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Abstract

This paper describes exicrded methods for causal asaiysis by
means of causal ordering. The original algorishm proposed by
Twasakill] deals with constraints in the forms of equilibrium and
of differentic] cquations. All constraints are assemed to be al-
ways offective. However practical phusieal medels are TepTH-
sented by consiraints using inequalities, hesides squations. Some
constraints are conditional: they have preconditions which must
be satisfied for the constraints tn be applied.

Then we define causaiitics between variables derived from
inequalities. We propose an algorithm that analvers potential
causalities that are derived from a set of conditional constraints.
The algorithm uses snly qualitative information of each con-
straint: the information concerning which variahles BDpeaT in
each consiraint. It cannet specify which conditions are actually
Lrue because of the ambiguity of the qualitative value, However,
the a]gurithm reasons all potontial causal relations hetwesn var]-
ables by nsing sets of exclusive conditional constraints,
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1 Introduction

Maay medels for physica! syslems used in research related
Lo qualitative reasoning can be represented in the form of
conttraints. A constraint is a declarative expression which
contains multiple procedural functions: bidirectional depen-
dencies between physical variables, Hewever, in Lhe actual
problem solving based on the physical model, the notion of
causality between variables, which is nal explicitly described
in the constraint expression, plays an impertant role. So
an algorithm deriving the causal relations from the bidirec-
tional constraint expression is fIECessary,

For this purpose, Iwasalil] proposed a theory which
analyzes the device behavior by means of causal ardering,
The algorithm deals with only constraints in the forms of
equilibrium and of differential equations, all of which always
operale.

However, in the currently available gualitative reason-
ing system [2,3,4], various types of formalism are nsed for
knowledge representation. Qualitative models of practical
physical ohjects can be represented by the following types
of constraints, besides equations:

*This paper is submitted to AINN'00, June 25-27, 1990, Zirich.

{a) inequalities
(b} conditional constraints: they are applied only if alt of
the preconditions are satisfed,

Then the original causal ordering algarithm is insufficient
for analyzing peacticn! physical models,

We intend to explore the causal ordering algorithm that
can analvze causality between wvariables in a qualitative
madel represented by such tvpes of constraints,

Section 2 outlines the original causal ordering algorithm.
In section 3, we explain the extended causal ordering al-
gorithm for inequalities. Section 4 describes the method
for analyzing a causality derived from a set of conditional
constraints. Section § discusses the efficiency of the cansal
analysis using gqualitative information.

2 Review

We briefly outline the original causal ordering algorithmf1]
for equilibrium equations. The basic principle of the alge-
rithm is a determination of an urier between variables given
by solving simultaneous equations.

[Def.1] Cauvsality in terms of causal ordering

If a set of N equatious containing M variables have N un-
Getermined variables, £, and {M-N) previvusly determined
vaziables, ¥, then we call the set sell contained. And we
call a self-contained set containing no self-contained subset
a minimal complete sct. The values of 0 in the minimal
complete set can be determined by solving N simultaneous
equations. Hecause the values of N newly determined vari
ables, 11, depend on the values of ¥, we define causality in
terms of causal ordering from ¥ to 0.

The physical meaning of the causality is as follows. A set
of plysical laws deseribed by the constrairils in the minimal
complete sel operate in an environment specified by the
states of the predetermined variables, and that set of laws
determines the states of other physical variables. We define
this dependency between the states of physical variahles as
a physical causality (see Fig.1).

The method uses only qualitative information: which
variables appear in each constraint. That suits the analysis
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Fig.1 Physical meaning of causal ordering

af qualitative maodels where few parameters are quantita-
tively known, We will extend the algorithm in the same

WaY.

3 Extended causal ordering algo-
rithm for inequalities

MNext we define causal relation derived from inequalities.
There are two types of propagation of variable values
torough arithmetic reasoning. One is that values of vari-
ables are determined by solving simultaneous equations as
mentioned i Tef.l. The other iz a limitation of the upper
or lower bound of a variable through inequalities.

