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Abstract

This paper describes an experimental diagoostic
system which explores adaptability with learning
capability from iis experience. It takes a model
based reasoning approach, utilizing experiential
knowledge at the same Lime. Expericntial knowl-
edge consists of cached symptome-failure associa.
tion rules and a probability model of the target
system components, [t is able to generate and
select appropriale Lests according to the failure
prebability distribution. With this capability,
when the system has had a similar experience
in the past, it can diagnose the failure faster
and mere efficiently by suggesting better tests.
Therefore, this system gives a solution to both
the knowledge acquisition bottleneck problem of
rule-based systems and the efficiency problem of
model-based systeme. It is being implemented in
ESP language on a prolog machine PSLIL The
effectiveness of the technique is shown by an ex.
perimental result.

1 Introduction

Since the creation of the MYCIN system [Shortliffe 1976,
mmost of the expert systems, especially diagnostic sys-
tems, have incorporated the idea of representing their
knowledge in a form of symptom-failure association rules.
Those expert systems that take rule-based approach have
two major inherent disadvantages. First, thoss systems
lack robustness because ithey canpot deal with unex-
pected cases not covered by tules in its knowledge base.
Second, their knowledge bases are expensive to create and
mainiain. Hule-based systems use symptom-failure asso-
cialion rules gathered by interview from experts experi-
enced in a domain. Interviewing human experts requires
substantial effort and it sometimes becomes bottleneck of
ihe system development. Debugging and maintenance is
dillicult, since different kinds of knowledge, such as target
device knowledge, failing component behavior and prob-
ability of failures, are condensed into a uniform rule-base,
Therefore, even a small design change in a target device
may require thorough review of the knowledge base.

There has been a series of research to tackle those
problems. The most distinct ones are on model-based
methods, i.e.  first-principle methods. Model-based
methods use design descriptions, =uch as the strue
ture and behavior descriptions. Model-based meth.
ods include conventional Boolean Logic-level diagnos-
tic methods. However, those algorithms specialized
in Boolean logic-level, suffer from a scaling problem
in dealing with modern complex devices which have
millions of logic-level subcompanents. Recently intro-
duced model-based metheds, such as [Genesereth 1584],
[Davis 1984], [deKleer and Williams 1987), [Reiter 1987),
and [PUQ].& 1886), provide declarative device-independent
design representation languages and device independent
diagnostic procedores. Since they are not restricted to
Boolean logic-level, they are capable, utilizing hierarchi-
cal designs, of diagnosing complex devices.

Model-based melhods are more rebust than rule-based
systems, because the diagnosis methods with correct de-
sign models can cover all of the possible failure modes
for the components. Their knowledge bases are less ex-
pensive to create and flexible in regard to design changes
since Lhey are a siraightforward representation of designs
which are likely to be found in modern CAD environ-
ments,

However, model-based diagnostic systems are generally
not as efficient as rule-based cnes since they require mare
complex computation. Furthermore, they are not always
able to pinpoint a failing component from the available
symptom information and sometimes require many Lests
to reach & conclusive decision. This is because they lack
heuristic knowledge which human experts usually utilize.

The authors have been working on & research to explore
a general architecture to realize an adaptive diagnostic
agent and introduced its basic architecture [Koseki 1989,
This paper describes an experimental sysiem based on
the architecture. Tt is a model based diagnostic system
which realizes adaptability with learning capability from
its experience. The experiential knowledge is represented
in a form of cached symptom-failure association rules and
a probability model of the target system components,
Wilth this experiential knowledge, it is able to diagnose
& failing cornponent faster with a fewer tests than pure
model-based systems can.



In this paper, the authors are making a single foult
assumption. That is, it is assumed that there is only
ope malfunctioning component in 2 failing device. This
assumplion makes il easy to rule oot certain failure hy-
potheses using test resultz. The author also makes a non-
intermittency foult pssymption. That is, it iz assumed
that the behavior of a failing device does not change dur-
ing the diagnosis process. This enables localizing a fault
by testing the device after the symptom appears. In ad-
dition, the method iz baszed en the nature of the fault
lncality. It is usually true that most of the faults which
occur o a device are local to some particular subcompo-
nents. That iz to say, a failed subcomponent tends Lo fail
again in a similar manner in the future.

