Th-O944
KL1 Programming
by
K. Susaki
August, 199
1990, 1ICOT
Mita Kokusai Bldg. 21F (03)3456-3191 -5

" :D I 4.28 Mita 1 Chome Telex ICOT J32964

Minato-ku Tokyo 108 Tapan

Institute for New Generation Computer Technology

KL1 Programming

Ivasunn Susalka

Contents

1 TInirvduction a
2 The KL1 Language 1
2.1 Syntax and basic concepts, ... 4
22 megation L. L 0

3 Unifieation and Svnchronization 7
3.1 guard unification . . .o 7
3.2 Body unification . . . L0 i
3.3 Synchromization with Unification o

4 Operations on Built-in Data Types 11
4.1 Builtindatatvpes L L 11
$2 0 Strings ..o L. 11
43 Nectors . © . L, 13
4.4 Streams ..., 14

5 Process Oriented Programming 16
6 Execution Control 17
6.1 Priority control 17
6.1.1 Prorityofgoals 17

6.1.2 Prority of clauses e e e 19

.2 Load Distributiono L L0 20

¥ Shoen 22
7.1 The Shoen feature L. 22
7.2 Execution control e 23

7.3 Resource Management
P4 Lxeeption handling . 0 0 00 0L
10 Caullons ..o oL o0

RE scheme
S MRB scheme00

5.2 set_vector-elemoent /5
Macro

FPuzzles

ML How to use I/O operation . ..,,
10.2 Fibonacel sequence |

10.3 stream compression
10.4 Prime number generator
10.5 Matrix transposition . . ., , . . .

Sample programs

A.l Tibonacci sequence
A2 Stream compression
A Prime pumber generator
A4 Matrix transposition

31

Chapter 1

Introduction

This manual i& intended to zive novice users an introduction to develop
programs in KLI assuming that they kaow how to write simple programs
in Prolog.

For more information, please refer to the following manuals.

o PIMOS 15 Introduciory Manual
— How to use the basic functions of PIMOS.

— How to use 1/O devices from user programs.

o I'IMOS 1.3 Operating Manual
Describes all Lhe funclions of PIMOS version 1.5.

e KI.1 Programming Manual: This manual includes an Introduction, Be-
ginming Level, and Intermediate Level.

Chapter 2
The KL1 Language

KL1 1s a parallel logic programming language that has been developed at
ICOT. 1t is based on the Flat version of GILC (Guarded Horn Clause) but
with some extensions to make it a more practical language. The operating
system for the parallel inference machine is writlen entirely in K11,

2.1 Syntax and basic concepts

L1 introduces the concept of modules and it is necessary to declare the
name ol the module at the top of the program. Public declaration is also
necessary to speeify the predicates that can be referred from outside the
wwdule. Here 15 a small example that returns the negation of input data in
thie boolean algebra.

%) sample 1

;- module not,

:= public not/2.
not(In, Out):- In =:= 0 | Out
not(In, Out):- In =:= 1 | Out

1. n (1)
0. ho(2)

The first line of this program is the module declaration. “- module” is
the reserved word to show the module declaration and the following “not™ is
the specified name of this module. The second line is the specification of &

public predicate. In this program, ‘not/2° is specified as a public predicate.
The following two lines are the program body.
o general, KLI programs take the following form :

net{dn, Out):—In —=0 | Out=1.
— e T
Jeend gord ol oal
— -
y1-_.;1|'~_l' !"’.l':ily
clttwae

Fach KLI clause is divided inlo two parts by an operator, | . called the
“commit operator”. To the left of this commit operator is the “suard” part,
which contains the head of clavse and some goals. Lo the right of the commit
operator is the “body™ part. In the guard part, only some specially prepared
buili-in predicates can be used, In the body part, we way use both built-in
predicates for the body part and vser-defined predicaies,

I the guard part, the goals arc executed in the order of appearance. In
the body part, the goals mav be executed concurrentky.

