ICOT Ter;hnical Memorandom: TM-0966

TM-(FE

A Comparative Study of the Well-founded and
the Stable Model Semantics:

Transformation’s Viewpaoint

by
H. Seki (Mitsubishi)

December, 1990

1990, [COT

Mita Kokuso Bldg. 21F (03}3456-3191 ~5

l G DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyvoe 108 Japan

Institute for New Generation Computer Technology

A COMPARATIVE STUDY OF THE WELL-FOUNDED AND THE STABLE
MoDEL SEMANTICS: TRANSFORMATION'S VIEWPOINT

(EXTENDED ABSTRACT)

Hirohisa SEKI
E-mail: sekifizvs.crl.meleo.cojp
Central flesearch Lab., Mitsubisht Electric Corp.

8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo, JAPAN 661

1 Introduction

We give a comparative study of two major semantics for general logic programs, ie., the well-
founded semantics [VGRS&R] and the (two-valued) stable model semantics [CL88), from the

view point of program transformation.

Program transformation and partial evaluation have becr considered (o be a useful method-
ology for program development and their usefulness has been shown in various applications (e.g.,
[BD77], [Fut71] and [Ers77]). It will be therefore a useful and interesting question to examine
whether or not each of the bwo semantics is amenable to the program transformation developed
su fur. We will consider specifically unfold /fold transformation, with an attention paid to ite
preservation of equivalence. Tamaki and Sato proposed an elegant framework for unfold/fold
transformation of logic programs [TS#4]. Their transformation rules preserve the equivalence
of a definite program in the sense of the least Herbrand model. Recently, Seki [Sek#9] gave
an extension of the unfoldfold transformation rules to stratified programs [ABWA&T], where not
only the success set and the finite failure set {by SLDNF-resolution) of a given stratified program

but also the perfect model semantics [Prz86] of the program is shown to be preserved.

In this paper, we first specify the rules for unfold/fold transformation of general logic pro-
grams. We then introduce a reduction rule which can be considered to be an instance of partial
evaluation. The main result of the paper is that the well fonnded semantics is preserved for both
the unfold /fold rules and the reduction rule, whereas the stable model semantics is also preserved
for the unfold /fold rules but it is not necessarily so for the reduetion rule. This implies that the
stable model semantics is not so “stable” from the viewpoint of program transformation and

that it requires a more carcful treatment for its preservation than the well-fonnded semanties.

2 Unfold/fold Transformation

2.1 Preliminaries: Rules of Transformation

Fhis section describes a framework of unfold/fold transformation of general logic programs,
which is defined along the same lines as those in [TS84], except that programs to which trans-
formation is applied arc now general logic programs. In the following, variables are denoted by
XY, and Literals by A4, B,---. Multisets of atoms are denoted by L, K, M, ., and 8, a, ..

are nsed for snhatitntions

Definition 2.1 Initial Program

An initial program Fy is a general logic program satisfying the following conditions:

(11} % is divided into two disjoint sets of clauses, P, and P,y The predicates defined in

Phiew arte called new predicates, while those defined in Py are called old predicates.

(I2) The new predicates appear neither in Pyy nor in the bodies of the clauses in Poew. O

New predieates are considered to be those introduced by “Definition Rule™ in the literatnre
{BD77]. They are supposed 1o be given at the beginning of transformation in our framework.
We call an atom, A, a new alom (an old atom) when the predicate of A is a new predicate {an

old predicate), respectively.

Definition 2.2 Unfolding

Let P be a program and C & clause in F; of the form: H — A, L. Suppose that Cp,--+, 0y
are all the clanses in F; such that ; is of the form: A; — K; and A; is unifiable with A, by an
mgu, say, 8;, for each j (1 <5 < k).

Let €5 (1 € 3 < k) be the result of applying #; after replacing A in € with the hody of
C'TJ:! ﬂﬂ-me}l‘l": G_‘;' = Hﬂi — KJﬂJlLEJ Th'E'II., -Pu'-l-l = (P; - {C}] u {G:I "t |CJ:} C iﬂ- ':H-I]E‘d 'l-h.E

unfolded clause and &, -+, O are called the wnfolding clouses. |

Definition 2.3 Folding

Let €7 be a clanse in P} of the form: A — K, L and I? a clause in B pof the form: B — K.