This paper is organized as follows. The section to fallow
gives an overview of the sysbem d:gr:ribins its structure
and general flow. The next section explains reasoning
methods including learning algerithms. Experimental re-
sults, showing promising data, are shown in the following
section. The concluding last section discusses the future
direction of this research.

2 System Overview

2.1 Structure

We can observe two kinds of intelligent bebavior in main-
tenance expert's diagnostic procedure. First, they can
quickly identify a faulty component with a little infor-
mation according to their experience, il Lhey have solved
a similar prohlem in the pasi. Second, even if a novel
symptom arises, the expert can reach a conclusion, by
consulting with other information sources, such as design
description manuals. They can reason which companent
might have gone wrong and cansed the symptom to ap-
pear by knowing how the system is suppesed to work. In-
terestingly, they can remember the experienced case, and
when they again confront a similar case in the future,
they can diagnose the failure using fewer tests without
consulling the design description.

To realize those kinds of intelligent behavier, the sys-
tem consists of several modules as shown in Figure 1,
The knowledge base consists of design knowledge and ex-
periential knowledge. The design knowledge represents a
correct model of the target device. [L consists of structural
description which expresses component inlerconnections
and behavior deseriplion which expresses component be-
havier. The experiential knowledge contains symptom.
failure association rules and component failure probability
for known component failures.

The diagnosis medule utilizes those two kinds of knowl-
edge and manipulates a suspect-list[SL). A suspect-list
represents a set of suspecled component mis-behaviors
al a state of a dizgnosis session. The diagnosis mod-
ule calculates an initial suspect-list from a given initial
symptom using both of design knowledge and experien-
tial knowledge. Every time Lhe system gets a test re-
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Figure 1: Structure of the System

sult, it eliminates a subset of the suspect-list and reduces
its size. The test pailern generator/selector gives an ap-
propriate test to reduce bhe suspect-list according to the
probability distribution. The learning module takes an
experienced case to generate a symptom-failure associ-
ation rule to represent = general description of the case.
This rule acts as a cache for the design knowledge. 1t also
records the number of the failures for each experienced
case in terms of the failing components. This structure
is povel in the sense that it utilizes both model based
and experience-based knowledge and it acquires knowl-
edge incrementally from Lhe past experience.

2.2 Diagnosis Flow

The general flow of the diagnostic system is shown in Fig-
ure 2. The system keeps a sct of suspected component
mis-behavior as a suspect-list. And it takes eliminate-
not-suspected strategy to reduce the number of the sus.
pects in the suspect-list, repeating the test-and-eliminate
cycle,

It starts with getting an initial symptom. A symptom
is represented as a sel of input signals of the target de.
vice and an incorrect output signal ohserved. It calculates
an initial suspect list from the given initial symptom. It
searches through symptom-failure association rules in the
experiential knowledge base and if it finds a matching rule
it gives a corresponding set of suspects. If it does net find
a matching rule in the experiential knowledge, it performs
a model-based reasoning to chiain a suspect-list using &
cotrect design model and an expected correct output sig-
nal. To obtain an expected correct output signal for the
given inputs, the system carries out simulation using the
correct design model. The svstem also obtains & peaer-
alized symptom-failure association rule ab the same time
and stores it for the future use,
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Figure 2@ Diagnozis Flow

After obiaining the nitial suspect-list, the system re
peat a test-and-eliminate cycle, while the number of sus-
pects is greater than one and an effective test exists. A
set of lests is generated by the test pattern generater
for the failing behaviers remaining in the suspect list.
Among the generated tests, the most cost effective one
i3 selected as the pext test to be performed. The se-
lected test is .‘:llggﬂﬁbﬁd and fed jnlo the largel device,
By feeding the test into the target device, ancther set
of observation is obiained as a test result and iz used
to climinate the non-failure components. This test-and.
eliminate cycle is repeated until the number of suspects
iz significantly reduced or oolil there is no test available,
Finally the system suggests a repair of the remaining sus.
pects,

From the successiul cases wherae the suggesied compo-
nenl was in fact the failing device, the system adds up the
failure counter for the component and renews the proba-
kility distribution.

3 Reasoning Methods

This section briefly describes frameworks for reasoning
methods of the systern. More detailed discussion on the
design model representation and model-based reasoning
can be found in [Koseki 1989]. In the examples through-
oul Lhe paper, all descriptions are expressed in the form of
first order predicate caleulus, with the conventions used
in [Genesereth and Nilsson 1987).)

