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ABSTRACT

We give a short introduction 1o SctCAL that is a
solver of constraint about sets m CAL systemn being

developed in ICOT.

1. Introduction

In eonstraint logic programoing,. there are often applications in which we want to write
membership or nclusion of sets such ws © and . SetCAL 15 a solver in CAL svstem.
developed in order to deal with suel: constraint. A set which compurer can handle naively
1 finite or co-finitel e, complement of a finite set). It 1= unportant that a class of finite
and co fute subsets of a fixed ground set forms a Boolean ring. Any constraint whicl we
want to write can be c*.:tprcauved in terms of a polynomial ring over this Boolean ving which
15 called a Boolean polynomial ring. For example o € X b & V. X 1 are expressed as
{alX = {a}, {6}]Y = 0. XY = X. We first show how constraint written in the langnage
of SetCAL is expressed in terms of & Boolean polynomial ring. Then give some important
theories of Booleau polynoemial ring such as Boolean Grobner base, and show how theyv are

applicd to mve a complete decision procedure for solving constraint of Set(CAL.

2, Language of SetCAL

aboe, o0 o first-order constant symbols for elements of sets

w4y, 2, ... first-order variables for elements of sets

X, V. 2, .. : sceond-order variables for finite sets or co-finite sets
eSS, s predicate and function symbaols for sets

= equality



VoA = o logical symbols
%o, dy : Hrst-order quantifiers for elements of sets

%,y second-order quantifiers for finite or co-finite sets

3. Expression of set constraint by Boolean polynomial ring

For a Boolean algebra < B.v, A, -,0,1 =, define
rty=aqeplx Aoy Visa hy) roy =aepa Ay,

then < B, +,-,0.1 > becowes a commutative ring with unit. This ring has the following

two properties.

(1) WreB rf=ur

(ii) YreB r+a0=0

Conversely, for a conunutative ring with unit i we define v, a, = by
INY =gty oy, rAY =S4y, Da =g 140,

it hevomes a Boolean algebra.

Therefore we can treat a commutative ring with umt which has the above two properties
as o Boolcan algebra. We call such a ning a Boolean ring. For a Boolean ving B, a
polynomial f of a polynomial ring B[X,, X,,..., X,] is called a« Boolean polynomial if
the degree of cach variable of [ is at most 1. Using a rule X? = X for each variable, a set
of all Boolean polynomials forms a Boolean ring. This ring is called « Boolean polyno-
mial ring aud denoted by B(X;, Xy, ..., X} In other words a Boolean polynomial ring
BN, N, Xn)is a quotient ring B[X,, X, ..., X,]/T, where I is an ideal generated by
[T +X L X9+ Xy, X2+ X,,}. A Boolean polynomial is considered as a representative

of an equivalent elass.

Let [ he the set of all constant symbols defined in section 2. The set of all finite or co-finite
subsets of U denoted by PFC(U) forms a Boolean algebra < PYO(IU), v, A, ~,0,1 > taking
a set union V for V, a set intersection A for A ,a complement operation - for ., the empty

set l as 0, and U7 as 1. Any constraint described by the language defined in section 2, can be
expressed in terms of equations of PYC(UWX, Y, Z,.. ) using \V, A\, =~ —. ..., Yo, 3. ¥, 3.

Example 3.1
a€ XNYUZ)2ee X(YZ4Y+Z)2ac XYZ+XY +XZ e {a}n{XYZ+ XY +
XZ)={a} & {a)XYZ + {a} XY + {a} XZ = {a} (We abbreviate -)
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4. Solution of Boolean equations

We give an outline of the method to solve equations of general Boolean polynomial ring by
using a Grobner base technique. SetCAL solves constraint given by the language of section

2 based on this method. The detail is given in [1].]2].

Definition 4.1
A monomial in a Boolean polynomial, .. a monomial the degree of each variable of which

is at most 1, is called & Bonlean monomial and denoted by meta symhols 0N B T

Definition 4.2

An ordering > over Boolean monomials s called admissible if it satisfies the following

properties.
i1} If v 2 3 considering monomials as seis of variables, then a = =4,
(i1) Ifer 2 3, then ay 2 Ay for any Boolean monomial 5. such that 4 does not include

a cominon vaciable witlh o or 4,
From now on, we fix an adinissible total ordering = over Boolean monomials,

Definition 4.3
an i @ s an expression of a Boolean polynomial with the greatest Boolean monemial
a. For each Boolean polynomial ae (| ¢, we define a rewriting rule aame Over Boolean

polynomials as follows.