All clauses with the same head are in an OR-relationship, as in Prolog.
The predicate succeeds if the first clause is true, OR the second clause is
true, OR ... and 5o on. In Prolog the order of clauses has meaning. That is,
each clause is tried in the order in which it appears in the program. After
selecting one clause, the execution can backtrack.

In KL1, all clanses are tried concurrently and the order does not have
mcamng In execution time. T'he poal that all gnard goals are succeeded is
sclected (we call it commitment) and after that, the selection cannot back-
track. In this way, the conunitment operator is similar to the cut operator
in Prolog. If there are some alternatives that can be selected, the KL1 sys-
tem selects and executes one clause at random from those whose guard part
succeeds, and discards the rest,

If, in the previous cxample, illegal data is input (for example In = 2},
this program fails (reduction failure). When we want to handle illegal data,
one more clause s needed,

W sample 2

= module not.
:= public not/2.

not(In, Out):- In =:= 0 | Out 1. %01
not(In, Qut):- In =:=1 | Qut = 0. o2
not(ln, Dut):= Tn =\= ¢, In =\= 1 | Out = -1. % (3)

{3) s the clause for illegal data.
not(In, Out):- true | Out = -1. (37

If the clauscs are tried one by one in the order in which they appear (like in
Prolog), we can write the third clause like (3'). But in K1, (3] can be tried
befere (1) and (2), and the system can select this clanse when In = 1 or In
= 0.

2.2 negation

There is a special statement otherwise, a simple expression indicating nega-
tion. I otherwise is inserted between clauses, the KL1 system selects the
clauses after the otherwise statement only when all clauses before ii fail.
Using the otherwise statement means that it is nat necessary to describe the
negative conditions of the guard parts of all the other clauses. The previous
sample program can be rewritten with otherwise as follows :

4 sample 3

:— module not,
:- public not/2.

not(In, Qut):- In =:= 0 | Out = 1, % (1)

not(In, Out):- In =:=1 | Qut = Q. % (2)
otherwise.

not(In, Dut):- true | Out = -1. % (3)

Chapter 3

Unification and
Synchronization

In the previous section, we saw how each clanse of KL1 is divided inlo two
parts: gnard and body. After Lhe success of guard goals, the clause is sclocted
and the body goals of that clause may be executed. In other words, in the
guard part, the conditions are checked and the svstem decides whelher to
select that clause or nol.

In L1, the unification in the guard and in the body are ireated as
different operations: guard unification and hody unification.

3.1 guard unification

To check a condition, it is necessary to have a concrete value. So il the
variable does not instantiated yet, the execution stops and waits for instan-
tiation. We call this situation suspension. Tt means that in the guard part,
no variable may be instantiated and concrete values are compared. This
is called ‘guard unification” or ‘passive unification’. 'L'his mechanism, very
different from Prolog, is explained with the following example.

A oexample 1
7= not:not{Input,Result).

not{In,0ut):- In =:= 0 | Out = 1.

net (In,0ut):- In =:= 1 | Qut = J.

This goal waits the instantiation of ‘lnput’ and after instantiation the
guard goal will be instantiated. But ia this example, there is no operation
that gives a value to the variable ‘Input’, and this goal falls into perpetual
suspention (deadlock).

W example 2

?- not:not{Input,Result), Input = 1.

0| Dut = 1.
=1 | but = 0.

not(In,0ut):- In
not({In,0ut):- In

n
[l

In this case, when Input is unified with ‘1" as the second goal, the goal
‘not’ resumes.

WA example 3
?- foo:through(abc,abc).
through(In,0ut):- In = Dut | trua.

Because both arguments are concrete values, the guard goal ‘Tn = Out’
can be achieved. This example is the same as example 4.

A example 4
?- foo:through(abec,abc).
through(Same,Same):- true | true.

These two variables have the same name ‘Same’. This expressmn is the
same as the guard goal ‘A = B".

In Prolog execution, the following (fifth) Example would be the same as
the previous two examples, but in KL1 it behaves differently.

A example 5
7- foorthrough(ibe, Abc).
through(Same,Same):= true | true.

This invocation has the same variable name for two arguments. But the
goal ‘throngh /2" needs the same value (instantiated value) to execnte. Defore
mstaniiation of the variable ‘Abc’, the goal should be suspended.