3.1 Design Representation

The design descriplion for the target device consists of
descriptions of its structure and its behavior. The struc
ture description consists of a list of subcomponents and

"The lewer ease latters atand for aniversally guantified vaciables, the
uppar case lelters for constants, A for logical conjunction, ¥ for logical
digjunetian, - for 'rmgl.linn, and 4= apd = for lagical implication.

interconnections among them. The connections are rep-
resented as the facts like shown in the following example,
The dash character - is used as an infix operator te repre-
sent a gubport for a component. The following fact states
that output signal Out of component Compl is connected
to input signal In of component Comp2.

Conn{Compl-Out, Comp2-In).

The behavier deseriptions are specified by a set of harn
tlauses. For example, the behavior for an AND gate, with
zero time delay, is given by the rules given below. The
first rule states that output Out of gate AND is 1 at time
t, i input Inl of AND iz 1, input In2 of AND is &, and AND
is working correctly for inputs Ial and In2. The remaining
rules state the behaviors for other combinations of input
signals,

Val{AND-Out, 1, t) 4=
Val{AND-Inl, 1, t} A Val{And-In2, 1, t)
Working{ AND, {1, 1]}.

Val(AND-Out, 0, 1) <=
Val(AND-In1, 0, t) A Val(And-In2, x, 1)
Waorking(AND, [0, x]).

Val{AND-Out, 0, t} +=
Val{AND-In1, x, t) A Val(And-in2, 0, 1)
Working(AND, [x, 0]).

3.2 Reasoning Framework

The diagnosis inference and the test pattern gencration
are based on an abduction inference method which is used
in DART [Genesereth 1984] and SATURN [Singh 1987
This methoed is functionally eguivalent to the constraint
suspension lechoique of [Davie 1884] and the Theorist
framework of [Poole 1986]. This inference procedure uses
a domain theory, 2 goal, and a specification of facts calied
essumables, which can be assumed Lo prove the goal. It
deduces a sel of assumnable facts which, together with the
demain theory, entails the goal.

To learn symptom-failure association rules and o
generale generalized rules for caching, the iofer-
ence method s extended using Erplanation Hosed
Generalization (EBG) techniques [Mitchell et al. 1986,
Dejong and Mooney 1986). The extended inference pro-
cedure is called REBG. REBG generates a generalized
compect rule expressed with a fixed vocabulary called
operational eriterie, while il performs the abduetion in-
ference. This method performs two functions in addition
to the abduction inference. First, it examines the given
inference explanation and re-expresses it in a compact
rule form in terms of operational eriteria. The opera-
tional criteria depicts predicates which can be used to
form the rule. The generated rules can be used as a cache
to the inference procedure, contributing to the perfor-
mance gain, Second, it generalizes the obtained rule by
replacing instantialed variables by as many vatiables as
possible. This function makes the learned rule applicable
to other similar cases.



3.3 Model-Based Suspeet Caleulation

The input to the model-based suspect calculation proce-
dureis a design description D and a symptom deseription
< I, 0 =, where [ is a conjunction of input {controllable)
port values and O is an expected output{ohservahle) port
value, The procedure produces & set of possible failures
(suspects) in terms of working-conditions W for the com-
ponents. The domain theory corresponds to design de-
scription D and input port values 7. Arsumable facts
specify working conditions W for the components, and
the goal is output port value O, A sel of assumable work-
inE conditions W is then r_cn‘npute-d sothat TAaDATY = 0
is true. This is equivalent to J A ~0 A [ = -W. Since
dﬁigu I} is assumed te be correct, this formula corre-
sponds to the diagnosiz rule § n =0 = =W, Note that
this procedure does not require any subcomponent {ailure
maodels. This design was copsidered imporiant because of
the extreme difficulty of assuming failece models, such as
stuck-at-fanlts, in general devices.

3.4 Knowledge Caching by REBG

Model-based reasoning invelves finding a proof for the
correct output value by examining the struciure and be-
havior of the device. One way to avoid this computation
is to comple all of the cases nlo symptom-failure asso-
ciation rules in advance. This approach may only be fea-
sible if probable subcomponent mishebaviors are known
in advance.

