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ABSTRACT

We prove the zero-point theorem for Boolean polynomial rings. This
gives us a semantic property of ideals in the polynomial rings. The
property 15 especially important for constraint solving in a Doolean do-

AN,

1. Introduction

“Constraint solving” in a general context can mean various things. However, detennination
of the validity of a formula under a certain constraint must alwayvs be the main purpose of

constraint solving.

When we consider a set F' of polynomials over a ring as a constraint in the sense that all
polynomials in it should have value zero, a valid polynomial can be defined as a polynomial
that vanishes on every zero-point of F. To address the problem of determining the validity
of a polvnomial under F. a purely syntactical characterization of the set V(F of all valid

polynomials is needed.

For ordinary polynomials over an algebraically closed field (such as the complex numbers),
a polynomial 1s valid under F if and ouly if it is an element of the radical of the ideal
generated by F' (the Hilbert zero point theorem). We show that, for polynomials over a
Boolean ring, a stronger relation holds, that is, in the case that a zero point of F' exists (in
other words, F is a satisfiable constraint), a polynomial is valid under F if and only if it is
an element of the ideal generated by F. This Boolean version of zero-point theorem gives
us the simplest syntactical characterization of valid formulas. Together with the known
result concerning solvability of equations of the Boolean polynomial ring (sce [SaSa 89], for
example), we can handle constraints of this domain completely in terms of ideals.
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2. Validity ideal

We assume that the reader is familiar with elementary algebraic notions such as rings and
ideals {see [Waerden 37, 40], for example). in particular Boolean rings (see [Halmos 63], for

© example).

Let I? be a Boolean ring. that is, a commutative ring with umit satisfying the follwing

property:

h* — b for any b e B,

Let us consider a polynomial with elements of I! as its coctlicients. I it 1s linear w.r.t. each
variable, it is called a Boolean polynomial. Let 17 he a set of variahles. The set of all
Boolean polynomials over B with variables in V' by B[V] The set B[V] forms a Boolean
ring by relation r® = x for cach variable r. Lot F be a subset of B{V]. We denote the
ideal generated from F (i.e. the least ideal including F) by [{F). A zero-point of F'is
a substitution  which assigns an element of B to each variable such that #(f) = 0 for
every f e F. We denote the set of all zero-points of F by Z{F). A Boolean polynomial
[ 15 called valid under F if Z(F) c Z({f}). The set of all polynomials valid under F' is
denaoted by V[ F).

Let us summarize known results on ideals and ZHI‘C}-]JIIZTthH of Boolean polvnomials. Let F

be a set of Boolean polynomials,
{Bl) ZiF) = Z(I{F)).
(B2) V(F)is an ideal and I(F) C V(F),

(B3) Let f be a Boolean polynomial and let r be a vanable occurring in f. We can put
f = fix + fy where f; and f; are polynomials in which = does not oceur. Then f
has a zero-point if and only if so does ¢ = f; fy + fy. In fact, if # 12 8 zero-point of g,

by putting r = #( fy) for example, we can obtain a zero-point of f.

(B4) If F is finite, Z(F) = @ if and only if there is a non-zero constant (a polynomial
without vanables) in I(F).

3. Zero-point theorem

Theorem 3.1 Zero-point theorem
Let F be a finite subset of B[V]. If F has a zero-point, then V(F) = I( F).
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For a finite subset F = {fi, fo.... . fu) of B]V],if we put f = fi vV fa V.-V fo. then it is
easily proved that Z(F) = Z({f}) (and, therefore, V(F) = V({f})) and I(F) = I{{f}).
Henee, we can assume F is a singleton set { f} without loss of generality. We also assume

that F has a zero-point in the rest of this section.
Before the ahove theorem, we prove the next two lemmas.

Lemma 3.2
Let @ he an atom of B, that is, there exists no b & B such that 0 < b << a. Then, lor any

polynomial g, ag © V{F) imphes ag € H{ F).

Proof: If ag € V(F), then clearly {og 4 a. f} does not have zero-points. Therefore, by
{B4). there exists a non-zero constant b in [{{al’ 4+ o, f}), that is, there exist Boolean
polynomials h. A" such that b = hiag + «a) + B'f. Tet 8 be a zero-point of F, that is.
#f1 = 0. Applying # from hoth sides, we have

8(b) = #{h{ag + a) + N'f).
Note that #(b) = b 6la) = v, and #lag) = 0 since ag € V(F). Therefore,
b=0(b) = 0(hlag +a) + k') = 6(h)(Blag) + 6(a)) + BK"O(F) = 6(h)a.

Sinee a is an atom in I and 6 # 0, b = a. Now we got o = hjag + a}+ h'f. Multiplyving g

from hoth sides,
ag = hlag+ag)+gh'f =(gh"1f € I[F) I

Lemma 3.3
Let ¢ be a polvonomial and let by by, oo by, € B he all the coeficients appearing in g. Let

Biby.ba, .. b, be the Boolean subring of B generated from by ba,... . b,. Then, g has a
zero-point in B if and only if g has a zero-point in Blhy, o by

Proof: Tt 15 clear from (B3). l

Proof of Theorem 1.1: Suppose g € V{F). Let b, b, .... 0, € B be all the coefficients
appearing in mg and f. By Lemma 3.3 F has a zero-point in B(h, b, ... b, ). Since
Bl by,.... 0 ) C B, ge VI(F) holds also in B(by, by, ..., b,). Note that B(by. b, ..., b,)
is finite, Let ay.aq, ..., ay be all the atoms in B(b b, ... by ). Clearly, 1l = ay taz+--- tay.

Since a;g & V(F), a;g € J(F') by Lemma 3. 2 for each a;. Therefore g = a1+ azg+---+
arg € I{F). It is clear that ¢ € 1 holds also in B [}

Fxample 3.4
When Z(F) = @, clearly V(F'} consists of all Boolean polynomials, There exists a finite set

F such that Z(F) = @ but I{ F) does not consist of all Boolean polynomials. For example,
if bis an element of B such that 0 < b < 1, then Z({b}) =0 but 1 & I({b}).
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Example 3.5

When F is not finitely generated. Theorem 3.1 does not necessarily hold. For example, let
B be an atomic Boolean ring with infinitely many atoms. Let » € V and let F = {az |
@ is an atom in B}. Then. cleatly, r € V(F) but » & I{ F).
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