[n the following example, the execution should also be suspended.
wh example 6
?= foo:through(In, Out).

through(Same,5ame):= true | true.

In KL1, guard unification between variables should be suspended.

3.2 Body unification

Iu the body part, a variabie may be instantiated like in Prolog and two
dilferent variables may be unified. This unification is called ‘body unification’
or ‘active nnification’.

In the previous example ‘not’, the variable ‘Out’ in the body part is
instantiated to 1 or 0 or -1.

3.3 Synchronization with Unification

Here is a small example. This program generates integers from 0 to 100
and sieves them into odd and even numbers. It is a typical example of
synchronization in KL1.

W osieve

- module sieve.

:= public go/2.

gol(Even,Ddd) - true | % o(1)
generate(0,Numbers) , (2]
sieve(Numbers,Even,0dd) . w3

generate(N,Numbers):- N > 100 | Numbers = []1. ¥ (a)

generate (N, Numbers):- N =< 100 | % (8)
Numbers = [N | NewNumbers], Lo(8)
Nl :=N + 1, o
genarate(N1,NewNumbers) . ho(8)

sieve([HIT] ,Even,0dd):= (H med 2) =:= ¢ | ho(9)
Fven = [H|NewEven], % (10)
sieve(T,NewEven,0dd). no(11)

sieve([H|T] ,Even,0dd):- (H mod 2) =:= 1 | hol1z)
Odd = [HINewDdd], W (13)
sieve(T,Even,NewDdd) . ho(14)

sieve([] ,Even,0dd):- true | % o(18)
Even = [], (18
Odd = []. %ho(17)

The goal number (1) is the top goal. When we invoke this goal, the
even and odd numbers from 0 to 100 are returned in the first and second
arguments.

The top goal ‘go/2" makes two subgoals ‘generate/2" and ‘sieve/3’. ‘gen-
erate/2' generates the integers from 0 to 100 by using tail recursive call. This
goal unifies the generated number to Lhe argument ‘Numbers’ with the form
of list.

Line (9) to (17) are the definition of the clause ‘sieve/3’. the clauses on
lines (9) and (12) wait for the instantiation of the first argument. When the
first argument is instantiated to a list, the first element of list (car) is checked.
That is, generate/2 makes one integer number and sends it to sieve/3. Then
it runs one procedure for that number and waits for the arrival of the next

number.

10

Chapter 4

Operations on Built-in Data
Types

4.1

Built-in data tyvpes

KL1 prepares the following data tvpes.

4.2

alom, integer, list, variahle — the same as Prolog
vecrtor — I'-i.i.I]l:iU]']'l access structure

string — random access structure whose elements should be character
codes
maodule, rode —

— module i a block of object code for KLI programs

— code entries of individual predicales

They are treated in the same way as other data objects.

Strings

String are random access structures whose elements should be character
codes. 'Lhe elements can be read and updated by designating their posi-

tion.

There are four kinds of string (their clement sizes are different):
1-bit, 8-bit, 16 bit, 32-bit.
The defaull element size is 16-bit {aseii code is treated as 8 bit siring). The

string which has default element. size can be written as follows :
Tabe”, "7, string# " abhe”, and so on.

built-in predicates

KL1 system provides the [ollowing built-in predicates for strings. The pred-
icate with ‘i G is for the guard part, and that with ‘2 B is for the body
part.

1. Check the data type

string(String, "Size, "ElementSize) :: G
string(String, "Size, "ElementSize, “NewString) :: B

2. Create new string
new_string(“String, Size, ElementSize) :: G
3. Read the element

string_element (String, Position, "Element) :: G
string_element(String, Position, "Element, “NewString) :: B

4. Update the element

set_string_element(String, Position, NewElement, “NewString) :: B

12

Example

[Tere is a small example. This program appends two strings.
W/ append strings

- module string.
:- public append/3.

append(Strl,Str2,5tr):- string(Str1,81,3E), string(Str2,52,SE) |
512 := S1 + 52,
new_string(NStr, 512, SE),
appendArgs(0,51,0,5tr? NStr, Nstrl),
appendArgs(0,52,51,5tr2 ,NStr1,5tr).

appendArgs(N,N, _, _, Str,NStr):- true | NStr = Str.
appendArgs(M,N,SM, 0S5tr, Str, Nstr):- M < ¥ |
string_element (0Str ,M,E) |
set_string_element({Str,SM,E,Strl),
Nl := M+ 1, SML := BM + 1,
appendArgs(Mi,N,SM1,05tr,5tr1,NStr).

