ICOT Technical Memorandom: TM-0946

TM-U416

PDSS Manual (Version 2.52.e)

hy
K. Hirano

August. 1990

i 198, [COT

Mita Kokusa Bldg. 21F (03)3456-3191 =5

ICOT i, e
Institute for New Generation Computer Technology

PDSS Manual

(Version 2.52e)

Dec 26 1989

Institute for New Generation Computer Technology

Fourth Laboratory

Copyright (C) 1988,89 by ICOT

Acknowledgment

This manual was translated from Japanese version by Dr.
Kouichi Wada, a lecturer of Tsukuba university, Dr. Masaki
Kohata, & lecturer of Okayama science university, and Dr.
Daniel Dure, a visiting researcher of ICOT from France.
Translation was done in March, 1989,

Contents

1 What is PDSS

2 KL1 Language Specification
2.1 OQutline
2.2 Sho-en e
2.2.1 Sho-en generation . . .
222 Control stream

223 RKeport SPealIll L L e e e e e e e e e e e e

23 Priomity L
24 Svilax

241 Module definition 0L L
242 Clause ordering 0 oo e

20 Datatypes - Lol

26 Bullt-in predieates . . 0 000000000 0oL,

D81 Typeechecking - . . . L L L oL e e

A T |

2.6 Arithmetic comparison I::I||1-rgﬂr;|. Ch h e b4 roa e m o

2.6.4 Arithmetic operations {Integer)

2.6.5 Anthmetic comparison (Floating point)

2.6.6 Arthmetic operations (Floating point) L L
267 Conversion (Integer - Floating Pomt)

2.6.8 Vector predicates ., . . L L

2.6.9 String predicates | .

260 Atom predicates . L e e
26.11 Code predicales 0 . o 0 e e e e e e e

2.6.12 Stream support . .
2613 Second order funetion
2.6.14 Special 1/O functions .
2.6.15 Other predicates

2T O MACTOS . . . L e e e e e,
2.9.1 Constant description macros,
272 Unification macros L L L L e e e e e e e e e e
273 Arithmetic comparison macros Cea

274 Arithmetic operation macros . . .

275 Macros for implicit argument passing

2746 Conditional branch macros . © Lo L
L0.9 Macro library L L

3 Micro PIMOS
3.1 Command interpreter . . .
4.1.1 Command input format

W12 Commands.,

3.2 I/O functions

.......................................

3.2.1 Command stream attachment

123 Cnmmand]ist......._..............,...:.-::.r:

3.3 Directory management Ce forr
4.3.1 Aecquisition of command stream L L L L L L L L e
3342 Commanda. L e e

A4 Deviee Stream for L0 . . L . L L L e e e
3.4.1 Securing device streamo e
342 Command . . . o L L e e e

35 Code management L e e e e e e e

30 Displaying exception information R

4 DPDSS Optional Parameters

—

e
DD Dm0 O D D T e i G R RS D

Tot Bl D e o e e
SSShemaoaEse

20
21
21
22
22
21

4.1 lsage under GNU-Emacs
4.2 PDSS an stand-alone C e
4.3 Optional parameterso u v e e e e e e s

5 Tracer

5.1 Pr|r|c:p]c-ufuper.1tmu e e e e e b e e e e e e
52 Howtoread the display .~,
B Commands e e e e e e e e e e e e a e e e e e
6 Dead-lock Detection
Appendix
ﬁppr:mli.t.-'l l,l"'[:i devices !
Appendix-2 Code device . . . e e e e e e e e m e a e e
Appendix-3 PIMOS commean ut1[|.h-:s
Appendin-4 Reserved module names,
Appendix-§ Heserved operator names
Appendix-6 List of built-in predicates . . .
Appendix-T Fxception codes
Appendix-8 Reserved Sho-en Lags L0 0. i b s s s s e e e s e e
Appendix-9 GNU-Emacs library e e e e e e e e e e
Appendix-10 Using command procedures Ea-r cumpllmg Ce
Appendix-11 Sample program. e e e e e e e e e e
Appendin-12 What to do il a bug s found out... e

41
41
41
43
43
43
44
47
50
50
il
56
B0
1
£l
Lib]
il
67
it
T
71

T3

1 What is PDSS

PSS, which stands for PIMOS Development Support System, is & KL1 system to develop the PIMOS. PDSS
i5 widely compatible with the KL1 system found on Multi-PSI V2, besides implementation details, execution
specd, ete. The main differences are enumerated below,

» Some of the functions implemented through software (e.g atom management) are treated by the compiler,
Sorme atom related operalions are available as built-in predicates.

 Code management is done by compiler,

The only resource known by [PDSS is the number of performed reductions.

The 1/ device stream has a different form.

Because PDSS is a single processor system, there is no processor pointing flunction for process dispersion.

Another function of PDSS is to provide tools for the development of parallel programs. To this end, PDISS
has been written in a style which ensures portability and it will be installed onto various UNIX ! systems.
We tried to build PSS as a handy development tonl. We expect it to be iimproved along the development of
PIMOS.

PSS consists mainly of twe parts : one is the language processing system which executes KL1 and the
other is the user interface system, called Micro PIMOS. Micro PIMOS is a single user, single task operating
system which provides I/0 and code management funclions to its user. Its description is held in chapter 3.
Figure 1 shows PDSS configuration.

User Program

Micro PIMOS (KL1)
/G
code management
exception handling
command interpreter
compiler

KL1 processor
(C language) Multi Windows
{Emacs)

UNIX

Figure 1: PDSS configuration

In figure 1, we sce that 2 multi-window envirenment is provided through the GNU-Emacs full-sereen editor,
Its library has been written in Emacs-LISP.

In PDISS, 1/O and code magement functions use a special built-in stream, called device stream. Specifications
of this stream can be found in Appendix-1 and Appendix-2. Anyway, the average user doesn't have to use devies
siream directly, as most necessary facilities are provided in Micro-PIMOS libraries,

TUNIX ia a trademngk of Bell Laboratories.

2 KL1 Language Specification

The language specification of the KL1 dialect executable on PDSS lies in this chapter. Note that there may be
differences between this specification and ones found on olher systems, such as Multi-PSI V2.

2.1 Outline

KL1 is a language based on GHU (Guarded Horn Clauses) which moreover embeds some extensions related to
08 description, modular programming, ete. KL1 also has some restrictions, due to implementation limitations.
Itz main charactertstics are now deseribed -

Sequentiality of puard

Unification of head parameters and execution of guard goals are performed sequentially, from left to right.
In the following exampie, suspension occurs until variable X is instantiated. Note that the following predicate

does not fail,

Goal: 7= pla,X,b).
Clanse: pla,c,d) := true | true.

Guar
Ouly buili-in predicates can be used within the guard. These predicates are described in section 2.6
Equality of variables

Equality of unbound variables is not checked in the guard part. Suspension occurs in the following program,
until variables X and Y are instantiated, independently from the execution order of the goals of the topmost
clanse.

Goal: 7= X=Y, piX,Y¥).
Clause: pl(A,A) :- true | true.

Module functionality

Clustering clauses in several modules allows modular compilation and debugging. In the current version, to
each file corresponds a unigue module,

Sho-ep

An original functional unit, called Sho-en, has been introduced. It is possible to control the execution priority
and resource allocation of each Sho-en. OS itself is constructed as such a Sho-en.
Exeeption handling

Handling of exceptions occuring during the execution of a program is described in KL1, using Sho-en and
second-order predicates.
Failure handling

All failures are considered as exceptions within KL1 and execution of a program can be resumed using
exception handling facilities.

2.2 Sho-en

A Sho-en is the minimum unit of resource management, priority management and exception handling which
exists in the language. Two streams, called control and report streams, are connected to each Sho-en. The
control stream is used to control the Sho-en, and can carry various commands. The report stream carries
information and requests coming from the Sho-en. Users of Sho-en can handle exceptions if they write programs
interpreting the information from the report stream.

Resource management functions

The resource managed by PDISS is the number of performed reductions. It can be seen as a rough measure
of the computing time and memory usage. For all goals which belong to the same Sho-en, it is possible to

parent Sho-en

current Sho-en

_-—
o [u] u] a]
control stream
- S
child Sho-en o
R
- —_—t— i
o 1. report stream

Figure 2: An instant picture of some Sho-ens

specify the maximum number of reductions. By defauld, the system assigos the maxinum possible number of
reductions. When the Sho-en is generated, ie when it starts, this amount (or the defanlt amount) is attributed.
When reduction allocation is exhausted during the course of execution, an exception resource_low is inserted
in the report steeam of the Sho-en. 1t is possible to inerease the reduction resource via an add_ressurce(R)
comunand in Lhe conlrol stoeam, as explained jater.

The resource comsumption control is performed in a discrete manner : independently from the maximum
numhber of allowed reductions, there is a system dependent reduction granularity according to which control is
exeried, Typically, & few thousands reductions. Rescurce contrel can be seen as a recursive allocation process @
when a Sho-en starts, it is allocated, say, 2000 reductions. When this number is exhausted, a 2000 reductions
resource is subtracted from the parent Sho-en and added (o the current Sho-en, Tlis may Lrigger a recursive
process, during which reduction allocation is eventually done at the debts of some grand-father Sho-en. During
this precess, and anly at this time, the maximum allocation limit s checked.