Suppose that there exists a substitntion # satisfying the follawing conditions:

(F1) K'0=K

(F2) Let Xy,---, X;,---, X, be internal variables of D, namely, appearing vnly in the budy
K" of D but not in B. Then, each X;@ is a variable in € such that it appears in none of A,
L and Bé. Furthermore, X;0 # X, 0071 # 5.

{F'3) D is the only clause in F, ., whose head is unifiable with B,

{F4) Either _thu predicate of A is an old predicate, or ' is the result of v applying unfolding

al least once to a clause in Fp.

Then, let C' be & clause of the form: A — B8, L, and let Py he (F, = {CH U {C'}. s called

the folded clanse and D is called the folding clause. (]

The sequence of programs Fy, Py, -+, Pw is called a transformation sequence starting from

an initial program I, if iy (1 > 0) is obtained from F; by applying either unfolding or folding.

3 Preservation of the Well-Founded Semantics

We now show that the unfold ffold transformation preserves the well-fonnded semantics fur gen-
eral logic programs. For the lack of space, we assume that readers are [amiliar with the definitions
and basic terminologies wrt the well-founded semantics, which are found in [VGRS&8],[VGE9)

and [Prz88]. We denote the well founded semantics of a general logic program P by W FS(P).

Proposition 3.1 (Preservation of the Well-Founded Semantics) [Sekao]

The well-founded scmantics W FS(F;) ol any program F, (i > 0] in a transformation sequence

starting [rom initial program Fp, is identical to W F5{). 0

Moreover, it is shown that the dynamic stratification (see [Prz83]) of cach atom is also
presceved [Sek80]. Nete that the above proposition has covered the previons result by Tamaki

and Sato [TS584] for definite programs and the vne by Seki [Sck89] for stratified programs.

Now, we introduce another transformation rule called a reduction rule. When no negative
premise appears in the body of each clause, the reduction rules are considered to be special cases
of the goal replacement rule studied in [T584]. Although the rule seems to be quite simple, it is

useful for examining the well-founded semantics of a given program.
Definition 3.1 Reduction Rule
Let F; be a program and €' a clanse in F; of the form: H «— A4, L. Then,

s let Py = (B —{C}HU{H — L}, if, for every ground instantiation #, A# is true in W F5(;).

e let iy = B = {C} if, for every ground instantiation #, A# is false in W FS(P). m|
We call A¢ a target literal of the reduction tule.

It is easy to see that unfold/fold transformation together with the reduction rule preserves

the well-founded semantics.

Proposition 3.2 [Sekd0]

Let Py, -, Py be a sequence of transformation where unfolding and folding together with
the reduction ule are applied. Then, the well-fonnded semantics of any program Py i= identical

to that of Fy. g

In this case, the dynamic stratification of each atom is not necessarily preserved (see the

following example).

Example 3.1 [BF&s]

Consider the following program P&F.

father{a,b).
father(b e}

pla).
plY) — father(X,Y), ~ p(X)

Note that PP s not locally stratified. However, we can apply unfolding to the last rule at

father{ X, Y), obtaining the following program B"":

father{a,b).
father(b, c).
pla).
pb) — ~pla)
plc) — ~plb)

Since the last two rules can be further simplied by the reduction rule, the original program

PBF s reduced to the following equivalent but much simplified (definite!) program:

father(a, b).
Father(b,).
pla).
p(e).

The following result is derived as a corollary of Proposition 3.2, It is the well-founded
semantics’ counterpart of the result by Bidoit-Froidevaux [BF88], where they considered defanit

theories:

Corollary 3.1 [BF88], [Sck0]

Let Fy be a (not necessarily locally stratified) logic program and let By, -, Py be a sequence
of transformation using unfolding and the reduction rule. Snppose that Py is a locally stratified
program. Then, the well-founded semantics of Py is equivalent to the perfect model semantics

of P a

4 Preservation of the Stable Model Semantics

We now show that the unfold/fold transformation also preserves the {iwo-valued) stable model

semantics by Gelfond and Lifschitz [GL88].