4.3 Vectors

Vectors are random access structures whose elements may be arbitrary data
types. A variable also may be an element of a vector. Vectors are written
with curly brackets. There is also a functor format vector as in DEC-10

Prolog.
{a.bel, {1, a(X)Y), and so on.
{a,b,c} is the same as a{b,c).

Built-in predicates

The KL1 system provides the [ollowing built-in predicates for vector.

1. Check the data type

13

vector{Vector, “Size) :: G
vector(Vector, “Size, “NewVector) :: B

2. Ureate new vector
new_vector({"Vecter, Size) :: B
3. Read vector element

vector_element (Vector, Position, “Element) :: G
vector_element (Vector, Position, “Element, ~lNewVecter) :: B

4, Update vector element

set_vector_element(Vector, Position, "“0ldElem, NewElem, “NewVect)

4.4 Streams

In the sample program ‘sieve’, we use a list for an arbitrary number of com-
munication between two processes. This popular programming technique is
called ‘stream programming’.

When many processes correspond with one stream (many processes wait
for a message on the same stream and there is one process ihat is send-
ing messages on that stream), there should be a process that merges those
streams.

We call this process ‘merger’ and, for efficiency, it is prepared as a built-in
predicate,

merge(In,Out) :: B

The input stream ‘In’ can be instantiated with vector; this merger is so
flexible that it can have an arbitary number of input streams.
See the following example.

%h sample 4
:= module counter.

14

t= public counter/1.

counter{ln):- true |
merge(In,Out),
counter(Dut,0) .

counter([up|In] ,State):~- true |
New := State + 1,
counter{In,New).

counter([downl|In],State):- true |
New := State - 1,
counter{In,New).

counter{ [show(Current) |In],5tate) :- true |
Current = State,
counter(In,State).

counter([],5tate):~ true | true.

In this program, merge{In,Out} is invoked in the initiation of this pro-
gram. And the program that invokes this module may split the input stream
to ‘counter’ and use those streams independently as follows.

A sample 5

:= module calculater,

1 public go.

go:= true |
calculatorA(A},
calculatorB(B),
In = {A,B},
counter:counter (In).

In this example, both calculatorA and calculatorB have the input stream
to ‘counter’. And they can send messages independently. When they send
messages at the same time, which message (from A or B) arrives first is not
determined,

13

Chapter 5

Process Oriented
Programming

Process vriented {object oriented) programming in KL1 is a Programming
technique like the previous example ‘sieve/2". Process is realized by a tail-
recursive call goal, there are some connections between processes by streams,
and they conununicate with each other by sending messages. A program is
described as a process network.

In the previous section, counter/! is a process. It receives the messages
‘up’, ‘down’ and ‘show(Current)’ and in the cases of *up’ or ‘down’ it changes
the slate. ‘show(Current)’ is a different kind of message. When the counter
receives this message, it returns its state in the argument ‘Current’. The
argument of message ‘show’ is used to return the value to the sender of this
message. In this way, it is not necessary to have another line for answer
messages, and it is not necessary to know the sender of the message either.
We call this technique ‘back communication’.

16

Chapter 6

Execution Control

he exccution order of goals is decided only by the dependency of the data.
It is not enough for sophisticated problem solving, and it is necessary to have
functions to control the execution preciscly. KLI provides two functions to
control the execution, they are:

¢ 'monity Control

o load Distribution

6.1 Priority control

For specifying a sophisticated problem-solving strategy that can use the avail-
able computational resources cffectively, it is essential to introduce the notion
of priarity for goals that can be executed in parallel and for clauses that can
be chosen non-deterministically. To write the operating system, the priority
for the sets of goals is also introduced with the function of called shoen,
which is described in the next section.