[Def.?] Interval causality in inequalities

If there is only ane undetermined variable in an inequal-
ity, the values of other, deterinived, variables limit the upper
ar Jower bound of the undetermined variable. W define this
dependency of the undetermined variable on the determined
variables as an interval causality.

Note that we do not distinguish between a limitation of
the lower bound aod a limitation of the upper bound of a
variable. For example, assume that we know the value of X
is already determined in inequality (1).

X+Y >0 (1)

Then we can say that either of the upper or lower boundary
of a variable, Y, is limited by the value of X. If we want
to specify which of them iz actually limited, we need the
quantitative value of X by solving other simultaneous equa-
tions or inequalities. However it is, in general, less likely to
be possible because we have less quantitative information
of coefficients or parameters in qualitative models. So we
define only a kind of interval t:a.una.litjf in the a.na.l:;.r:is of
inequalities.

4 Extended algorithm for condi-
tional constraints

We explain an extended algonthm for analyzing conditional
constraints. Hereafter we represent each conditional con-
straint as follows:

.Pj.,...,ﬂ.u: = {?J: [2}

where Fyy, ..., P,-MJ are preconditions, and C; 15 a consequent
of the constraint. Fj, C; are formulas in the form of equa-

tions and inequalities.

4.1 Definition of conditional causality

First we define ecausality derived from conditional con

straints (2). Each conditional constraint is aclivated and
constrains values of variables in the consequent only if all
of the preconditions in its antecedent are satisfied, Because
the values of all variables that appear in the antecedent
must be previously determined, hefore we can evaluate the
truth value of the antecedent, we define conditional causal

ity derived from conditional constraints as follows:

[Def.3] Conditional causality

If wvalues of all variables i an antecedent of & conditional
constraint are determined, then we define dependeney from
the variables in the antecedents te the consequent of the

constraint as a conditional causality.

There are two things to note. Firstly, the conditional
causality is a dependency of & consequent of a conditional
copslrainl on variables, not between variables. Secondly, in
the causal analysis using qualitative information, the condi-
tional causality does not mean that the antecedents of the
conditional constraint is actually true and that the conse-
quent bolds true.

Consider the example shown in Fig.2, which is & physical
model of water and steam enclosed in a piston and cylin-
der system. When T' and V are directly controllable, a set
of simplified constraints describing the qualitative relations
between VT and P are following:

ElLT=t,

Eu.z{ P: Pa -.-{3}
EdT<t=VeksT+hk
EA4T>t,=PeV=ksT

Where ky, kg, and ks are constants. As the value of T is de-
termined by equation £,1, we can find a conditional causal-
ity from T to the consequent of E,3. However, we cannot
say whether the precondition of E.3,T < L, is actually sat-
isfied, because we do not have the quantitative value of T
determined by E.1. This ambiguity originates from the use
of qualitative information.



TVH l/'l_’_ﬂﬁfl'lﬂﬂr
siaam Causably baiwansn
ho My F wariabies
el S 'L’//
e e m s
e WA M E'_\‘___’. pigion
- Ttk
[EnvT)
Variables ; Constans ; .
T Temperature in cylndse: & Basling point of water -
s Prassura added to piston wo Total mass of waler
v Voluma in syfndar fa Tamperatima of armosphers
H Tatal heat of water and stoam B Pressure of atormosphane J {EHVT}
MMy Mass of warer, Mass of steam  fo Haat-fow rate -,

Fig.2 Physical model of water and steam
enclosed in a cylinder and piston system

4.2 Algorithm for analyzing potential
causality

Next we will explain a potential causality derived from a
set of exclusive conditional constraints. Many physical laws
aml behavioral characteristics of components are usually de-
seribed by a set of constraints that operate on exclusive en-
vironments. Fur such exelusive conditional constraints, we
can analyze potential causality between variables by enu-
werating all causal relations in each context, or combination
of environments,

In the example of {3}, E,3 and E,4 form a set of excly
sive constraints, because their preconditious are exclusive
of each other. When the value of T is determined by £,1,
either of the two conditional constraints is activated no mat-
ter what js the determined valuc of T.