Priority management

Another function of the Sho-en is priority management, Each Sho-en holds a record of upper and lower
priority bounds, for inner goals. Goals cannot be executed with a priority beyond upper bound and below lower
bound. Priority specification is described in scction 2.3,

2.2.1 Sho-en generation

Sho-en generation is performed using the “Sho-en™ system module, which contains the predicates execute/7 {and
an old format execute /8 also remains). Below, code is a three elements vector : {module-name, predicate-nama,
number-of-args}. argument is a vector with arguments of the goal. (In Multi-PSI V2, code data type is used
for the code argument.)

axacute(code, arpument, minimum-priority,
maximum=priority, tag, control, raport)

execute{module-name, predicate-name, argument, minimum-prierity,
maximum-priority, tag, control, report}

Above, minimum=-priority holds the value used to calculate the lower limit of priority bounds within which
goals are executed. It is an integer which ranges from 0 to 4096 and specifies what degree the lower limit is
made lower. When it i5 0, it is the same as the Jower limit of the parent Sho-en, and when it is 4006 | it is the
same priority of the goalexecute, Maximum-prierity holds the value vsed to calculate the upper limit. It is
also an integer which ranges from 0 to 4096, and sepecifies what degree the upper limit is made upper. When
it is 0, it is the same priority of the goaliexecute, and when it is 4096, it is the same as the upper limit of the
parent Sho-en. That is shown in Figured. Tag is a bit mask used to filter the exceptions received by the Sho-en.

Tag is described in Appendis-§ [ully. Control stream is unified with controel, and report stream is unified with
raport. The initial state of the generated Sho-en is suspend, and the allowed reduction count is not set.

<. ex ¥ 'She—en’:execute({primes,do,3}, {1,300, ,PRINES},0,2,—-1,CONTROL, REPORT)

high

maximun priority{ Smaes) —s

priority of goal which generates Sho-en(Cp) * I
Aij az

A% miim priﬂt‘it}f of new Ehn-ﬂn{NSnmm] —_—

minimum priority of new Sho-en{NSmin) —
Min

munimum priority(Smin) —

4006

Jonw

NEmazr = COp — (Cp — Smin) = :;:;

N&min = Smin + (Up — Smin) w Mg Len
0 < Maz < 4086 Maz = maximum priority within Sho-en
0 < Min < 409G Min = minimum prierity within Sho-en

0 < Min+4 Maz < 4006

Figure 3: Caleulation of Sho-en Priarity

2.2.2 Control stream

Below are the commands which can be inserted in the control stream. When the control stream is clased, the
She-en is abandoned. Conversely, if the user does never close the stream, execution of Sho-en itself never stops.

start
Activates goal execution in the Sho-en,

stop
Suspends goal execution. Previous command causes execution to resume.

abort
Aborts goal execution once and for all. In particular, start command cannot resume execution.

add_resource{Reduction)
Adds Reduction to the current number of allowed reductions.

allow_resource_report
This command is an answer to the exception resource_low. This exception cannot be reparted again

until this command is inserted.

statistics
Asks statistics about the Sho-en. Information is inserted in the report stream.

2.2.3 Heport etream
The following information can be found in the report stream.
Acknowledgment messages to control stream commands :

Here are the responses to commands put in the control stream.

started
Start message has been received,

shoppred
Stop message has been received,

aborted
Abort message has been received.

resource_added
Add_ressource message has been received.

resource_report_allowed
Allow_regeurce_report tnessage has heen received. Exception resource_low can be reported again

after Lhis message.

statistics_started
Statistics message received. The statistic information itself is reported onee eollected.

Status information

Here is the information reported whenever Sho-en status changes.

terminated
Fxecntion of Shoen has finished., T abort had heen sent previensly, this message indicates that Lhe

execution has been aborted. Otherwise, it indicates suceess of all goals.

resource_low
The number of performed reductions is close to the maximum allowed amount, or this amount is not

sufficient. When this exception ocecurs, Sho-en state becomes suspend. No other rescurce_low report
can ocour before that allow_resource_report is inserted in the control stream.

Statistic information
Here, we gel statistic information about the Sho-en, whenever collection bas been done.

statistics(Info)
Unifies the statistic information with Infe, which is one-element-vector | indicating the number of redue-

tions perfortned. This number includes reductions performed by children Sho-ens.

Exception information

Here is the deseription of exceptions which can be reported by a Sho-en. Excluding deadlock, they specify
the handling processes for the exceptions. If an exception condition is detected by PDSS, apply(NewCode,
NewArgv) is generated within the Sho-en to handle the exception. Then, system waits for the unification of
this goal with NewGode and NewArgv. The predicate specified with NewCode must be declared as public. When
NewCode is unified with [J, no goal is executed any more.

exception(ExcpCaode, Info, NewCode, NewArgv)
Exception occured in Sho-en. ExepCode is a positive integer which indicates the type of exception. Infe
is an information about the exccption, and it is unique corresponding to the type of exception. Each
exception code is described in Appendix-7. The new code and arguments of the goal chosen by the

user, in place of the failing goal which caused exception, should be unified with NewCods and NewArgv.

ExcpCode and Icfo are described as follows. Below Caller is the code of the predicate which calls a
built-in predicate. OpCode is the operation code of the built-in predicate, Argv is the argument vectar,
and Code is a three elements vector: {module-name, preicate-name, number-of-argumenta},

Excplode meaning :: Info definition
0 Mlegal Input Type :: {0, Caller, OpCade, Pos, Argv] Pos is the position of
i the invalid argument{1 ~ 7)

1 Range Overflow 2 {0, Caller, OpCode, Argv)
3 Integer Overflow i {0, Caller, OpCode, Argv}
5 Floating Point Error : {0, Caller, OpCode, Argv)
& Illegal Merger Tnput @ {0, Caller, OpCode, MI, FMI} MI is the invalid input data for merger
i FMI is the input stream to merger
% Heduction Failure {0, Code, Argv}
10 Umification Failure = {0, X, ¥} X and Y are the terms which
o causes failure in body part unification
12 Haised i {0, RType, Rinfu) EIvpe Rlnfo are the terms

H given by the built-in predicate:raise/3
16 TIncorrect Priogily = {0, Caller, OpCade, Argv}
17 Maodule Not Found {0, Code, Argv}]
18 Predicate Not Found = {0, Code, Argv}

deadlock (ExepCode, Info)
Deadlock has been detected in Sho-en. Excplode is an integer indicating thal the tvpe of exception is
deadlock. Infe is an information about the exeeption, and now its format is shown below. DGoal is the
code of the predicate which causes deadlock, or [1 (in the case that deadlock is detected in global garhage
collection). DType is an integer indicating deadlock type(see chapter B). GoalsList is the list of codes of
goals which are deadlock roots.
ExcpCode meaning :: Info definition
11 Deadlock :: {0, DGoal, DType, GoalsList} described above

2.3 Priority

In KLI, 1t is possible to specifly the priority at which each goal is executed. There are logical and physical
priorities, and each goal can have its own logical priority. There are different levels of physical priority in
the system, and the scheduler converts logical priority into physical priority when it connects goals to the goal
stack. (As physical priority is less accurate than logical prierity, user should not expect scheduling to reflect
exactly the logical priority.) Upper/lower limits of pricrity in the Sho-en are also logical.

Priority of & goal is specified relatively to its parent goal, or relatively to the Sho-en it belongs to. The former
method is called “relative self specification in the belonging Sho-en” and the later is called “rate specification
in the belonging Sho-en™,

Rate specification in the belonging Sho-en

Goal priority is specified by a value relative to the upper/lower limit of the belonging Sho-en. It is written
as follows ;

Goal @ priority(*, Rate)
In this case, the goal priority is computed shown in Figure 4
Relative self specification in the belonging Sho-en
Goal priority is specified by a value relative to the logical priority of the parent goal. This priority cannot
exceed the upper/lower limit of the She-en,
Goal @ priority($, Rate)
This time, priority is computed accoding to the sign of Rate as shown in Figure § (in case of plus) and Figure
6 (in case of minus).

2.4 Syntax
Differences between GHC and KL1 are described here. Main differences are concerned with

+ Module definition
+ Clause ordering

¢ Pricrity specification

:’ high {

upper-limit(Smaxz)

priceity of the calling goal{C P)

new goal priority(VP) — 4096
Smin + (Smoex — Smin) = E% {0 < Rate < 4090) T

lower-limit{ Srain)

low

Figure 4: computation of the goal priority by rate specification in the belonging Sho-en

high

upper-limit{ Smaz) -

N Rﬂt]
CP+ (Smazr — CP) = 358 (0 < Rate < 4006) 4096

new goal priority{N [} —
Fﬂtﬂ
9

priority of the calling goal(CP) -

lower-limit{ Smin) ———=

low

Figure 5 computation of the goal priority by relative self specification in the belonging Sho-
en(plus)

high

upper-limit{ Smazr) —

priority of the calling goal(C'F) - y
_I_Raie

new goal priority(NP) ——

CP —(CP - Smin) x B2l (_4096 < Rate < 0) 4096

Icrwer-".mil[.ﬁ'm:'n} —_— R

low

Figure 6: computation of the goal priority by relative self specification in the belonging Sho-
en{minus)

» Macros deacription

The macros are described later in this document.

2.4.1 Module definition

The following iz a module definition :
:= medule module-name.
This declaration must appear at the head of any module. Furthermore, any predicate defined in this module
but used cutside of it should be declared as follows -
:— public prodi:ata-nama,r"nunha:~¢1’—a:gunent:,, e,
Note that predicates executed by a built-in predicate apply and those specified at Sho-en generation must

be declared public. Multiple definitions of a predicate, spreading over several clauses, cannot he split by the
definition of a different predicate. Doing otherwise causes display of the message “Assembler: Doubly defined

label.".
A goal whose definition pertains to a different module can be used as indicated below -
modole-name : geal-name
Conversely, any goal without “module-name : " is recognized as a goal called inside the module. That is, a
goal name is efficient in each module, and the same predicate names can be used as different predicate definition
as far as they are belong to different modules.