6.1.1 Priority of goals

An order of priority is assigned to each goal. Without priority specification,
a goal has the same priority as its parent goal. The priority is specified in
relative way. There are two ways of doing this relative specification,

17

s Specifying the priority of a goal by the ratio between minimum and
maximum priorty of that goals's shoen (ratio specification within the
assigned shoen).

e Specifyving the prionty of a goal (child) by the ratio between the priority
of a goal (parent} that is calling the child and the mwinimum (or the
maximum) priority of the shoen that surrounds the child goal (self-
relative specification within the child goal's shoen).

Ratio specification within the assigned shoen

Lach goal has its own maxinum and mininum priority associated with the
shoen in which the goal executes. In this way, the priority for the goal 1s
specified by the ratio between these two values.

The specification is written as follows :

Geal@priority(*,Ratic)

The priority for this goal 15 decided with following formula.

Cp + (Maximum — C'p) > [Ratiof [0 = Ratio < 4096)
4096
ar .
Cp — (Cp — Minimum) x ”E;‘ﬁ"[(—4096 < Ratio < 0)

Self-relative specification within the goal’s shoen

Each goal has the priority of its parent goal as a default value. In this way,
the priority is specified by the ratio between its default and the minimum
pricrity of the shoen in which the goal executes.

Goal@priority($,Ratio)
The priority for this goal is decided with the following formula.

Ratio

M (0 < Ratio < 4096)

Minimum + (Maximum — Minimum) x

18

Maximwum priovity of Shoen{Sup] —»

prionity of p (Up) —s

P[00
priovity of q (Np) ——s
4096
Np=(Cp—(CUp— Shp) %‘
£
L

Minimure priority of Shoeen(Sbp) —— | —— 3

6.1.2 Priority of clauses

The ‘alternativcly” statement shows the priorily of clause. If inserted between
clauses, the clauses before the statement have higher priority than those that
follow it. That is, clauses that appear after Lhe ‘alternatively’ statement will
be selected il all the previous clauses fail or suspend.

Consider the following program.

m([W | XI, ¥, WZ) :- true |

Wz = Wl Z], mC X, Y, 2). {1}
m(k, [W | Y], W2) := true |
WZ = [W | Z), m(X, Y, 2). (2)

In this program, two clauses wait different arguments. When we want
to specify higher priority for the first argument, use the siatement alterna-
tively.

m([W | XJ, ¥, WZ) - true |
W =[W | Z], m{ X, ¥, 2). (1)
alternatively.
miX, [W | Y], WZ) := true |
WZ = [W | Z], m(X, ¥, Z). (2)

But the specification with alternatively is not an absolute one. The pro-
gram should run correctly without this statement. Tt should be used only for

eflicicucy.

19

6.2 Load Distribution

In the current version of PIMOS, a processor number must be explicitly as-
signed to a goal in order to make it execute on a different processor. Without
the specification, the goals are executed in the same processor that invokes
them.

Any KL1 body goal except for buill-in predicate may be assigned to a
specific processor hy attaching an expression containing the PE number in
the following manner, where PL is an integer equal to or greater than zero.

goal@processor (PE}

The following sample program illustrates this concept.
% sample &

r= module distributien.
= public fao/0.

foo:- true |
al@processor(0),
alprocessor(1),
alprocessor(2) .
a = true | true.

Processor numbers may also be variables. Execution of the corresponding
goal is suspended until the variable is instantiated to a number,

W sample 7

:- module distribution?.
;= public foo/3.

foo(P1,P2, P3):- true |
a@processor(P1),
a@processor (P2},
alprocessor (P3) .
a :- true | true.

20

There is a built-in predicate ‘current _processor[PE,X,Y)" that returns the
nuiber of the processor on which it was executed along with the number of
processors available in the horizontal(X) and vertical(¥') directions.