We will create a conceptual sclector switch Sel(T),
which branches out to a set of exclusive environments,
Envl(T = #) and Eno2(T > #). If the value of T is
determined, Sel(T) becomes active and activates all the en-
vironments under it

Each conditional constraint is activated if all of its envi
ronments corresponding to its preconditions are active. £,3
Is activated on {Envl}, and so Fu1 is on {Em2}. Causal
relations between variables can he snalyzed for each context
by using the active constraints. We can acquire causal rela-
tion fram the variable T to V by using equation E.3 on the
context, {Envl}, because F,3 is active only on {Fnvl),
although the valve of the variable T is universally (in all
envirenments) determined. A causality from P and 1 to V
is acquired by using E.4 on {Env2)} as well (see Fig.3).

We call these two causal relations potential, because
each of them can be valid only in its active context. It is pos-
sible that Lhe value of V is determined, on {EnvlV Env2 =
1}, although the constraint which determines the value of V
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Fig.3 Potential cousal graph of constraints (3)

is different for each environment. So we call Vis universally
active, on {1}. (Here {1} denotes a universal set.)

4.3 Iteration method for analyzing po-
tential causality

We will intraduce an iterstion method for preventing a
deadlock caused by 2 loop of conditional causality between
sets of conditional constraints. Consider the following set of
simplified constraints describing phase change between wa.
ter and steam in the model of Fig.2 when heat, H, is applied
to the water and steam;

EBI;JH;HJ. =fy

EZT <ty= My=0

EydiT <ty M = wy

B4, T =1, = m*{M, H)

EiiT =t = m™ (M, H)

EfiT =t = M=

Emil=t s M=0

EE M > 0A M, =0= m*(T, H)

E0: M, = ﬂhﬂf’. =0=dT/di=0

B My =0A M, > 0= mY (T, H) J
Here m* (X Y) (m (X, ¥)) & a monotonically increas-
ing(decreasing) functional relationship between X and V.
When X increases, ¥ increases(decreases), and vice versa,

Constraints from £32 to Fy7 arc activated by the deter-

mination of value of T And they are the only constraints
which can determine the values of M; and M,. Only E8,
£49 and E;10, which are activated by the variables M; and
My, can determine the value of T, The conditional cansal-
ity between [M,, M,| and [T] makes a loop. Since all values
of the variables, M;, M, and T, are undetermined at the
beginning of causal analysis, ne selector or conditional con-
straint can be active. As there are no active constrainte, the

[...[4]
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Table 1 Changes of active contexts of variables for iteration

values of My, M, and T are not determined in any contexts.
So the causal analysis comes to a deadlock.

In an actual physical system, each variable has a certain
value in an arbitrary epvironment. Ewven if there is a loop
of conditional causality between sets of constraints, quan-
titative values of some variables specily which conditional
constraints actually operate and determine the states of the
other variables. S0 we can find dependency belween vari-
ahbles.

We introduce the following iteration method for avoid-
ing a deadlock of causal analysis, First, we assume that
all variables in antecedents of all conditional constraints are
universally active. Next, seleciors and constraints are acti-
vated using the pre-assumed active contexts of the variahles,
Then all of the potential causalities in each context are ana-
lyzed, and the active contexts of the variables are acquired.
This procedure is iterated until the active contexts of all
variables in the antecedents converge.

The changes of active contexts of the variables for the
iteration procedure in the example (4} are shown in Table 1.
In the first iteration, Sel(T),Sel( M) and Sel(M,), are uni-

versally activated by assuming T', M, and M, are universally
active. Their active contexts are propagated to Envs under
the selectors, 51,...,57. They activate all of the conditional
constraints, £32,....Esl0, in the environments correspond-
ing to the preconditions in their antecedents. And the ac-
tive conditional constraints specify the causalities betwesn
variables. At the end of the first iteration, M, and Mg RIE
active in'all environments, However the newly determined
active context of T,
F={{54nST)v([S5aST)v (55 56))

is not equal to its pre-assumed active context. The newly
determined active context of T' is substituted to the pre-
assumed active context of T in the second iteration, and
the procedure iz iterated. In this example, all of the active
contexts of I’ M, and M, are converged to § after the third
iteration. Then the causal analysis s terminated and we
can acquire the potential causality of the set of copstraints
{4} as Fig.4.

