ICOT Technical Memorandom: TM-0967

TM-0967

A Parallel Copying Garbage Collection for KL I

on a Shared Memory Multiprocessor

by
A. Imai, K. Hirata & K. Taki

Movember, 1990

© 1990, 1COT

Mitg Kukusm Blde. 21F (02)3456-3191~5

'c DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Parallel Copying Garbage Collection for KL1
on a Shared Memory Multiprocessor

Akira Imai®

Keiji Hirata

Kazuo Taki

[nstitute for New Generation Computer Technology (ICOT)

Abstract

We propoze an efficient parallel copying GC which is an
extenszion of Baker's sequential algorithm on a shared
memory multiprocessor.

1 Introduction

We are developing a parallel inference machine PIM
which has a tightly coupled sub-structure called clus-
ter, where & processing elements are connected by shared
memory.

KL1, the target language of PIM, iz a concurrent logic
programming language based on flat-GHC. Its naive im-
plementation consumes memory area rapidly sinee KL1
does not have side-effect nor backiracking mechanism.
As a result, the garbage collection (GO) will occur so
frequently that the performance of the lotal system may
be reriously damaged by GO overhead if the GO iz not
efficient.

To achieve a high performance GO, we designed a par-
allel copying GC based on a Baker's “stop and copy”
algorithm[1]. The advantages of this algorithm are that
it 15 simple and fast because only active cells are ac-
cessed,

2 Parallel Execution Algorithm

Redueing Frequent Update of Shared Variables

The bottom of Lhe new heap {tospace in [1]) is one of the
shared variables of all processors in paralle]l execution of
copying GO, In & natve implementation, this value could
be updated with mutual exclusion whenever one data
cell is copied to the new heap. The frequent update of
this shared variable might be the bottleneck,

To avoid this, the unit of the update of the bottom
of the new heap set to a fairly large value {called "heap

"Mita Kolusni Bldg. 21F, 1-4-28, Mita, Minate-ku, Tekyo 108
E-mail: imaificot.or. jp

extension unit”™, HEU jn short). This modification Low-
EVEr can Canse i'I'I.LF!T'I'Iﬂ.l f[ﬂgmﬂntﬂ[.i_ﬂn]}E{..}.'I,'IE;E a.]'l:r' E\jSE
of data ean be allocated.

T solve this, structures are allocated by size which is
raised Lo a value lacger pearest 27 and only the same size
of structures are copied in one unit. This strategy does
not waste rest of the allocated unit.

Scanning Di!’i‘:ﬂ-ﬂt; nuous Area

In the parallel algorithm, the new heap is divided and
allocated to multiple processors. To scan all new heap
which 18 not continuous from a viewpoint of a processor,

Pointer Ss correspoending to § (s¢an) of sequential
algorithm are managed in each size by each pro-
cessor locally. This pointer represents the scanning
point.

» Pointer s corresponding to B (bottom) of sequen-
tial algorithim are managed in each size by cach pro-
cessol locally. This pointer represents the bottomn of
the allecated unit, Alse GlobalB is managed gioh-
ally lo represent the bottom of the new heap, which
represents the bottom of the new heap.

A global pool is prepared to hold arcas to be
seanned,

Load Dalancing

Initially, each processor copies cells to which his own GO
root pointer points. Then each processor scans the unil
he allocated. If the two pointers § and B of the same sige
are apart farther than the size of load distribution unit
(LD in short), the region between two pointers (region
to be scanned later) are pushed into global pool. Some
processor may turn to be idle where all § pointers are
reached o B pointers. Then idle processor iakes out an
regions nol scanned yet from global pool, which means
that load distribution is performed between processors
who have many units to be scanned and processors who
does not,

Speadup ..
Benchmark | average Size of LDU ideal
workload | 256w | fdw | 32w
BUP TU3IK | LB4 | 308 | 323 | 3.95
Master®ind JOK | 25T | 265 [272 207
Qiave 24K | 307 608 | 67T | B.00
Queend oK | 250 | 267 | 274 | ROD
SemiGroup 56K | 363 | 188 | 2.86 | s.00
Zehra 179K | 6687 | 6.80 | 6.80 | 5.00
BestPath 121K | 508 | 7.08 | 6.91 | 8.00

Table 1. Average Workload and Speedup

Termination
G will be terminated when all pointers of all gize / all
processors are equal and the global pool is empty.

3 Ewvaluation

Tu evaluate load balancing, we defined Workload {of a
processor) and Speedup (of the system) as follows.

Workload = (#eells copied) 4 (#cells scanned)

3 Warkload
maz{Workload)

We measured these values on the PIM emulator (VPIM)
which runs in paralicl on Sequent Symmetry using & pro-
cessors, changing the size of LDU (HEU is fixed to 256
words).

Workload 15 a value which approximates to GO time,
and Speedup is based on the idea that a processor of
maximum Workload determines GC timel.

We also calculate “Tdeal Speedup™ of the program,
which is defined

Ideal Speedup =
. %" Woriload
”””[m-::(ﬁ'omm Ier one ;Lrucruﬁ} ’ #DTUC-E:‘SSI'}TSJ

Speedup =

Tablel shows the avarage Workload and Speedup.

4 Discussion

Global Pool Usage

In case of Bestpath, Workload [or per processor is 15.1K.
Avarage number of pushes/pops per processor is 48.
‘I'hat is, a processor pushes into/pop from global pool

" The value Speadnp: represents just how load balancing is per-
formed and the overliesd of load balancing is not taken into
consideration.

every 315 workload. This means that global page posl
access tarely conflicts. Other benchmark displayed al-
mast same resull

Problems

- In some benchmarks(BUP, MasterMind), Ideal Speedup
is fimted (2-3).

= Since our system provides separate compilation facil-
ity, real application programs eonsist of many mod-
ules. ‘This problem is peculiar to toy programs.

+ In some benchmarks (Queend, SemiGroup), Sperdup is
much less than Ideal Speedup.

= 'lhe benchmarks makes very long flat lists. When
copying a long fat list, 5 and B proceed ai the same
speed. That is why our load distribution mechanism
does not work well, Some other load distribution
mechanism should be invented.

5 Conclusion

We proposed a parallel copying GO based on Raker’s se-
quential algoritlun. In large application programs such
as Jebra or BestPath, almost ideal speedup has been
achieved with Little cverliead. We shall evaluate this GO
scheme on PIM in the future.

Refercnces
[t} H. G. Baker, “List processing in real time on a serjal

computer”, Comm. ACM, Val 21, No 4, pp 280- 294,
1978,