21

Chapter 7
Shoen

Shoen lielps lo write an operating system and is a function to control the
exccution of a set of goals (a goal and its subgoals). for cxample to control
a Job that runs on shell. It is not intended for use by application program-
mers, bul it is also helpful for them. So in this chapter, | will give a brief
introduction to shoen.

7.1 The Shoen feature

Shoen is & unit provided as a KL1 language primitive to handle the following
things.

e Execution contral

& Hesource management

s Exceptional events

Shoen has two streams. To control the execution of shoen, send messages
via the control stream. To report the internal status of shoen, shoen uses
the report stream.

Shoen is created with a following built-in predicate and shoen can be

nested.

shoen:execute(Code, Argv MinFrio,MaxPric ,Mask,Control, "Report)

22

Code, Argv

The top goal that is exccuted inside the creating shoen is designated by Code
and Argv.

MinI’rio, MaxPrio

The priority for this shoen is assigned with MinPrio and MaxPrio. These
arguments may have micger values from 0 to 4098, These values are not
praciical ones. They show the ratio between the goal that invekes this built-
in predicate and the minimuin value outside the shoen.

Mask

This is a mask pattern. This pattern decides the exceptional events that this
shoen monitors,

Control, Report

Control is the control stream of this shoen and Report is the report stream
of this shoen.

7.2 Execution control

By sending messages to the shoen by the control streamn, we can start, stop
and abort the execution of goals inside the shoen. Corresponding to these
messages, acknowledgements are returned by report stream.

7.3 Resource Management

Sheen is a unit for resource management. Usually an operating system man-
ages resonrce (for example CPU time, memory size), but in PIMOS, it is dif-
ficult to manage CPU time and memory. So in the current version, roughly
speaking, PIMOS manages the number of reductions as a resource.

To assign the maximum number of resources, we also send a message
by control stream. Befure the number of consumed resources reaches the

23

maximum, a meseage reports the shorlage by the report stream. You can
add an amount of resources also by sending a message.

7.4 Exception handling

In KL1, all the goals are in And-relation. That is, when a user program fails,
the failure propagates to all the other goals and PIMOS itself fails. When
a goal inside a shoen {ails, the failure propagates only inside that shoen. It
does not have any effect outside the shoen.

The shoen monitors cxceptional events such as failure (reduction failure
or vwnification failure). deadlock and so on. These exceptional events are
reported as messages by the report stream.

7.5 Cautions

It is very difficult to use the shoen function when there is a variable shared
hetween the inside of the shoen and the outside. Another drawback is that
the overhead to create a shoen is very big.

24

Chapter 8
MRDB scheme

8.1 MRB scheme

I'he MRB (Multiple Reference Bil} scheme is a reference counting scheme
lor incremental garbage collection. Roughly speaking, the MRB scheme is as
follows;

In the MRB scheme the bit is used to discriminate the single
referenced data from others. The single referenced data is managed
in special manner for efficiency (for real time garbage collection).

It is better to keep the MRB white for efficient use of memory area and
for clliciency of execution.

In vther words, MILB shows whether the data is referred from only one
goai or from more that one goal. The pointer to that data is white when
there is only one goal and black when there are more that one goal.

The rule to determine whether a path is white or black is as follows :

case 1 : The pointer to a variable is white when the reference of that vari-
able must be less than two. Otherwise it is black.

case 2 : 'The pointer to a concrete value is white when the reference of that
data must be one. Otherwise it is black.

LThe value of the MRB is determined when a goal commits. Please see
the following example.

7= p(X}, q(XJ.

25

p(X) :- true | r(X), s(X}). (1)
r(¥) := true | true. (23

When these goals are invoked, the variable X is vninstantiated and the
occurrence is twice, so the pointer is white. After the execution of (1), the
number of reference becomes three and the MRB changes to black. After
executing (2), the reference deereases to two. But the MRE is black and
does not change.