As an allernative Lo compiling all the cases, this system
partially compiles and caches its model-based knowledge
inte compact gen eralized rules for the caszes it has experi-
enced. The HEBG procedure generates such rules while
it computes facts to be assuined. It is essential to store
generalized rules rather than instance rules in order to
cover the entire class of symploms related to cases expe-
rienced.

3.5 Tesl Generation

The Lest-pattern generation algorithm is based on the
work of SATURN system (Singh 1587). It is an algorith-
mic test generation system, similar to the D-algorithm
[Roll et al. 1987). However, it works on designs specified
at arbitrary abstraction levels rather than at the Boolean
logic level. The procedure takes as inputs the design de-
scription I} and the subcomponent input-cutput behaviar
to be tested = [s5,0s . Tt propagates [s to a set of con-
trollable input wvalues J, and Os to & set of observable
outpul values (7, by using the came method as the ane
used for suspect calculation,

3.8 Test Selection

The former implementation of the system described in
the reference [Koseki 1989 selects a test generated for

the most suspected component with the higheslt proba-
bility. However, this method does not always select the
mast effective ooe, and it does not consider cost for the
test execution. The current implementation has a test
selection mechanism which selects a test with the highest
effectiveness per cost. This section describes this mecha-
nism.

To compute test effectiveness, the system uses probabil-
ity distribution for each component. The mechanism em-
ployed in the system is basically same as the one found in
the reference [delleer and Williauns 1989, It is so called
minimum entropy technique where eniropy is calculated
from the fault probability for each suspected component.
The entrepy gain {informatior. gain) is used to evaluate
& test to be carried out next. Thal iz, it caleulates the
difference between the entropy before the test execution
and the expected entropy after the test for each possible
test and it selects the one with the highest gain.

First, we define an entropy E{SL) of a suspect-list 5L
during 2 diagnosis session, in terms of the estimated prob-
ahilities of Lhe component failures. Let 51 denote the sel
of suspected components,

S-L' = {Sl l'sh' . -'Evl]'1

and leb py ps,...pa{ E P =1, p; > 0) be failure proba-
hilities of suspects 5y, 54,... 5.
Then an entropy E{(SL) i defined 23

E(SL) = - Zp,— log p;.
1=1
Let a set of suspect lists after exccuting a test T be de-
noted by 5L,,8L;,... 5L, when 1" has multiple possible
results, #;, 45, . ... And let oceurrence probability for a
test result {; be expressed by g;. Then the effect of the
test T is defined as

L
gain(T) = Y g;(E(5L) — E(SL,)).

s=1

This function is based on the seme idea a5 the one far
the gain function of Quinlan’s decision tree learning alge-
rithm 1D3 [Quinlan 1986]. The system caleulates gain(T")
for all of the available tests and decides the ane with the
highest value as the most effective one.

Let us see an example following this method. Sup-
pose there is & test T with two possible resulis ¢, and fy,
and the relation between suspecl-lisl 55 and test results
(t;yta) of the test T is given as in the table below.

Suspect ERIERERED

Probability | 0.1 0203 04
f OTOG[O %]

ta X1 OO0l 0

For example, if the test result is t;, 5, is not suspected
and cither 5,,5,, 0r8, is failing. Therefoce, if 5y iz the
failing component, Lest result must be ¢, Similarly, if 5,



is failing, the result should be #;. In other cases, such as
when either 5; or S, is failing, we assume the same prob-
ahility for £, and ty. Therefore, the estimated probability
gl and g2 for test results ¢1 and t2 are presumed to he
as follows.

0.2+0.3
q o= 01+ — = 0,35
2
gz = 22 ; 03 foe=06s

Here, the system assumes that the probability distribue-
tion after the test remains same, therefore, it predicts the
sugpect list SL1 and SL2 for each test result, as follows.

Component | & | 5 S
Probability

Sl

CUJIJ]}uul_'l_'L Se 5:.

5L, Probability | 0.22 0.33 |

Therefore, the entropies for each SL are caleulated as
E{5L) = =0.1log0] — 0.2log0.2 — 0.31og 0.3 — Ddlogdd = 1.85
E(SLy) = —0.17log 0.17 = 0.331og 0.23 — 0.5 log 0.5 = 1.43
E(SLa) = ~0.2210g0.22 — 0.33 log0.33 — 0.45 log 0.45 = L.51.
Finally, the gain of the test T 15 obiained as

gRin(T) = 0.35(1.85 — 1.45) + 0.65(1.85 — 1.52) = 0.35 (bits).
This gain indicates the effectiveness of the test.