For a Boolean polynomial ¢ = ¢ +bag, if ab # 0. then ¢ =,,20 ', where ' is a Boolean

polynomial given by o + M1 4+ ajad + abidd.

The soundness of tiis rewriting rule is cxplained as follows. Firstly, note that baj —
b1 + alad + baad. Sccondly, since an i @ - () implics an = ¢, multiplying abf from
both sides, we have band = badé. Therefore under the condition ao & ¢ = 0, we have
bad = b1+ alad+ abdp.

Example 4.4

Let ¢,d be elements of B such that ed = O,¢ # 0.d £ 0. If (14 )X = 0, then dX —
d(1 4+ ¢}X = 0. However since B is not a field, we can not rewrite dX to 0 by a standard
rewrite tule by a substitution. Under the assuinption ed = 0, {1+ L)d d # 0. Hence, we
can apply our rewriting rule to get dX =,y 0.
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Definition 4.5

Let R be a set of Boolean polynomials. If there exists a Boolean polynomial o such that

d =+ 3t we write ¢ == " The transitive reflexive closure of = p is denoted by =g,

Theorem 4.0

For ench set of Boolean polynomials B, =k has a termination property. |

Definition 4.7 Boolean Grishner base
Let I be a finitely generated ideal of a Boolean polynomial ring B(X,... ... Y, 0 A finite set
G of Boolean polynomials 15 called a Boolean Grabner base of T, if it satisfics the following

properties,
(1) oCT

{11} It f = glmedlliie. [+ g € I), there exists a Boolean polynomial b such that

. W E

f = hand g =g h
f11) Each g € & vau not be rewritten by = for any ¢' € G which is distinet from g.
{1v) The greatest monowial of o Boolean polynomial of G, is distinct each other.

4.5  Sowe properties of Boolean Grobner hase
(i) The 1deal generated by G is 1. Hence, T and G forms the same constraint by

Lero-point theorewn [3].

{it} The constraiul given by I, i.e. a set of equations {f = 0/f € I} is unsolvable if and
only if the Grohner base of I inchudes a non-zero constant, i.e a non-zero element of
B.

(1) The Grobner base ¢ of I is unique. Henee, we can consider (¢ as a canonical fori

of the comstramt given by 1.
We give some definitions needed to describe an algorithm to get a Boolean Grébner base.

Diesfinition 4.9
For a Boolean polynomial aed:¢, a Buolean polynomial ad+ ¢ is called its coefficient self-
eritical pair and denoied by ese{aa @ ¢). For cach variable X in a, a Boolean polynomial

N+ ¢ is called its variable self-eritical pair.

Example 4.10
A coefficient sclf-critical pair of e XY Z & bYW is (ah 4+ b)Y W. There are two variable
self-critical pairs, namely bXYW + bXW and Y ZW + bV Z.
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Definition 4.11

For Boolean polynomials any & ¢ and b3y & 40 such that ab # 0,4 #£ 1, o and 3 do not

inchude common variables, a Boolean polynomial 53¢ + aav: is called their eritical pair.

Example 4.12

A critical pair of a XY Z + b7 and e XZW | Y such that ae # 0 s aV + beZW.

Defimtion 4.13

For a finite set of Boolean polynomials R and a Boolean polynowial ¢, the set of all possible
critical pairs between ¢ and clements of B and varinble self-eritieal pairs of ¢ is denoted

by CP{o. R,

Diefinition 4.14

For a finite set of Booleau polynomials B, Tet {aye 5 dp,.. o040 4 0,) be a set of all
polynomials in 7 such that the greatest monomial is a. Then, (ay + ... + a4 jo & (¢ +

ot o) e Glue(R). Glue( R is a set of such Boolean polynomials.
Example 4.15
Let B = {oXY = X AXY &Y X Z s X XZ 0 Z). then Glue(R) — {{a + b)XY & (X
+Y b+ 1IN Z (X + Z}}.
Definition 4.16

For a set of Boolean polynomials R and a Boolean polvnominl ¢, ¢) g denotes an irreducible

forin of @ by = 5.