4.4 Total extended algorithm for causal
analysis

Now we can totally conclude the method for analyzing po-
tential causality, including the case when the conditional
causality between sets of conditional consiraints makes a
loap, as follows:
[Algorithm 1] Algorithm for analyzing potential causality
{cl) For each set of exclusive preconditions, [Py, ...,Py),
in antecedents of conditional copstraints, create a selecter
switch

Seli(®;) [ Env(Fy), ..., Env{Fig,)]

where, §,; is a set of variables appearing in the exclusive



preconditions.
(€2} Tor all variables & = &,U..U%,, assume that they
are universally active. [These pre-assumed active contexts
of variables are used only for activating selectors and con-
straints in sleps I{cﬂ:l and {c4},]
{cd) For each conditional sclector switch, Sel;(®;), all active
confexts of the variables in ¢, are comhined into an active
context of the selector:

active(Seli(®,)} = A active{$;).
Add conditional causality:

O — Sel(®.) on active(Seli( ;)

And this active context is propagated to cach environment
under the selectar:

activel Env( Fig )| = Env(Fi) A active( Sel;($;))

{c4} For each ronditional constraint, 5y shown as (2], cai-
culate its aclive environment,

active(C;) = aetiwe{ Env( Py ) A, Aactive( Env (Pin, ))-

Each constraint without preconditions is universally active,
Add conditional catsalily:

t—lﬂﬂif';'j_:l.a.q .Eﬂ‘l?{ P‘.'_M"} —_— l::., an adiuafc_,-]l.
(c3) Minimal complete seis defined as Del.l are searched
from the set of consequents of all aciive comstraints.

For each set of N simultaneous active equatiens, 0 =
[C1 .y O], containing M variables, the active context js:

active(C) = netive(C))A . Aactive{ Oy ).

If there is a sul-eontext of aetive(C), where values of
(M — N} variables, W, are determinesd and the rest NV vari-
whles, 1, are undetermined, then T and  detesmine the
vaiues of {}. The newly determined context of the variables,
i1, 18

active({t} = active(C )A.. Aactive((y) Aactive(W).
Acquired polential causality s
¥ and O, O — 11 on active(f2).

Note that in the procedure searching minimal complete sets,
#very consiraint can be used only once in each context.

Potential interval causality defined in Def 2 is acquired
as well,

{c6) For each variable, merge all of the determined envi
ronments acquired in step (c3) to its currently determined
active comlext,

If for each variable in @, the currently determined active
context and the pre-assumed active context are the garme,

then the potential causalities are acquired as the final state
of the procedure.

else go to step (c3) afler substituting the currently deter-
mined active contexts to Lhe pre-assumed active contexts in
the next iteration, for all variables in &.

5 Summary and discussion

We extended the causal ordering algorithm until it can ana-
lyze canzalilies of a qualitative model of & practical physical
ahject.
{a) The extended algorithm can analyze causalities of in-
equalities,
(b} It can also analyze conditional constraints: it ressons
all possible potential causal relations between varigbles
by wsing sets of exclusive conditional constraings.

Two problems remain that eriginate from the ambiguity
ol qualitative information. First, the method cannot spec-
ify which potential causality actually holds, as discussed in
section 4.

Second, the method cannet eliminate the invalid con-
text. In the example of Fig.4, the combination of environ-
ment, S4(M; = 0) A SE{M, = 0), is invalid if the value of
wyg i3 positive. However as the algorithm does not wse the
qualitative value of wy, it cannot eliminate such an invalid
context in the calculation of the active context.

In the actual medel-based problem solving [5,6], both
a qualitative model and a quantitative model are used, In
the research of diagnosis [5], a qualitative model is used for
generating candidates of faults and a guantitative model
is used for verification of the candidate. So if we regard
the inethod as a tool for generating comprehensive causal
relations, we can expect the algorithm to become a powerful
tocl for model-based problem solving.
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