2.4.2 Clause ordering

Compilation of KL1 program goes through clause indexing, in order to maximize efficiency. This may in return
change the order according to which clauses are selected for evaluation. If clause evaluation ordering is a

necessity, the following stalements should be used,

Scheduling order

The statement alternatively can be nsed to separate two sets of clauses, the first of which shonld he
scheduled with a higher priority. However, if all clauses in the first sct are suspended or fail, evaluation of

clauses in the second set starts.
fool[X1XX],.Z) :- true | p(X,XX,Z).

alternatively.
foo(X,[Z122]) :- true | q(X,Z,2Z).

Evaluation order
The otherwise statement is more straightforward : clauses fallowing it are evaluated only if all of the
preceeding elauses failed. Suspension does not trigger anything in this case.

fool[X|XX]) := X=a | palX,Xx).
too([X1XX]} :- X=b | pb(X,XX).

otharvise.
foo(X) :- true | g{X}.

2.5 Data types

Here are the data types supported by PDSS. The system recognizes only these data types as "data”, that is,
ouly these data types can make sense for the system,

* Unbound variables --- A, 412, B, _abe, _
As Prolog, an unbound variable consists of charactors and numerals, and begins with a capital charactar
or a underscore. Unbound variables of a same name in onc clause are identified as the same. Note that

isolated underscores are recognized as different each other.

+ Atoms -+- abe, ‘ABG’, =, ‘ean’'t’
As Prolog, an atom consists of charactors which begin with a small letter, or-only of signs, or of charactors
quoted with single quotation marks. To use a sigle quotation mark: * as an element of an atom name,
use two single quotation marks and quote the term with single quotation marks. Note that ‘4" is used by
the system as a particular usage, 5o users had better not use it as an atom {or an element of it).

8

o Integers --- 123, 16°4CE, 8'37, +3, -6
Usually an integer is expressed by the decimal notation, and ranges from —2147483648 Lo 214T4BIBAT.
Then the =ign of it is taken as a part of an integer, unless spaces do not follow it. When an integer in
format x'v 15 used, the radix base x may vary between 2 and 36, with classical convention for figures.
But the sign eannot be included in this expression. Note that x'y format produces a syntax error on the
Prolog based compiler, which makes sense for the reader of PDSS. The form radix-base#number should
be used instead. Note that the number is expressed as a string(e.g. 168" 12AC").

¢ Floating Point --- 1.23, 1.0e10, 3.0E-30, -2.0

Floating point is expressed by following format:
[sign] number * decimal point number® [e or E [sign of index number] number™]

Above, [...] expresses an option and numbert expresses numeral(s), It s not allowed to include any
space in this expression. As in an integer, the sign is taken as a part of an floating pont. PDSS supports
a single-precision (32 bits) floating point number. It expresses a value by about seven places of decimal
which ranges from —3 402823 = 10798 to 3400823 « 1098,
Ter unify two floating point numbers, comparison of bit patierns of internal forms is used. Ewven if displayed
two values seems to be unifiable, Lthere are some pu:—i:—i;h'l]ir.imi of f':l.i|i11g i unification. SO, for gene:ral_.
unification of two floating point numbers should not be intended.

¢ Lists --- [1,2,3], [XIY]
A list is expressed by [1. Car and Cdr can be expressed by using *| .

+ Vectors --- {1,2,{3,4}}, £(X}, {}
A wveetor is a structure of one dimension arcays, possibly of O dimension. To express a vector, it is allowed

to use { ¥ or the fanctor format, For example, £{a) and {f,a} have the same structure.

» Strings -+ "abe®, ", wowe

A string is expressed by charactors qouted with double goutation marks: . To use a double guotation
mark: " ns ap element of a string, use two double quotation marks and quote the lerm with double
quotation marks. The size of the string allowed by the system ranges from 1 bit to 32 bits. On PDSS,
a string expressed by *..." is recognized as an B bits string. On Prolog-based compiler, .. ." is not
precisely distinguished from lists, because a string is expressed by a list of codes of charactors on Prolog.
So, a macro expression of the form stringg . " should be used to generate a string. Here, strings,
excluding 8 bits strings, are used only for internal forms, and cannot be used in source files as constants.
Indeed, unification of two strings will success if the strings have identieal length and contents.

2.6 Built-in predicates

We now give the list of the built-in KL1 primitives supported by PDSS. The [oltowing s an example of the
formal we use :
vector(X, ~Size) 1 g
! T

Call format Valid location for occurence

In this case, G means that the predicate can appear in the guard of the clause. Some predicates can
oceur in the body, in which case the letter B is used. GB denotes predicates which can occur in both places.
Besides, arguments with a = are outputs, whereas other arguments are inputs. One should take this into
account, because binding an ouipul argument with an aleeady instantiated variable may cause suspension.
Also, unification occuring in the guard is passive, whereas unificaticn in the body can be active.

For some of the predicates described therein, input parameters should verify some domain constraints.
Typically, to divide a number by (0 is not a very sound operation. If a domain constraint is not respected,
depending on the predicate position, two different things may happen : if the predicate is used within the guard
part of a clause, this clause fails. If the predicate 15 in the boedy, an exception oceurs.

‘I'he system presents arithmetic macros for arithmetic operation, so it is nol necessary to describe relevant
built-in predicates, Macros are described in capter 2.7, -

2.6.1 Type checking
wait(X) : G

If 1 is unbound, suspension occurs, Otherwise, this predicate succeeds.

atom({X) :: G
If X is unbound, suspension occurs. If X s an atom, this predicate suceeeds, otherwise it fails.

integer(X) :: G _
If X is unbound, suspension occurs. If X is an integer, this predicate succeeds, otherwise it fails.

floating_point(X) = G
If X is unbound, suspension oceurs. If X is a floating point, this predicate succeeds, otherwise it fails.

list(X) : G
If X is unbound, suspension oceurs. If X is a list, this predicate succeeds, otherwise it fails,

vector(X) 2 G
If X is unbound, suspension occurs. If X is a vector, this predicate succeeds, otherwise it fails,

string(X) : G
If X is unbound, suspension oceurs. If X is a string, this predicate succeeds, otherwise it fails.

unbound(X, “Result) :: B
This primitive always succeeds. If X is unbound, Result is unified with a three-elements-vector {PE,
Addr, X}. Here, PE is the number of PE which holds the varjiable X {on PDSS always unified with 0), and
Addr is an address of the variable X. Conversely, if X is bound when this primitive is execuled, Result js
unified with {X}. This primitive never causes suspension.
<47 ' % The values of PE and Addr will be changed after garbage collection.

2.6.2 Inff

diff(X, Y) = G
If X and Y are identified as not to be unifiable by comparison of the two terms, this predicate suceesds,
Conversely if X and Y can be identified as completely to have the same structure, the predicate fails.
Otherwise suspension occurs. Following macro can be used.

Ih=s Y <= diff(X,Y).

< ! »Comparison of the terms is made in depth first from left to right. If any unbound variables are
found in comparison, comparison procedure is stopped and suspension occurs, If X and Y are structured
terms, unifiability checking is limited in depth. If terms are unifiable in the depth limit, the predicate will
fail, although a difference may exist deeper in the structures.

2.6.3 Arithmetic comparison (Integer)

equal({lntegerl, Integer2) = G
If Integer1 or Integer2 is unbound, suspension occurs. If both Integer1 and Integer2 are integers and
are equal, this predicate succeeds. Otherwise it fails. Following macro can be used,

I ==Y <= equal(X,Y).

not_equal{Integerl, Integer2) :: G
If Integer1 or Integer2 is unbound, suspension occurs. If both Integerl and Intager2 are integers and
are not equal, this predicate succeeds. Otherwise it fails. Following macro can he used.

I=s\=¥Y <=> not_equal(X,¥).

less_than(Integerl, Integer2) 1 G
I{ Integeri or Integer2 is unbound, suspension occurs. If bath Integerl and Integer2 are integers and
the value of the former is less than that of the latter, this predicate succeeds. Otherwise it fails. Following
macro can be used,

¥ <=> less_than(X,Y).
¥ <=> lesa_than{Y,X).

10

not_less_than{Integerl, Lntegerz}
If Integeri or Integer? is u:llmund suspension oceurs. If both Integeri and Integer are integers

and the value of the former is larger tha.n or equal that of the latter, this predicate suceeeds, Otherwise
it fails. Following macre can be used.

I > Y <=> not_less_than(X,Y).
I =< Y <=> mnot_less_than{Y,XI}.

2.6.4 Arithmetic operations (Integer)

add{Integerl, Integer2, NEWI[IL!H{ r):: GB
If Integeri or Integer2 is unbound, suspension occurs. If terms are not lnwgers failure or exception
oceurs. The result of the addition is unified with NewInteger. then if overflow is detected, failure or
exception occurs. Following macro can be used.

Z o= %+ ¥ <= add(X,Y,Z).

subtract{Integerl, Integer2. “NewlInteger) iz GD
If Integer! or Integer? is unbound, suspension oceurs. I terms are not integers, failure or exception

eeenrs. The result of the subtraction is unified with NewInteger, then if overflow is detected, failure or
exception oceurs. Following macro can be vsed.

Z:=1-1Y <=> subtract(X,Y,Z).

multiply{Integerl, Integer2, "NewlInteger) :: GB
If Integeri or Integer2 is unbound, suspension oceurs. If terms are not integers, failure or exception
aceurs. The result of the multiplication is unified with NewInteger, then if overflow 1z detected, failure

or exceplion occurs. Following macro can be used,

T :=X % ¥ <= mpultiply(X,Y,Z).

divide(Integerl, Integer2, “Newlnteger) :: GB
If Integer! or Integer2 is unbound, suspension occurs If terms are not integers, failure or exception
oceurs. The result of the division is unified with NewInteger. Then if overfiow is detected, or if Interger2
is bound to b, failure or exception occurs. Following macro can be used.

