing schemes, e.g. the parallel depth first
search algorithms 2], kabu-wake[5],

Lo far, we did not consider the latency of inter-processor
communication, or other overheads associated with paral
lel execution. How the efficiency suffers from these should
be discussed in the future work.
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Appendix

A Sketch of the Proof of Equa-
tion 1

For simplicity we may assume & = 1. Then,

.E.'{Ilmax X wa re” (1 — "= dr
Liip il

1 . pe
= ‘I—'}Lf =y log wdy

g
= = ﬂﬂu‘-*ﬂ]q:t

_ : [Mp+1)
= _rr1]+F[p4l]
1
= +2+1 1) = ——
+2+loglp+1) Nl
3 dt

_jx:‘

where ', B, (" denotes gamma function. heta function. and
Euler’s constant respectively [T Since the last term is

P (p+ 17 et o1

negative and greater than —3=l=s, equation 1 follows im-
mediately, I
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