Proposition 4.1 (Preservation of the Stable Model Semantics) [Sekan]

Let Fy,---, Py be a transformation sequence starting from an initial program P,. Then, for

any 1(t > 0), F; has a stable model M if and only if so does F,. 0

The reduction rule (wrt the stable model semantics) is defined as in Definition 3.1, simul-
tanecusly replacing W FS(F;) in Definition 3.1 by M, where M is an arbitrary but fixed stable

model of an initial program Fy. The rednction rule defined so, however, does not always preserve

the stable model semantics in general.

Example 4.1 [VGRS88] Consider the following program P.

a — —b
b — =a
B = 7y
po— b

Then, P has a unigue stable model, M = < {p,a}:{b} >. Since p is true in M, we apply

the reduction rule to the third clause of P, obtaining the following program f4:

a — -—b
b — -—a
p o~ =b

Now, Py has two stable models; My = < {p,a}; {6} > and My = < {b};{2.p} >. Thus, P,

has no unique stable model. m|

The above example implies that we have to be careful to apply program transformation

based on the reduction rule as far as the stable model semantics is concerned.

A gafe reduction rule (wrt the stable model semantics) is defined to be a reduction rule such
that its target literal A# is either true or false in WFS(Fy). The following proposition gives a

safe condition of applying the reduction rule.

Proposition 4.2 [Seki0]

Let IYy,---, Py be a sequence of transformation starting from an initial program F,, where
unfolding and folding together with the safe reduction rule are applied. Then, for any i (¢ > 0),

P has a stable model M if and only if s0 does F. |

5 Concluding Remarks

There have been several studies on equivalence-preserving transformation of logic programs.
Tamaki and Salo’s result [T384] and its extension to stratified programs [Sek89)] are already
described in section 2. Maher extensively studied various formulations of equivalence for defi-
nite programs [Mah®6]. In that paper, he considered a transformation system similar to that of
Tamaki und Suto, and stated that his unfold/fold rules preserve logical equivalence of comple-
tions, while those of Tamaki-5ato do not preserve it in general. Kanumori and Horiuchi [KH&T)
proposed a framework for transformation and synthesis based on generalized unfold/fuld rules.
Their system was shown to preserve the minimum Herbrand model semantics, but it is appli-
cable to rather narrow class of programs and not to general logic programs. In a very recent
paper, Gardner and Shepherdson [GS] proposed a framework for unfold /fold transformation of
normal programs and they showed that their transformation preserves procedural equivalence
based on SLDNF-resolution, as opposed (o the well-founded semantics in this paper. It should
be noted that their unfold/fold rules are not comparable with our version, since their folding
rule [G5] specifies that, when a program Fi4, is obtained from F; by folding € € P by D, D

should be in F;, while, in our framework like [TS84], I is not necessarily in F,.

The results reported in this paper will be summarized as follows :

1) We have considered a framework for unfald/fold transformation of general logic programs and
shawn that the rules of unfold /fold transformation preserve both the well-founded semantics
and the stable model semantics.

The framework has eliminated those syntactic restrictions imposed so far in previons work
such as [TS84) and [Sek89], thereby giving a natural extension of those work,

21 We have introdoced the reduction rule. When used together with unfold/fold transformation,
it has been shown to be a useful and powerful deduction rule so that it derives the well-
founded semantics’ counterpart of the result by Bidoit-Froidevaux [BF88] in defanlt theoties.

3) We have shown that the well-founded semantics is always preserved for unfold /fold transfor-
mation together with the reduction rule, whereas the stable model semantics is not always
s0. Since the reduction rule i1s so simple and straightforward, it seems to be guite a natural
expectation that a semantics shonld be preserved for the reduction rule. The stable model
semantics, hnwever., does not satisly this requirement in general. Several rescarchers (eg.
[VGRS28] and [Prz90]), have argued that the stable model semanties does not always give
an intuitive model of a general]ogié program. Our result gives another justification for it

from the viewpoint of program translormation.