Z:=X /Y <=> divide(X,Y,Z).

modulo(lutegerl, Integer2, “NewInteger) i+ GB
If Integeri or Integer? is unbound, suspension occurs. If terms are not integers, failure or exception
oceurs. The result of the rest of the euclidian division is unified with NewInteger. Then if overflow is
detected, or if Interger2 is bound to 0, failure or exception occurs. Following macro can be used.

Z:=XmedY <=> module(X,Y,Z).

minus{Integer, “NewlInteger) :: GB
If Integsr is unbound, suspension occurs. If it is not an integer, failure or exception occurs. NevInteger
is unified with Integer with sign exchanged, then il overflow is detected, failure or exception occurs.

Following macro can be used.
Y := -X <=» minus(X,Y).

<% ! »This ts not supported on Multi-PSI V2.

increment{Integer, “NewInteger) 11 GB
If Integer is unbound, suspension occurs. If it is not an integer, failure or exception occurs. The result

to add 1 to Integer is unified with NewInteger, then if overflow is debccbed failure or exception occurs.
Following macro can be used.

11

¥ i=X 4+ 1 <= increment(X,Y).

<. 1 »This is not supported on Multi-PST V2,

decrement(Integer, "NewlInteger) :: GB
If Integer is unbound, suspension occurs, If it 15 not an integer, failure or exception vecurs, The result
to subtract 1 from Integer is unified with NewInteger, then if overflow is detected, failure or exception

oceurs. Following maero can be used.

¥ :=% -1 «<=» decrement(X,Y).

< | 3 This is not supparted on Multi-PSI V2.

abs(Intoger, “Newlnteger) = GB
If Integer is unbound, suspension occurs. If it is not an integer, failure or exception oceurs. ‘The absolute
value of Integer is unified with NewInteger K then if overflow is detected, failure or exception oceurs.

Following macro can be used.
¥ := abs(X) <=> abs(X,Y).

« ! ®This is not supported on Multi-PSI V2.

min(Integerl, Integer2, "NewlIntcger) :: GB
If Integerl or Integer2 is unbound, suspension oceurs. If terms are nol integers, failure or exception
occurs. The lesser value of two input parameters is unified with FewInteger. Following macro can be

used.
Z := min(X,¥) <=> min(X,Y,Z).

<2 ! »This is not supperted on Multi-PS1 V2,

max(Integerl, Integer2, “Newlnteger) :: GB
If Integerl or Integer2 is unbound, suspension occurs. If terms are not integers, failure or exception
occurs. The larger value of two input parameters is unified with NewInteger. Following macro can be

used.
Z :=maz(X,Y) <=> mar(X ¥, Z).

&, ! 2 This is not supported on Multi-PSI V2,

and{Integerl, Integer2, “Newlnteger) :: GB
If Integert or Integer2 is nnbound, suspension occurs. If terms are not integers, failure or exceplion
occurs. ‘The result of a bitwise logic and operation is unified with NewInteger. Following macro can be

used,

Z:=X/NY <=> and(Xx,Y.Z).

or{Integerl, Integer2, “Newlnteger) :: GB
If Integeri or Integer2 is unbound, suspension occurs. If terms are not integers, failure or exceplion
occurs. The result of a bitwise logic or operation is unified with NewInteger. Following macro can be
used.

2 :=XMN Y <= or(XY,Z).

exclusive_or(Integerl, Integer2, “NewlInteger) :: GB
If Integeri or Integer2 is unbound, suspension occurs. If terms are not integers, failure or exception
aceurs. The result of a bitwise logic exclusive or operation is unified with NewInteger. Following macro

can be uvsed.

Z =X zor ¥ <=> grclusive or(X,Y,Z).

12

complement({Integer, "NewlInleger) @ GB
Il Integer is unbound, suspension occurs. If it is not an integer, failure or exception occurs. This
unifies NewInteger with the 1's complement of Integer. This is equivalent to exclusive_or(-1, Integer,
WewInteger). Following macre can he nsed.

Y i= AKX} <=> complement(X,Y).

shift_lefi{Integer, ShiftWidth, “Newlnteger) :: GD
If Integer is unbound, suspension oecurs. 101t 15 not an integer, failure or exception oceurs, If ShiftWidth
is unbound, suspension occurs. If it should be an integer in the range [0,31], failure or exception oeeurs.
NewInteger is unified with the result of logic bitwise shift. Following macro can be used.

Z:=X<<Y <=> ghift_left(X,Y,Z).

shift_right(Integer, ShiftWidth, “NewInteger) = GB
If Integer is unbound, suspension occurs. Ifit is not an integer, failure or exception ocenrs, If ShiftWidth
is unbound. suspension occurs, If it should be an integer in the range [0,31], failure or exception eccurs.
NewInteger is unified with the result of right logic bitwise shift. Following macro can be used.

Z:=1X> Y <=> shift_right(X,¥,2),

2.6.5 Arithmetic comparison (Floating point)

foating_point_equal(Floatl,Float2) = G
If Floatl or Float2 is unbound, suspension occurs. If both Fleat? and Float? are floating points and
equal, this predicate succeeds. Otherwise it fuils. Following macro can be used.

X $=:= ¥ <=> Zloating point_squal(X,Y).

floating_point_not_equal{Float1, Float2) : G
If Float1 or Float2 is unbound, suspension occurs. If both Fleati and Float? are floating points and
are not equal, this predicate succeeds. Otherwise it fails. Following macro can be usad.

I $=\= Y <=> floating point_not_equal(X,Y).

Hoating_point_less_than(Floatl,Fleat2) 1: G
If Float1 or Float2 is unbound, suspension occurs. If both Float1 and Float? are floating points and
the value of the former is less than that of the latter, this predicate succeeds. Otherwise it fails. Following
macro can be used.

I §<Y <=> floating point_less_than(X,¥).
X% Y <=> floating point_less_than(¥,X).

ﬂnutiug_pﬂint_ﬂﬂt_le!s_th&n{rtﬂatl,l?'lﬂatﬂj I
If Float1 or Float2 is unbound, suspension occurs. If both Floati and Float2 are floating points and
the value of the former is larger than, or equal that of the latter, this predicate succeeds. Otherwise it
fails. Following macro can be used.

I $>= Y <=> floating point_not_less_than(X,Y).
I $=< Y <=> floating point_not_less_than(Y,X).

13

2.6.6 Arithmetic operations (Floating point)

Hoating_point_add(Floatl, Float2, “NewFloat) :: GB
Il Floati or Float2 is unbound, suspension cccurs. If terms are not ficating points, failure or exception
occurs. The result of the addition is unified with NewFloat, then if overflow is detected, failure or exception

oceurs. Following macro can be used,
Z8: =1 +Y¥ «g=> floating point_add(X,Y.Z).

< ! ZUn Multi-PSI V2, if overflow is detected, failure or exception will not oecur, and infinity outputs
into NewFloat.
Hoating_point_subtract(Floatl, Float2, “NewFloat) :: GI

If Floati or FloatZ is unbound, suspension oceurs. If terms are not fioating points, failure or exception
occurs. The resull of the subtraction is unified with NewFloat, then if overow is detected, failure or

exception occurs, Following macro can be used.
Z%8:=X% -Y «=> {fleating point_subtract(X,Y,Z).
< ! 2200 Multi-PSL V2, if overflow is detected, failure or exception will not vecur, and infinisy outputs
into NewFloat.

foating_point_multiply(Floatl, Float2, "“NewFloat) :: GB
If Float1 or Float?2 is unbound, suspension occurs. I terms are not fleating points, failure or exception
oceurs. The result of the multiplication is unified with NewFloat, then if overflow is detected, failure or

exception occurs. Following macro can be used,
Z §:=X#Y <=> floating peint muitiply(X,¥,Z).

< ! 0o Multi-PSI V2, if overflow is detected, failure or exception will not occur, and infinity sutputs
into NegFlaat,

Hoating_point_divide(Floatl, Float2, "NewFloat) :: GB
If Float! or Float2 is unbound, suspension occurs. If terms are noi floating points, failure or exception
occurs. The result of the division is unified with NewFloat. Then if overflow is detected, or if Float2 is
bound to 0, failure or exeeption occurs, Following macro can be used.

Z$:=X/7Y <> floating point_divide(I,Y,2).

< ' 2300 Multi-PSI V2, if overflow is detected, failure or exception will not eeeur, and infinity outputs
into NewFloat,

Hoating_point_minus(Float, “NewFloat) :: GB
I Float is unbound, suspension occurs. 1f it is not a floating peint, failure or exception occurs. NewFloat is
unified with Fleat with sign exchanged, then if overflow is detected, failure or exception oecurs. Following
macro can be used.

Y $:= =X <=3 floating peint_minus{X,¥),

<« ! % This is not supported on Multi-PSI V2.

fioating_point_ahs(Float, “NewFloat) : GB
If Float is unbound, suspension cceurs. If it is not a floating point, failure or exception occurs. The
absolute value of Fleat is unified with NewFloat, Following macro can be used.

Y $:= abs(X) <=» floating point_aba(X,Y).

< ! »This is not supported on Multi-PS1 V2.

floating_point_min(Floatl, Float2, “NewFloat) :: GB
If Float1 or Float2 is unbound, suspension occurs. If terms are not floating points, failure or exception
occurs. The lesser value of two input parameters is unified with ¥esFloat. Following macro can be used.