Theorem 4.17

An algorithm to get a Boolean Grébner base for an ideal generated by a given finite set E

of Boolean polynonals, is given as follows,
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input ¥
Re—1
while £ #0
choose 0 € E
Esw— (E—{p}){esc(a)) and " «— oln
if #' £ 0 then
for everv aa & v € R
if ao =4 2
then E «— EU{p+ ¢} and # «— R {aa & vt}
else B — (= {ac = }) U faa & (¢] pugen))
end-if
end-for
E. EVUCP¢' . R)and B «— R {¢'}
end-il
end-while
output Glue( ) (Glue(R) is the desired Boolean Gribner base )

{The choice of an element of E must be fair, .0, any element nmst be picked up some

where 1 the outermnost loop, )

Proaf:
A detailed proof is given in [1]. 1

An element of a polyoomial ring B(XY,, ..., . Xm. 1. .., Y, can also be considered as an el-
etent of a Boolean polynomial nng (B{ Xy, ..., X, ). .. .. Y, ) with variables Y7, ..., Vo

and a coctlicient Boolean ring B(X,,.. X,

Example 4,18

A Booleun polynomial aXVZ + XZ + bYW 4+ XY + X in a Boolean polynomial ring
B{X. Y, Z, W), where a,b are elewents of B, is represented as (aXY + X)Z + (bY)W +
(XY 4+X)m (B, Y)NZ W) and as (aZ+ DX Y +(Z41) X+ (W)Y in (B( 2, WX, Y.

In the following (B{X,,..., X )} Y1, ..., }},) is abbreviated by B{X,,.. ., XY, ....Y,).

The next result 1s very important to solve set constraint.
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Theorem 4.19

Let G be a Boolean Grobner hase of a finitely generated ideal T in B{Xy, ..., Xn)(Y.
.... Y.L Let # be a substitution of elements of B for variables Xi,....X,,.. G8 denotes
the set of gf for ¢ € G such that (ag )8 # 0 where g; is the greatest monomial in q
and a its coefficient. Then G# forms a Boolean Grébner base of a finitely generated ideal

T8 in a Boolean polynomial ring B(Y;,....¥,). Moreover, for any Boolean polynomial
.f = H[-Kl LI R Y TR }.-11 LR }-IT } we ]"]a‘-"l':" [,f-H}IlGE - [_IFJ-G}E'

Proaf:

A detailed proof is given in [4]. |}

5. How to solve set constraint

Any constraint described by the language of section 1 ean be solved by expressing it in
teris of a Boolean polynomial ring. That is there exists o complete decision procedure
to decide whether a constraint given by the language of scetion 1 is satisfiable, We Hrst
explain the base of the general vase (Case 1), then deseribe ¢l special case [Case ?) which
18 very important for application. and finally give a brief sketeh of the decision procedire.

The detail is given in [3].

Case 1

[ fi(#, Xy =0

} falE X)=0
gl E,X)#0

L,':Iml:fr-f} 1’:' 0

{77, X' denote finite nunmiber of first-order variables and second-order variables respectively)
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(filF,X)=0

J ful#. X) =0
vy € i, Y)

\, Ym € !i'mfi- il':'

(4122 .s Y are first-order variables different from 7)

. -"il:rr{ '§~. -Etc -‘ll- } =10

(5. T are second-order variables different from X Substituting {r,} by §; and {y,} by T},
fioooo fuisgiven from fi.. . fyand g, ..., G 15 given from {yy bor +{m} - {tm fom +
fir b

=

{In a polyuomial ring 1-‘“'(E-'}(§,f:']|[f}, caleulate a Boolean Grabner hase J':-.llf.§, f‘ {]
- h,[é-i,f..‘z'i, h[.g. f"} of the ideal generated by f{. ..., fr. 00, . ul,.)

5. T.X1=0

h;{b T, H—D
?T}—D

hy(F, ,Jl =0

WEHX) =0

B2, =0
(Mis- .., hy & are given from fey, ..., hy, b by substituting {z,} to S; and {u;} to T5.)
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Then, it is a necessary and sufficient condition for the given constraint to have solutions

that there exist elements 7.§ such that h'(7,§) = 0. Moreover, for any a,b satisfying
B, b, X)=0

hid, 3] =1 : 15 a canonical form of the given constraint, i.e. & solution.

hy(@. b, X) =0

The solution of ' (Z, ) = 0 essentially belongs to the problem of a finite domain. Let
ay,...,a, be constant symbols ocenering in A and b, ¢ be constant symbols distinet from
them. Then it is known to be sufficient to check A'(7.7) = 0 for all substitution from @, b. ¢

to F,4. (See [5].)
Correctness of the algorithm can be shown easily by using Theorem 4.14.