Tn addition to this value, we should consider the test
execution cost to select a cost effective test, For example,
suppose there are two test sequences TS1 and T52, when
5L A, B C D

TS1 The first test can pinpoint & faulty component. The
test takes 10 minutes.

TE2 The first test can narrow down the SL to A, B or
C, D, and the second tesl can pinpoint a faulty one.
Fach test takes 4 minutes each.

The first dest in the sequence TSL is more effective than
the tests in TS2. However, T'S2 iz more desirable because
it takes less time than TS1 does in overall. As we can see
in this simple example, the system should consider the
test cost in order to selecl a test to be performed next.
This is becanse the goal is to minimize time for the over-
all diagnosis procedure. Therelore, the system selects a
test, according to the following evaluation function.

gain(T)
cost(T)

In the current implementation, the test costs must
he given in advance. In general, other faclors, such as
amount of service interruption and test equipment avail-
ability might have to be considered al the same time.

Tlnput Dwtel
ebs lawlteoh

Figure & Display of the System

3.7 Probability Estimation

The performance of the test selection mechanism relies
on the correcipness of the presumed probability distri-
butien of components. However, it iz not easy to pre
dict appropriale probability for each component from
obzerved data, especially when the number of ohserved
data iz small. Although the curcent implementation em.
ploys Dayes presumption method, a novel mechanism
to induce the probability distribution is being carried
out by the authors and is reported in the reference
[Makakuki et al. 1990). This mechanism is being incor-
porated into the system.

4 Experimental Result

This section summarizes an experimental result on the ef-
fect of experience learning. Eapecially, we concentrate on
the effect of the tesl selection mechanism. Anocther effect
of learning, the performance improvement achieved by
knowledge caching for a model-based suspect calculation
can be found in the reference [Koseki 1988).

The experimental system was implemented on a Prolog
machine PSI-TI, Figure 3 shows an exa.rnp]r—: d]sp]ay of the
system. The connectivity knowledge can be edited on
the schematic editor on the display. The darkened boxes
represent suspected components. The darker the box is,
the higher probability the box has.

A simple model for an air conditioning controller shown
on the example display was used to measure an effect of
the experience learning mechanism. The model consists
of 16 components and it has 10 input signals and 12 out-
put signals. As a measure, the number of Lesis required
to identify a fault is counted for hypothetical faulls for
each component. The number of test are compared be-
tween two cases, the one without any experience {same
probabilities for all of the components) and the one with



a set of predefined probabilities.

The number of tests are reduced from 7 to 4 after learn-
ing for a test case, where the faulty component has a
higher probability than the others. The predefined fail-
ure distribution for the 16 components are, gero times
for 10 components, five times for 4 components, fifteen
times for 2 components, and thirty times for 2 compe-
nents, ooe of which is the faulty component. On the
other hand, when the faulty component has low proba.
bility, the number of tests required was larger than the
unexperienced case. Since this happens with low proba.
bility, it can be estimated that the number of the tests is
reduced in average.

With only this particuiar result, it is still dangerous to
conclude that the learning mechanism described here is
always effective, since the result heavily depends on the
characteristics of the particular target device. However,
we can conjeclure the effectiveness of the methed.,

5 Conclusion and Future Problems

This paper has described an experimental model-based
diagnostic system that learns from experience. [ts archi-
Lecture offers & solution to the two main problems en-
countered in developing conventional rule-based systems,

brittleness and knowledge acquisition bottlenacks. It alse ”

zolves the efficiency problem in model-based systems.

Several problems and research tasks still remain, At
preseot, Lhe system works on one level of abstraction.
Future work is to include the use of hierarchical design
madels or diagnosis and for test pattern generation. The
system requires complele design knowledge. However, to
realize more robust diagnosis, it is desirable to be able
to diagnose with incomplete design knowledge. The de.
scribed learning mechanism only learns from the suceess.
ful digguosis experience. A research on learping mech-
anism from failed cases is planned. The behavioral de-
scription employed in the system can only represent a
component behavior without internal states. Although
internal states can be represented by providing pseudo in-
put and ocutput signal ports outside of components, more
systematic mechanism to deal with the internal states is
desired.
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