14

Z &= min(X,¥) <=> floating_point_min(X,¥,Z).

% | = This is not supported on Muolti-PST V2.

floating_point_max(Floatl, Float2, “NewFloat) :: GB
If Fleati or Float2 is unbound, suspension occurs, If terms are not floating points, failure or exception
occurs. The larger value of two lnput parameters is unified with NewFloat. Following macro can be used.

2 %= max(X,¥) <«=> floating point_max(X,¥,Z),

<2 ! 3% This is not supported on Multi-1I'S] V2,

Hoating_point_floor{Float, "NewFloat) :: GB
If Float is unbound, suspension ceccurs. If it is not a floating point, failure or exception occurs. The
largest integer not greater than Float is unified with KewFleat. Following macro can be used.

Y $:= fleor(X) <=» floating_point_floor(X,Y).

<7 ! %»This is not supported on Multi-P'ST V2.

floating_point_sqrt{Float, “NewFloat) :: GB
If Float is unbound, suspension occurs. If it is not a floating point, failure or exception occurs. If Fleat
i5 negative number, failure or exception occurs. The square root of Fleat is unified with NewFloat.
Following macro can be wsed.

T §:= sqrt({X) <=> floating point_sqre(X,Y).

< ! 2»This is not supporied on Multi-PSI V2.

floating_point_In(Float, “NewFloat) : GB
If Float is unbound, suspension occurs. If it is not & floating peint, failure or exeeption occurs. If Float
is less than 0.0, failure or exception occurs. The natural logarithm of Float is unified with NewFloat.
Following macre can be used.

¥ $:= In{X} <=> floating_point_1n(X,Y).

< | %This is not supported on Multi-F51 V2.

Hloating_point_log(Float, “NewFloat) : GB
If Fleat is unbound, suspension occurs, If it is not a floating point, failure or exception occurs. If Float
is less than 0.0, failure or exception occurs. The base 10 logarithm of Fleat is unified with NewFloat.
Following macro can be used.

Y $:= log(X) <=> fleating point_log(X,Y).

< | »This is not supported on Multi-PSI V2.

Hoating_point_exp(Float, “NewFloat) :: GB
If Float is unbound, suspension occurs. Ifit is not a floating point, failure or exception occurs, e is raised
to Float power and the result is unified with NewFloat, then if overflow is detected, failure or exception
occurs. Following macro can be used.

¥ $£= exp{X) <=> floating point_exp(X,¥).

<. 1 % This is not supported an Multi-PSI V2.

Hoating_point_pow(Floatl,Float2, “NewFloat) :: GB
If Float1 or Float2 is unbound, suspension occurs. If terms are not ficating points, failure or exception
occurs. If Float1 is not a negative number, and Float2 is not an integer, failure or exception occurs.
Float1 is raised to Fleat2 power and the result is unified with NewFloat, then if overflow is detected,
failure or exception occurs. Following macro can be used.

15

Y §:= E#e¥ <> floating point_pow(X,¥,Z).

% ! ZThis 15 not supported an Multi-PS1 V2.

floating_point_sin{Float, "NewFloat) :: GB
It Fleat is unbound, suspension occurs. If it is not a floating point, failure or exception occurs. sin(
Float) is unified with NeeFloat, then if overflow is detected, failure or exception oceurs. Following macro

can be wsed
Y $:= sin{k) <=> {floating_point_sin(X,Y).

< ' B This is not supported on Mulll-PSI V2,

Hoating_point_cos(Fluat, "“NewFloat) :: GD
If Fleat is unbound, suspension occurs. If it is not a fleating point, failure or exception occurs. cos|
Float) 1s unified with NewFleat. Following macro can be used.

¥ $:= cos(¥) <=> fleating_point_cos(X,Y).

<« ! %This is not supported on Mulii-PSI V2.

Hlioating_point_tan(Float, "NewFloat) :: GB
If Fleat is unbound, suspension oceurs. If it is not a floating point, failure or exception occurs. tlan(
Float) is unified with NewFloat, then il overflow is detected, faillure or exception occurs, Foilowing macro

can be used
Y $:= tan{X) <=> fleating point_tan(X,Y).

<. ! »This is not supported on Multi-PSI V2.

floating_point_asin(Float, ~“NewFloat) :: GB
If Float is unrbound, suspension accurs. If it is not a fioating point, failure or exception occurs. If Float
should be in the range [-1.0,1.0], failure or exception occurs. arcsin(Float) is unified with NewFloat,

Following macro can be used,
Y $:i= asin{X) <=> floating_ point_asin{X,Y).

42 ! »This is not supperted on Multi-P5I V2.

foating_point_acos(Float, “NewFloat) :: GB
If Float is unbound, suspension occurs. If it is not a Hoating point, failure or exception oceurs. If Float
should ‘be in the range [-1.0,1.0), failure or exception occurs. arccos{ Float) is unified with NewFloat,
Following macro can be used,

¥ $:= acos(X) <=> floating point_acos(X,Y).

<« ! ZThis is not supported on Multi-PSI V2.

floating_point_atan(Float, “NewFloat) : GB
If Float is unbound, suspension occurs, If it is not a floating point, failure or exception occurs, arctan(
Float) is unified with NewFloat, then if overflow is detected, failure or exception occurs, Following macro

can be used.
Y $:= atan(X) <=> floating point_satan(X,¥).

% ! % This is not supported on Multi-PS] V2.

Hoating_point_atan(Float1,Float2, "NewFloat) 1 GB
If Float1 or Float2 is unbound, suspension occurs. If terms are not floating points, failure or exception
occurs. If Float2 is 0.0, failure or exception occurs. arctan{ Float/ Float2) is unified with NewFloat,
then if overflow is detected, failure or exception occurs. Following macro can be used,

16

Z %:= atan{X/Y) <=> floating_point_atan(X,Y,Z}.

<. | %»This is not supported on Multi-PSI V2.

floating_point_sinh{Float, “NewFloat) :: GB
If Float is unbound, suspension occurs. If it is not a floating point, failure or exceplion oceurs. sinhi
Float) is unified with NewFloat, then if overflow is detected, failure or exception oceurs. Following macro

can be used.

Y $:= sinh(X) <=> floating point_sinh(X,Y,Z}.

< ! % This is not supported on Multi-PSI V2.

floating_point_cosh{Float, "NewFloat) :: GB
If Float is unbound, suspension occurs. If it is not a floating point, failure or exception occurs. sinhi
Fleoat) is unified with FewFloat, then if overflow is detected, failure or exeeption oceurs. Fallewing macro

can be used.
¥ $:= cosh(X) <=» floating point_cosh(X,¥).

< | This is not supported on Multi-PSI V2.

floating_point_tanh(Float, “NewFloat) :: GD
If Float is unbound, suspension oceurs, If it is not a floating point, failure or exception occurs. tanh(
Float) is unified with NewFloat, Following macro can be used.

¥ &:= tank(X) <=> floating_peint_tanh({X,¥,Z).

< ! 2%This is not supported on Multi-PSI V2.

2.6.7 Conversion (Integer - Floating Point)

floating_point_to_integer(Float, “Integer) :: GB
If Float is unbound, suspension occurs. If it is not a floating point, failure or exception occurs. Otherwise
this predicate converts Float into integer (The integer is returned the value of the least integer greater
than or equal to) , and unifies it with Integer. Following macro can be used.

¥ := int{X}) <=> floating_point_to_integer(X,Y,Z}.

integer_to_floating_point (Integer, “Float) :: GB
If Integer is unbound, suspension cecurs. I it is not an integer, failure or exception occurs. Otherwise
this predicate converts Integer into floating point, and unifies it with Float. Following macro can he

used.

Y &:= float(X) <=> integer_te_floating point(X,¥,Z).

2.6.8 Vector predicates

vector({X, “Size) :: G
If X is unbound, suspension occurs. If X is a vector, this predicate suceseds and Size is unified with the
vector size. Otherwise the predicate fails.

vector(X, “Size, “NewVector) = B _
If X is unbound, suspension occurs. If X is a vector, Size is unified with the vector size, and NewVactor
is unified with a copy of X. Otherwise exception occurs. This is useful to duplicate a vector and avoid
inter-process references, which are the pain for the garbage collector.

new_vector(~Vector, Size) 11 B
If Size is unbound, suspension occurs. If it is not positive or null, exception occurs. If the size of a vector
freshly allocated with size Size is beyond the heap size, exception occurs. Otherwise this predicate unifies
Vector with a freshly allocated vector, filled with zeros, which size is given by Size,

17

vector_element(Vector, Position, “Element) : G
This predicate is used to extract one element from a vector, If Vector or Position is unhonnd, suspension
occurs. If Veetor is not a vector, the predicate fails. Position indicates the rank of the element, starting
from . If Positien is not a positive integer, or if it is bevend the size of the veclor, the predicate fails.

Otherwisc Element is unified with the result of extractjon,

vector_clement{Vector, Position, “Element, “NewVector) = B
This predicate is used to extract one element from a vector, If Vector or Position is unbound, suspension

occurs. If Vector is not a vector, exception occurs. Position indicates the rank of the element, starting
from 0. If Pezsition is not a pesitive integer, or if it is beyond the size of the vector, exception oceurs.
Otherwise Element is unified with the result of extraction, and NewVector is unified with a copy of Vector,
This is useful to avoid multiple references which could impair garbage collector operations.

set_vector_element(Vector, Position, “OldElem, NewElem, “NewVect) :: B
This predicale is used to extract one element from a vector and replaces it with a new element, and makes
a copy of the original vector. If any of Vector or Position or NewElem are unbound, SURPENSION OCeurs,
If Vector is not a vector, exception veeurs. Position indicates the rank of the element, starting froun 0.
Il PFositien is not a positive integer, or if it is beyond the size of the vector, exception oceurs, Otherwise
01dElem is unified with the result of extraction. Then the predicate makes a copy of Vector and replaces
the element specified by Position, and unifies the modified vector with Newvect.