Acknowledgement

This research was done as a part of the Fifth Generation Computer Systems project of Japan.
The author would like 1o thank Dr. K. Fuchi (Director of ICOT) and Dr. R. Hasegawa (Chief
of ICOT 5th Labaratory) for the opportunity of doing this research. The anthor would like to

thank Mark Wallace who let him know the work by Bidoil and Froidevaux. Finally, the author

wonld like to thank Teodor Przymusinski whose comment has initiated this work.

References

[ABW&7] K.R. Apt, H. Blair, and A. Walker. Towards A Theory of Declarative Knowledge.
In 1. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pp. 39-148, Morgan Kaufmann, 1987, Los Altes, CA.

[BD77] R.M. Burstall and J. Darlington. A Transformation System for Developing Hecursive
Programs. J ACM, Vol. 24, Nao. 1, pp. 44-67, 1877

[BF33] N. Bidoit and C. Froidevaux. More on Stratified Default Theories. In Proc. of
Eurgpean Conference on Artificial Intelligence, pp. 492-494, 1988,

[E1s77] A. P. Ershov. Oun the partial computation principle. Information Processing Letters,
Vol. 8, No. 2, pp. 38 41, 1977,

[FutTl] Y. Futamura. Partial evaluation of computation process - an approach to a compiler-
compiler. Systerns, Compulers, Conlrols, Vol. 2, No. 5, pp. 45-50, 1871.

[GL8&] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. of the Fifth Logic Programming Sympostum and Conference, pp. 1070-1080.
MIT Press, 1988,

[G5] P. A Gardner and J. C. Shepherdson. Unfold [Fold Transformations of Logic Pro-
grams. submitted for publication.

[KH87] T.Kanamori and K. Horiuchi. Construction of Logic Programs Based un Generalized
Unfold/Fold Rules. In Proceedings of the Fourth International Conference on Logic
Programming, pp. 744-T68, Melbourne, 1987,

{Mahgg] M.J. Maher. Equivalences of Logic Programs. In Proceedings of the Third Inter-
nalional Conference on Logic Programming, pp. 410-424, London, 1986, also in
Foundations of Deductive Databases and Logic Programming, (edited by Minker,
J.), pp. 627-658, Morgan Kaufmann, 1957.

[Prz86] T. C. Przymosinski. On the Semantics of Stratified Deductive Databases. In
J. Minker, editor, Proe. of Workshop on Foundations of Deductive Du:abmé.s and
Logic Programming, pp. 433-443, 1986, Washington, DC.

10

[Prz89]

[Przao]

[Seksy]

[Sek90]

(TS84]

[VGR]

[VGRSSS)

T. C. Przymusinski. Every Logic Program Has a Nataral Stratification and an It-
erated Least Fixed I'oint Model. In Proc. Fighth ACM S'ym;m.u'::sm on Principles of
Database Systems, pp. 11-21, 1984,

T. C. Przymusinski. Extended Stable Model Semantics for Normal and Disjunc

tive Programs. In Proc. Seventh International Conference on Logic Programming,
pp. 458-479, 1980,

I. Seki. Unfold /Fold Transformation of Stratified Programs. ICOT Techuical Repert
TR-536, ICOT, 1989, also to appear in J. of Theoretical Computer Science. Its
extended abstract appeared in the Sicth ICLP, 1838,

H. Seki. Unfold/Fold Transformation of General Logic Programs. 1COT Teechnical
Heport, ICOT, 1990, in preparation.

H. Tamaki and T, Sata, Unfold/Faold Transformation of Logic Programs. In Pre-
ceedings of the Second International Logic Programming Conference, pp. 127-13%,
Uppsala, 1984,

A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation. In Proe.
Ewghth ACM Symposium on Principles of Database Systems, pp. 1-10, 1989,

A, Van Gelder, K. Ross, and J. 5. Schlipf. Unfounded Sets and Well-Founded Seman-

tics for General Logic Programs. In Proc. Seventh A CM Symposium on Principles

of Database Systems, pp. 211-230, 1988,

11