8.2 set._vector_element/5

In the previous section, yon see the built-in predicate set_vector_element/5.
set_vector_element({Vect ,Position,0ldelement ,NewElement NewVector)

This works as follows :

Replace the element of *Vect” whose position is ‘Position’ with ‘NewEle-
ment'. To do this, this goal makes new vector ‘NewVector’ with the ‘NewEle-
ment’,

It is for keeping the single reference for the target vector. The update
operation for vector is done in an efficient way when the reference is single.

Chapter 9

Macro

Several categories of macre are introduced in KL1. They are as follows:

o Macros for the description of constants.
string#"abc”, kev & and so on.

o Macros for anthmetic comparison,
X>Y, ¥ =\=Y% and sc on.

» Macros for conditional branch.
¢ Macros for the declaration of implicit arguments.

Io use these macros, it is necessary to put in the following statement in the
top of the module definition.
User defined macros have not been introduced vet.

Conditional branch macros

In KLI the macros to write conditional branch are provided. Here is a small
example and the generated code.

foolX,Y) :- true |
(X=:=0 => p(Y,2):
X >0 ->qlv,Z),;

othervise.
true -» r{Y,Z} J,
s(X,2).

The generated program is as follows.

foelk,¥) - true |
"4foo/2/ 0 (XY 2},
s(X,Z).

"$f00/2/07 (X,Y,Z) :- X=:=0 | p(Y,Z).
'$fo0/2/0' (X,¥,2) :- X > 0 | q(Y,Z).
ctherwise.

"$foo/2/0°(X,Y,2) := true | r(Y,Z).

A conditional branch macre may allow an arbitrary number of expressions
in the following format with a semi-colon as a descriptor.

guard -> body

All built-in predicates or expressions that may be written in the guard
part of a clause are available as the guard of this expression. Also, all the
expressions in the body part of the clause are available in the body of this
eXPIession.

28

Chapter 10

Puzzles

10.1 How to use I/O operation

Any KL1 program can access a window of the Shell or the Listener by us-
ing the Standard I/0 device represented by the streams Standard-Input,
Standard-Output, Standard-Input/Qutput, Message Qutput, and Standard-
Interaction.

In order 1o perform I/0, messages are sent to these streams requesting
operations such as “gete(C)" to read a character, “putc{C)” to output a
character, and =0 on.

The following module shows how to access the streams Standard-Input,
Standard-Output, and Message-Output.

%% sample B

i= module std_ico.
;= public create/3.

create{Input,Output,Message):- truel
shoen:IaiE&{pimﬂs_tag#shell,get_std_in,lnput],

shoen:raise(pimos_tag#shell,get_std_out,Dutput),
Bhaen:raise(pimoshtag#shell,get_std_mes,Hessaga).

This module can be called as :

29

- Std_in:createEInput,Uutput,Hessage}J
Input=[...], Output={ ... J, Message=[...].

Which resultz in the Fu-ll-:-wing streams ;

o lnput : A Standard-Input device stream
Accepts any message provided by a buffer:input_filter.

o Outpul : A Standard-Ontput device stream
Accepts any messages provided by a buffer:output filter.

o Message : A Message-Output device stream
Accepls any messages provided by a buffer: output filter,

An explanation of the buffer and the filter utilities can also be found in
Section 3.5 of the “PIMOS 1.5 Operating Manual”.

The following program display the message ‘Hello’ to the shell window
{or listener window when you invoke this program from listener).

i= module std_io.

:= public go/0.

Eo:- truel
shoen:raise(pimos_tag#shell,get_std_io,ID),
10 = [putt(‘Helle'), nl].

10.2 Fibonacci sequence

Write a program to generate a fibonacei sequence. Fibonacci sequence is
defined by the following formula.

a4y =l
{12=1
By = Gz + Qqy

10.3 stream compression

Write a program to eliminate the duplicate elements from input stream and
output the result.

30

10.4 Prime number generator

Write a program to generate a prime number.

10.5 Matrix transposition

Write a program which transposes a matrix. The matrix is written hy vector.

(i)

For example, a matrix

LU T

is written {{1,2.3}.{4.5.6}}.