2.6.9 String predicates

string(X, ~Size, “ElementSize) :: G
If X is unbound, suspension occurs. If X is a string, Size is unified with the pumber of characters in the
string and ElementSize is unified with the length of each character, expressed in bits. Otherwise Lhe
predicate fails.

string(X, “Size, “ElementSize, “NewString) = B
If X is wnbound, suspension occurs. If X is a string, Size is unified with the number of characters in the
string and ElementSize is unified with the length of each character, expressed in bits. Then NewString
is unified with a copy of the string. Otherwise exception occurs.

- new_string("String, Size, ElementSize) :: B
If Size or ElementSize is unbound, suspension occurs. Size specifies the length of the string. If Size
s not a positive integer, exception occurs. ElementSize specifies how many bits contains each character,
If ElementSize is an integer in the range [1,32], exception occurs. If the size of a string freshly created
with size specified by Size and ElementSize is beyond the heap size, exceplion oeeurs, Otherwise the
prediate unifies String with a freshly created string specified by Size and ElementSize. The string is
filled with zeros.

string_element(String, Position, “Element) :: G
This predicate is used to extract one character from a string. [f String or Position is unbound, suspension
occurs. If String is not a string, this prediacte fails. If Position is not a positive integer or if il is beyond
the length of the string, the predicate fails, Otherwise Element is unified with the charactor(integer)
specified by Pesition. Position of the first character is 0.

string_element(String, Position, "Element, “NewString) :: B
This predicate is used to extract one character from a string, and makes & copy of an original string.
If String or Pesition is unbound, suspension occurs. If String is not a string, exception occcurs. If
Position is not a positive integer or if it is beyond the length of the string, exception occurs. Otherwise
Element is unified with the charactor(integer) specified by Position, and NewString is unified with a
copy of String. Position of the first character is 0.

set_string_element (String, Position, NewElement, “MNewString) :: B
If String or Position or NewElement is unbound, suspension occurs. If String is not a string, exception
occenrs. If Position is not a pesitive integer or if it is beyend the length of the string, exception occurs.
If NewElement is not an integer or if it is beyond the width of one element, exception occurs. Qtherwise
this predicate makes a copy of String and replaces the element of Position with NewElament, and unifies
the modified string with NewString,

18

substring(String, Position, Length, “SubString, "NewString) : B
If String or Pesitien or Length is unbound, suspension occurs, If String is not a string, exeeption
oceeurs. If Position is not a positive integer or if it is beyond the length of the string, exception occurs,
If Length is not a positive integer or if the length of Position + Length exceeds the length of String,
excepltion occurs. Otherwise this predicate extracts a substring from the original string, starting from
Position with length Length. Then SubString is unified with the result, and KewString is unified with

the original one.

set_substring(String, Position, SubString, “NewString) : B
If String or Positien or SubString is unbound, suspension oceurs. If String is not a string, exception
occeurs. If Position s nol a positive integer or if it is beyond the length of the string, exception occurs. If
the width of one element of SubString is not the same as that of String, exception oceurs. 1§ the length
of SubString 4 Position exceeds the length of String, exception occurs. Otherwise this predicate
substitutes element(s) of the String specified by Position for SubString, and NewString is unified with

the result of this substitution

append_string(Stringl, String2, "NewString) = B
If Stringl or String?2 is unbound, suspension occurs, I two input strings are not the same bitwise type,
exception occurs. Otherwise this predicate unifies NewString with the result of concatenating Strings

after Stringl,

2.6.10 Atom predicates

intern_stom(~Atom, String) = B
If String is unbound, suspension occurs. 1 String is not a string of 8-bits characters, exception ocours.
Otherwise this predicate transforms a string of B-bits characters String inte an atom, whose name matches
the siring contents. This atom is unified with Atem,
< ! »O0n Multi-PST V2, this is not a built-in predicate but a function of operating system,

new _atom(“Atom) :: B
This predicate creates a new atom and unifies it with Atom. The atom has no printing name.

atom_name{Atom, “String) :: B
If Atom is unbound, suspension oceurs, and if it is pot an atom, exception occurs. Otherwise String is
unified with a 8-bits string which contains the name of the atom.
< ! »0n Multi-PSI V2, this is not a built-in predicate but a function of operating system.

atom_number{Atom, "Number) » B
If Atom is unbound, suspension occurs, and if it is not an atom, exception occurs, Otherwise Number is
unified with the atom number corresponding to Atom. The atom number is ide ntically given by the system
to each atom according to the order of creation of it.

2,6.11 Code predicates

predicate_to_code(Mod, Pred, Arity, "Code) = B
If any of Mod or Pred or Arity are unbound, suspension occurs. If Mod or Pred is not an atom, or if ATity
15 not a positive integer, exception occurs, Otherwise Code is unified with the code specified by Mod, Pred,
and Arity. If the module, specified by Mod, does not exist, or if the predicate is not found(i.e. it is not
defined or is not be delared as public), Code is unified with an atom [J.

code_to_predicate(Code, “Mod, ~“Pred, “Arity, "Info) : B

If Code is unbound, suspension occurs. If Code is not a three-elements-vector, exception oceurs. Any
elements of Code are unbound, suspension occurs. The fist element of it is a module name, and if it is
not an atom or if it does not exist, exception occurs. The second element is a predicate name, and if it is
not an atom or if it is not found, exception occurs. The third element is a number of arguments of the
predicate, and if it is not a positive integer, exception oceurs. Otherwise this predicate unifies the module
name with Mod, and the predicate name with Pred, and the number of arguments with Arity. Info is
unified with an integer indicating whether the predicate is spied(1), or not(0).

19

2.6.12 Stream sapport

merge(In, "Out) :: B
This primitive can be used to merge one or more input streams (In) and unify the result with Ous. A

vector of streams, if given as one of the input, is divided into its stream components. The following is a
partial definition of this predicate :

mer;a{[_], 0) :-= true | 0=[].

merge{{&1I], 0O} :- trus | O=[AINO], merge(I, NO}.
merge({}, 0) := true | 0=[].

merge({I}, 0) :~ true | merge(I, 0).

merge({I1,I12}, 0} :- true | merga(Il, I2, D).
merge({I1,I2,13}, O0) :- true | merge(Ii, I2, I3, 0O).

merge([], I2, O} :- true | merge(IZ, 0).

merge(Ii, [1, 0} :- true | merge(If, 0O).

merge([A[T4], I2, O} :- true | O=[A|NO], merge{Ii, IZ, HO).
merge(I1, [A]I2], O} :- true | D=[A|¥0], merge(Il, IZ, KO).
margs{{}, 12, 0} :- true | merge(I2, 0).

merge(Ii, {}, 0} :- true | merge(Ii, G).

merge({I3,14}, I2, 0} :- true | merge(I3, I4, I2, D).
merge({I3,I4,I5}, IZ, O} :- true | merge(13, 14, IE, I2, O).

2.6.13 Seccond order function

apply{Code, Args) :: B

If Code or Args is unbound, suspension occurs. If Code is not & three-elements-vector, exception occurs.
Any elements of Code are unbound, suspension occurs. The fist element of it is a module name, and if
it is mot an atom or if it does not exist, exception occurs. The second element is a predicale name, and
if it 15 not an atom or if it is not found, exception occurs. The third element is a number of arguments
of the predicate, and if it is not a positive integer, exception occurs. If Args is not a vector or if the
number of arguments of it is not identical with the third element of Code, exception occeurs, Otherwise
this primitive calls the predicate specified by Code, with arguments specified by Args.

2.6.14 Special I/O functions

read_console("Integer) 51 G
This predicate unifies Integer with a number read from the console window.
<. ! »The language processor is halted during this operation. This predicate is used mainly for debugging

purposes.

display_console{X) :: G
This predicate displays the eurrent value of X on the console window, even if this variable is unbound.

put_console(X) :: G
If X is an integer, this primitive puts the equivalent ASCII character on the console windew. If X is an

8-bits character string, the siring is put on the console window. If X is undefined, or has any other type,
the predicate does nothing. Anyway no line feed or carriage return is added.

2.6.15 Other predicates
raise(Tag, Type, Info) :: B

If Tag is unbound, suspension occurs. If it is not a positive integer, exception occurs. A ground-term
does not include any unbound variables. If Type is not a ground-term, suspension occurs. Otherwise this
predicate causes Tag to be logically and-ed with the tag of all ancestor Sho-ens, starting from the current
Sho-en until the top, recursively. This process stops as soon as the result of the and eperation is not zero.
Then, a message is inserted in the report stream of the referred Sho-en. This message is as follows (also
see exception information in chapter 2.2) :

exception(12, {0, Type, Info}, FewCodo, Newlrgv)

20

consume_resource{Red) = B
If Red is unbound, suspension occurs. If it is not a positive integer, exception oceurs. Otherwise this

predicate emulates the consumption of computing resources, as if due to actual reductions. Red is the
number which is added to the count of performed reductions. If this count exceeds the allowed masirmum,

the resonrce_low condition occurs,

hash({X, “Value, "“WNewX) = B
If ¥ is unbound, suspension occurs. Otherwise this predicate unifies Value with a hash code compuied
according to X, and also unifies New® with X.

current_processor(“ProcessorNumber, "X, “Y) : B
This predicate unifics ProcessorNumber with the processor number of the processor executing this pred-
icate, X and ¥ are wnified with the coordinates of this processor, depending on the topology of the
connection network. On PDS5, which emulates execution by a single processor, ProcessorNumber is
unified arbitrarily with 0, and X and ¥ are unified with 1.

current _priority(- CurrentP'riority, “ShoenMin, "ShoenMax) :: D
This predicate unifics CurrentPriority with the priority of the goal executing this predicate. And it also
unifies ShoenMin with the lower limit of priority in the Sho-en, ShoanMax with the upper limit of priority.