Rewmark 5.1

The above method can be applied to remove quantifiers 3,3, from 3,73, X NiE ., X, }'tjl
OA - AfFFX Y = 0A g B0 X V) # 0N 0 A gml7 7. £.7) # 0 to get
quantifier-free formula hy (.Y ) = 0\ ... \/ (7. ¥) = 0.

=5
=t

Remark 5.2
Boolean Grobner base is not the ouly tool to solve gencral Boolean constraiut. There are
some other known wethods to handle Boolean equations. We adopted Boolean Grébner

base because of the following two reason. which does not hold in the other existing methods.

(1) There does not appear any new variabie in the Boolean Grabner base which is not in

the given equations.

(ii)  For a fixed ordering of variables, Booleau Gribuer base is determined unique.

By (i}, the solution looks clear especially in the case of PFO(ITY. (i) guarantees the
paradigm of Constraint Logic Programming .that is any constraint must have its normal
form as the solution.

Example 5.3
fa}nX ={s}nX
X#£0

=

{{a}ﬁ' = {«} X
{yIX = {y}

—



(f{r} =S {y} =T

FﬂI+SI=D
TX +T=0

e
( Caleulate the Boolean Griobner base in PFC{IT) S, TH X ), and put it equal to 0.)

({a}+S+T X +T(1+{a}+51=0
T(§+{a}l =10

=
(§+—{ah. T« {y})

{'I{ﬂ.'r ey + X + {ub 1+ {a) + {z}) =0
{yhi{e}+{a}) =0

Solve {ghi{e} + {a}) =0.
(ilr=a

I this case. the equation instantiated is [y} X + [y} = 0. which means y € X for arbitrary
'

{ii} 4 = !‘.,y =
I this case, the equation instantiated is {a b, ¢} X+ {c} = 0, which means e € X Aa,b¢ X.

(lage 2

[ [HED=0
v, X : — R(F.X) =0
fal@.X)=0

fg.%) =0

S, X) =0
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(§ are second-ordered variubles different from X . fi is given from f; by substituting {z,}

by S5;)
—

(Caleulate the Boolean Grobner base of the ideal generated by 1, ..., f! in PFC( U]{g}{f],
aud put it equal to 0.)

5. X)) =0

il -§.. _{} =10

g8 =0
=
Transforin g,.. ... Grogtogy.. ... g 0" by substituting {#,} by 5, and let &' = {gl.. o a1}
=

The given constraint is equivalent to

gV F O IE X e =0
Correctness of the ﬂlgﬂl‘jtlnn 13 also ﬁagﬂ}- shewn ]_.} Theorem 4,14,

5.4 Application
It can be considered as unification to solve this kind of constraind. We ecan treat some

unifications such as order sorted unification in this framework uniforinly,
General Case

Note that any constraint can be represented as one of the following prenex normal fors.

(1) {guanti fiers)3,3, "-u.":*_1 iy

Gi= AL, G}, G!isan equation or disequation

(i) (quanti frers )¥oW, AT_, F,

Fi= Vi, F], F.j is an equation or disequation

(quantifiers) denotes a finile sequence of quantifiers.
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The innermost quantifiers are removed as follows.

Solution of (1.

Solution of (i),

3031 Vi, G

Viey hdiGs

‘J?—l do3; -"I.\;H—: C’:

—

‘l._,a’:;I.[gq =0y... '\,.‘yf =0 (by the remark of Case 1)

Hﬂ.vrl .-'"'».,nzj F:

=

J""n:|=| VoW, Fi

—_

les ¥o¥s Ve, F}

(303 AL (=F))

I

Ao JAfT#O0M. .. M fi #0) (by the remark of Case 1)

For a given constraint, applving either solution of (i) or (ii) repeatedly, we can finally get

a yuantifier-free formula. Since any quantifier-free formula is represented as

n n; i . 3o . . .
Vies M= H] where H] is an equation or disequation,

we can use the solution method of Case 1 to decide i it 15 satisfialle.

Remark 5.5

The above method works not only for PFE(U7) but also for any atomic Boolean algebra.

The detail is given in [5).
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