31

Appendix A

Sample programs

A.1 Fibonacci sequence

:= module fib.
t= public fib/2.

fib{M,5) :- true | £fib(M,1,0,5).
fib(M,N1,N2,8):- M=:=0 1] § = [].
fib(M,N1,N2,3):~ M>0 |

N3 :="N1 + N2,

5 = [N3 | Ns],

M1 =M -1,

fib{M1,N2,N3,NS).

A.2 Stream compression

t= module stream.

:= public compact/2.
compact([],¥s) :- true | Ys = [].
compact{[X[Xs], Ys) :- true |

¥s = [X | Ys1],
filter(X,Xs,Zs),
compact(Zs,¥s1).

32

filter{_,[1,¥s) :- true | ¥Ys = [].
filter(K, [KlXs],¥s) :- true | filter(¥,Xs,¥s).
filter(K, [X[Xs],¥s) :- EA\=Y |

Yg o= [X|Vs1], filter(¥,¥s ¥s1).

A.3 Prime number generator

i= medule prime.
:= public go/l.

go{Max) :- true | primes(Max,Ps), output(Ps).
primes(Max,Ps) :- true | gen(2,Max, Ns), sift(Ns Ps).

gen(No,Max,NsO) :- NO =< Max |
Ns0 = [NO|Ns1], N1 := NO + 1, gen(N1,Max Ns1).
gen (N0 Max,Ns0O) :- NO > Max | Nso = (],

sift([P|Xs1],Zs0) = true |
Zs0 = [PlZs1],
filter(P,X=1,Ys],
sift{¥s,Zs2).

sift([{].Zs0) :- zrue | Zs0 = 1.

filter(P, [XI1Xs1],Ys0) :- (X mod F) =\= 0 |
Ys0 = [X|Ysi], filter(P,Xs1,¥sl).

filter(P, [X|Xs1],¥s0) :- (X mod P) =:= 0 |
filter(P,Xs1,¥s0).

filter(P,[],¥s0) :- true | Ys0 = [].

output(Ps) :- true |
sheen:raise(pimos_tag#shell,get_std_out,Out),
output(Ps,0ut).

output ([X[Xs1],0ut) :- true |

33

Out = [putt(X}, nl | Otail],

output(Xs1,0tail).
output([],0ut) := true |
Out = [].

A.4 Matrix transposition

'= module matrix.
:= public transpose/2.

transpose(M,T™) :- vector(M,Number(fRow),
vecter_element(M,0,M0), vector(MO,Number0fCol) |
newMatrix(Number0fCol ,NumberOfRow, TMO),
transpose(M,Number0fCol ,NumberOfRew, THO, TM) .

newMatrixz(RowN,CollW,M) := true |
new_vector(M0O,Rowl) ,
nevMatrixdrgs(0 RowN,ColN,M0,M) .

newMatrixArgs(To,To,_,M,MM} :- true | MM = M.

newMatrixArgs(From,To,Size M,NM) :- From < To |
nev_vector (Row,Size),
set_vector_element(M,From,_,Row,M1),
Froml := From + 1,
newMatrixArgs{Froml,To,S5ize M1 ,NM) .

transpose(M,RowlN,ColN, TM NTM) :- true |
transposeArgs(0,RowN,ColN,M, TM,NTM) .

transposeArgs(To,To,_,_,TM,NTM) :- true | NTM = TM.

transposelArgs(From,To,ColN M, TM,NTM) :- From < To |
set_vector_element(TM,From,R,NR,TM1),
transposefArgsRow(0,ColN,From ,R,NR,M M1},
Froml := From + 1,
transposedrgs(Froml,To,ColN M1, TM1 ,NTM) .

34

transposefirgsiow(Te,To, _,Row,NRow M, M) :- true |
NRow = Row, NM = M.
transposedrgsRow(From,To,Coll,Row , NRew M, NM) :- From ¢
set_vector_element (M, From,Miow, WMRow ,M1),
set_vector_element (MRow,CollN,E,0, NMRow) ,
set_vector_element(fow,From,_,E Rowl),
Fremi := From £ 1,
‘tranEpcseﬁ.rganw(Frnm'] ,To,ColN,Rowl, NRow M1 ,NM) .

o

35