2.7 Macros
For ease of writing, several categories of macros have been introduced in KL1.
s Macros for the deseription of constants.
* Macros for arithmetic comparison.
® Macros for conditional branch.
s Macros for the declaration of implicit arguments,

In the current version, users cannot define their own macros,

2.7.1 Constant description macros

The following macros generate constant numbers,

Base#"character-string”
This macro generates an integer pumber, in the integer Base specified before the sharp sign. The base
must be from 2 to 36. Figures can be taken in [0,9] and [a/A 2/Z), as most commonly.

string#“character-string"
This macro can be used to generate a string of default type. Within PDSS, default type is ASCII stored
as B bits characters. On Multi-PSI V2, characters are taken within the JIS Kanji set, stored as 2 bytes

characters.

ascii#"character-string"
This is useful to assert that the generated string is coded in ASCII, within one byte characters.

#'character”
This macro generates a character, using the default representation of the system. In this aspect, it is
similar to the string macro introduced above. On Multi-PSI V2, characters are taken within the JIS

Kanji set,

c#"character"
This macro asserts generation of an ASCII character, stored as a single byte.

ascii##character-atom
This has the same effect, but the character is entered as an atom, not between double quotes. (ex:

asciig'[').

key#lf
This macro generates a line feed in ASCIL

key#cr
This macro generates a carriage relurn in ASCIL

21

For Integer
| Priority | Operator [Expanded pattern |
X =:= Y | equal(X,Y)

700 X =\= Y | not_equal(X,Y)
{xix) Y <¥ | less_than{X)Y)
P ‘ less_than(Y X)

X =< ¥ | pot_less_than{Y X}
| 2= Y | not_less_than(X,Y)
For Floating Point

Priority | Operator Expanded pattern i
X $=:= Y | floating_point_equal{ X Y}
I $=\= Y | loaling_point_not_equal(X,Y)
X $< Y | floating_point_less_than(X,Y)
X & ¥ | floating_paint_less_than{¥Y X)
X =< Y | floating_point_not_less_than(Y X)
K &= Y | floaling_point_nol_less_than{X,Y)

Table 1: Arithmetic Comparison Macros

2.7.2 Umfication maecros

left-hand = right-hand
This macro performs unification of left and right hands. It can be used in body and guard.

left-hand %= right-hand
T'his is equivalent to diff{(left-hand, right-band). This macro can be used only in guard part of a
clause,

left-hand := right-hand
This macro unifies the left hand with the right hand, but if integer operation macres feature in the right
hand, evaluation takes place. This macro, which can be used in guard or body, is similar to the “is”
operator of Prolog.

left-hand $:= right-hand
This macro unifies the left hand with the right hand, but if floating point operation macros feature in
the right hand, evaluation takes place. This macro, which can be used in guard or body, is similar to the

qs A

is” operator of Prolog,

2.7.3 Arithmetic comparison macros

Arithmetic comparison operators can be used in guard, in place of built-in predicates. But integer or floating
point operation macros in both hands of the comparison are not evaluated when built-in predicates are used.
The comparison operators are described in Table 1.

2.7.4 Arithmetic operation macros

Arithmetic macros are using +,-,*,/. The conversion of data types needs to describe it explicitly, because it
is not performed automatically by the system. Expansion is done according to the following rules ;

* The right hand of the :=, $:= macro
The result of the evaluation of the right hand of the operator is unified with the left hand (as for the “is”
operator of Prolog). := is used for integer operation, and $:= for floating point operation.

Both hands of comparison macros
The both results of the evaluation are compared to each other. The operator without % is used for integer
operation, and one with $ is for floating point operation.

» The right hand of implicit argument macro <=, $<=
The result of evaluation of the right hand side is unified with the argument specified by left hand side.
<= is used for integer operation, and $<= is for floating point operation.

22

Frionty | Type | Operator | Expansion Generated buill-in predicate
3 pattern __in integer expression | in floating point expression
yix X+1 Z increment(X,Z) o
500 | v X+Y 7 add(X,YZ) floating_point_add(X,Y,Z)
vix X-1 Z decrement{ ¥, Z)
yix X-Y Z subtract{ XY ,Z) floating_point_subtract{X,Y 2)
fx -X Z minus(X ¥} floating_point_minus{X,Z}
vix LV § Z or{X,Y,2)
vix XY £ and (X .Y 7)
yix KxorY Z exclusive_or(XY, 7]
yix Xe¥ i multiply(X,Y.Z) floating_point_multiply(X,Y ,Z)
400 vix X/Y Z divide(X,Y,Z) floating_point _divide(X,Y ,Z)
yix X< Z shift_left(X,Y.2)
yie | XY Z shift_right (XY 7)
300 xfx | XmodY £ modulo{ X,Y.2)
| oxfy XY Z floating_point_pow{X.Y ,Z)
- ahs{X) Z abs(X,2) floating_point_abs(X Z)
as & term min(X,Y) Z min(X,Y,Z) floating_point_min(X,Y,Z)
max(X,Y]} & max(X.Y 7) floating_point_max(X,Y %)
NX) Z complement [X,Z)
floor(X) Z floating_point_floor(X 7}
sqri(X) Z floating _point_sqrt{X,7)
lu(X} Z floating_point _In{X,Z)
log{X) Z floating_point_log{ X,Z)
exp(X} 4 floating_point_exp(X,7)
sin(X) Z floating_point_sin(X,Z)
eos(X) Z floating_point _eos(X,Z)
tan(X) Z floating_point_tan{X,Z)
asin({X) i foating_point_asin({X,Z)
acos(X) z floating_point _acos{X,Z)
atan({X) Fi floating_point _atan(X,Z)
atan{X/Y) Z floating_point_atan(X,Y,Z)
sinh(X) Z floating_point_sinh(X,Z)
cosh{X) z floating_point _cosh(X,Z)
tanh({X) A floating_point _tanh(X.Z)
int(F) I floating_point_to_integer(F I}
foat(1) F integer _to_floating_point([,F'}

Table 2: Arithmetic operation macros

s In the case that ~(expression) or $~(expression) is used to explicitly require expansion of the expres-

gion,

ex: p(T(XI+Y+1)) becomes add(X,¥,A4),add(4,1,8B) ,p(B).

Macros embedding constants are evaluated during compilation.
The arithmetic operators are described in Table 2. The higher is the priority, the lower is the precedence.

It is always possible to make a term hy using {).
< ! 0On Multi-PSI V2, supported floating point operators are only on the arithmetic operation.

When users need to constrain expansion of macros, it is used back quotes.

s “{term)
All the expansion of macro in "term” are completely constrained.

& ‘(term)

If "term” is a structure, the expansion of the top level of it is exclusively constrained, and at the deeper

level macros are expanded.

2.7.5 Macros for implicit argument passing

It is very unconvenient to rewrite arguments which appear recurrently in the head of several clauses. To lighten
this tedium, implicit argument support(through macros) has been provided.

Two kinds of parameter declarations are possible, depending on the scope which is desired. The first one is
global, i.e applies to & module wholly, whereas the second is local 1o a part of a module :

:- implicit arg-name : type { , arg-name : type , ... }.

i= local_implicit arg-name : type { , arg-name : type , ... }.

Here, arg-name (atoin) is the name of the implicit argument. Type can be : shared, stream, oldnew or string.

The global implicit declaration can appear only once in a module, right after the public declaration, Local
declarations can appear several Limnes in a module. Each time it appears, it invalidates the previous declaralion,
To suppress the usage of all implicit arguments, use the following

i= local_implicit.

The name space of local and global arguments are the same, so that different names have to be used.

Using —-» in place of :-, means that a predicate uses implicit arguments. They are inserted in the predicalse
arguments list, before arguments explicitly given by the user. Exact order is as follows -

I. Global arguments
2. Local arguments

3. explicit arguments (order is not changed)

g ar T

:= module test.
:— public XIXX.
t= implicit a:oldnew, b:shared.

p(X) ==> true | gq(X), r.
%% Here, a and b are added to the argument list.

i= leocal_implicit d:oldnew,
44 At this point a,b and d are added.

1= local_implicit d:shared, a:stream,
4% From this point, a,b,d and & are added.
%% The type of d has changed, from oldnew to shared.

i= lecal_implicit.
4l From this point, only the global args. a and b will be added.

ERE

To access a global argument in a clause, & must be put before the argument. To update a value (or unify
with some value}, the operator <= or $<= or <<= is used. If the argument is a string or a vector, use :

karg-name(position)
to update or access one of ils elements. The first element has position 1. The following is a presentation of each
type, with some examples.
shared argument type

If no update of a shared argument occurs within a given clause, all goals of the clause share the same instance
of the argument. This is illustrated in example a) below. If the value has to be updated in the clause, use the

following syntax :

24

barg-name <= peg-value
karg-name $<= new-value

The new value is effective after update. That means that the respective position of update statement and goals
in a clause determines whether the old argument value or the new argument value is used. This is illustrated

in examples b) to d}.
<. ex 2 definition: :- implicit counter:shared.

a) before erxpansien: p ——> true | g, r.
after expansion: p(Cnt) :- true | q(Cnt), r(Cnt).

b) before: p ——» true | Ecounter <= gcounter + 1, q.
after: p{Cnt) :- true | add(Cnt,i,Cnti), g{Cmti).

c) before: p —-> true | Bcounter <= Zcounter+l, Bcounter <= Ecounter*2, gq.
after: p(Cnt) :- true | add(Cnt,1,Cnt1), multiply(Cnt1,2,Cnt2), g(Cnt2).

d} before: p --» true | kcounter <= kcounter(2), q.
after: p(Cnt) :- true | set_vector_element(Cnt,2,Elem,Elem,_), g(Elem).

stream argument type

This type is provided to ease output stream management. If no update eccurs within the elause, the streams
coming from goals are merged into the argument stream. This is illustrated below, in example a). To update
the stream, i.e. insert elements, the following syntax should be used :

karg-name <<= [element 1, element 2, ...]

This is illustrated below, in example b}. Note that the relative position of the update within the clause conditions
the insertion order, although this may be of little importance for streams.

% ex 3 definiticn: :- implicit window:stream.

a) before expansion: p --> true | g, r.
after expansion: p(Win) :- true | Win={Ini,In2}, q{Ini), r(In2).

b) befere: p --> true [kwindow <<= [putb("gazonk"}], r.
after: p{Win) :- true | Win={putb(“gazonk")|Wini], r{Wini}.

olduew argument type

This type calls alter a pair of arguments, in asimilar fashion to Prolog's DOG, except that arguments are not
restricted to difference lists. As an example, when using a vector as an updatable table, to improve efficiency,
one often restricts the number of references to 1. To this end, the oldnew argument type is useful. Also, if you
use this type of argument for a difference list, there is a notation o concatenate elements to the list, like for
the stream type :

Barg-name <<= [element 1, element 2, ...]
Ii the argument is an integer or a floating point, vse the following for update .

targ-names <= nev-value
karg-name $<= new-value

If argument is a vector, use the following syntax. Then on the right side of <= integer operation macros are
expanded, and on the left side of $<= floating point operation macros are expanded.

{ element update(1) }
karg-name{position) <= new-valus
targ-name(position) $<= new-valus

1 element refersnce }
&kerg-name (positicn) %% cannot also appear on the left side of <=

{ element update(2) }
' karg-name(position) <<= [element 1, element 2, ...]

25

update(1) and update(2) can be used in body part only, as they use the built-in predicate set_vector_element /5.
Reference can appear in guard, where it appeals to vector_element/3, or in body, where it uses vector_element /3.
The relationship between homonymous elements is similar to that of DCG (from left to right, top to bottom).

See example a),b) and f) below.
In (1), replacement is done at the specified position, as illustrated in examples c) and d). In (2), the right

side list is inserted in the difference list. New tail is set to the location specified by position. See example «).
There is also 2 way to refer the current old value of some argument :

targ-name(old)
This is useful in particular to access the value of a counter. This is illustrated in example £) below,

< ex Z definitien: :- implicit mutter:oldnew,

a) before expansion: p ——> true | gq, T.
after expansiom: p(0ld,New) :- true | q(01d,Mid), r{Mid, New).

b) before: p --> true | Emutter <<= [nahal, r.
after: p(0ld,New) :- true | 0ld=[naha|Mid], r(Mid, Few).

c) before: p --» true | Emutter{3) <= naha, r.
after: p(0ld, New} :- true | set_vector_slement({0ld,3,_,naha,Mid}, r{Mid, New).

d) before: p -—> true | Emuttezr(1) <= &mutter(3), r.
after: p{01d ,New) :- true |
set_vector_element(01d,3,Elem,Elem, Mid1},
get_vector_element({Mid1,1, ,Elem,Mid2), r(Mid2,New).

e) before: p =-> trune | imutter(2) <<= [naha,uhi,she], r.

alter: pl0ld,Few) := true |
sot _Vector_element(01d, 2, [naha,uhi,she|Cdr],cdr, Mid),

r(Mid,Few).

1) before: p -—-> true | Emutter <= fmutter+l, r.
after: pl0ld, New) :- true | add{01d,1,Mid), r(Mid,New).

g) before: p(X) -=> true | X = (tmutter(old)|XX], &mutter <= fmutter+1, p(Xx).
after: p(0ld.New,X) :- trua | X=[014{XX], add(01d,1,Mid}, piMid, Few, XX).

string argument type
This works basically as the previous type, excepl that predicates string_element/3 and set_string_element,/4
are used instead of vector-hased predicates.

Automatic generation of terminating processes

When no user-defined goal is ealled in the body, the following unifications are automatically performed,
depending on the type of declared arguments :

shared type :: Nothing done,

stream type :: Unification with the atom [J,
oldnew type :: Old and New are unified.
string type = Old and New are unified.

Implicit arguments expansion control
If you call a predicate with no implicit arguments from a predicate with implicit arguments, use double
braces : {{ predicate(...} }}, in order to suppress argument addition. See example below :

= module teat,

:= public go/0.

i= implicit input ! stream,
entput : oldnew,
countar : ghared.

go - true |
merge(FILEout, FILEin),
file:creata(FILEin, "del.del", r},
file:create(Answer, "/top/miyadel™, w),
loop(FILEout, Answer,[], 100 ,_).

leop(_} --» kcounter =< 0 | true.
otherwise,
loop(A) -=> true |
fcounter <= Ecoumter - 1,
Einput <<= [gﬂtcflj].
{{ check(X, koutput, kcounter) }},
loop(d}.

check{ascii#a, Oh,0t, Counter) :- true | Oh=[pntt(Counter),nl|Ot].
otherwise.
check(_, Oh,0t, _) :- true | Oh=0t.

In the previous example, three global implicit arguments are declared, with types stream, oldnow and shared.
Predicates using —-> instead of :- are regarded as having three implicit arguments and are converted al
preprocessing time. As an example, loop predicate is expanded as follows -

loop{In, Oh,0t, Cnt, A) :- Cot =< O | In=[], Oh=0t.
othervise.
loop(In, Oh,0t, Cnt, A} := true |

Cntl := Cnt-1, In=[getc(X}|Ini],

check(X, Dh,0m, Cnti),

loop({Ini, Om,0t, Coti, A).

Note that the check/4 predicate, used between braces, has no im plicit argument, and is expanded as a predicate
of arity 4. In order to use some of implicit arguments when calling this predicate, & has to be put before the
names of the implicit arguments which are explicitely specified in the call.

<0 ! ZCan implicit arguments take any value, declared types notwithstanding. As a matter of fact, the macro
processor only expands. If the programmer is not careful enough, errors may be difficult to detect,

2.7.6 Conditional branch macros

The following is a notation which allews conditional execution within a single clause, as in DEC10 Prolog :

fool(X,¥) - true |
{ X=:=0 => p(Y,Z);
X >0 - q(Y,2);
otherwise;
true -» r(¥,Z) J,
e(X,2).

If the goal on the left hand side of —> is & condition and if this condition is satisfied, then the goal on the right
hand side is executed. The preprocessor generates the following KL1 clauses, from the above example :
foo(X,Y) :- true |
'‘$fo0/2/0° (1,Y.2),
s(X,2).

'$1o0/2/0'(X,Y,2) ;- X
"$toa/2/0°(X,Y,2) :- X >0
otharwisza, .
*$foo/2/0° (X,Y,Z) :- true | x(Y,Z).
The predicate '$£00/2/0" has been generated by the preprocessor. More generally, predicates starting with a
dollar sign are generated by the preprocessor. The user should not use the same convention!

7

< ! pOuly built-in predicates may be included in a conditional branch.
< ! »The Prolog-based compiler does not support nested conditions, whereas the KL1 compiler does.

2.7.7 Maero library

Macros in system’s library to be used should be declared at the top of the module. Declaration goes as follows :
i= with_macro macro-definition-name.
where macro-definition-pame is an atom.
The macro definition files are located in a system dependant directory. In this file, macros are defined as
follows -
fileio#normal => 0.
fileio#end of file => 1.
fileic¥#read_serror => 2
fileio@erite_error => 3.

In the current version, the left part from the sharp sign must be an atom.

28

3 Micro PIMOS

Miero PIMOS is a very simple operating system which provides various services for KL1 users on PDSS. [t is
basically designed for single uscr, single task operations. Services supported by Micro PIMOS follow :

o Comunand Interpreter.

o 1/0 Functions (windows, files, etc.).
+ Code Management.

s [haplay of exception information,

On Micro PIMOS, all commands given to the comunand interpreter are executed within a unit called *task’.
The task is implemented using Sho-en functions described in section 2.2.
<. ! = Bits 15:3] in exception tag are reserved for Micro PIMOS. When using functions of Micro PIMOS,
user must not modily bits 15:31 in tag of his Sho-en. Heside commands, a way to use Micro PIMOS functions
is to issue requests to Micro PIMOS through the user’s goal which supervises the Sho-en.

81 (12 bits) 19 (4bits) 15 (16 bits) 0
language(KLI1) Micro PIMOS avaible to the user

Figure 7: Sho-en cxeeption tag

3.1 Command interpreter

When Micro PIMOS starts, a command interpreter is created to provide user with an interface to PDSS.
When the command interpreter is invoked, it issues a prompl and waits for the next command. Default
prompt is | 7=, or [debug] 7- when debugging mode is on.
The command interpreter starts by executing the file =/ pdssre” (if it exists) as a command file. User
can set up & convenient working environment via this file. About command file, refer to command take/1.

3.1.1 Command input format

It is possible to write one or more commands in a command line or command fle, Depending on the delimiter,
commands are executed as follows -

comma (“,")
Commands both before and after the delimiter are executed in parallel.

sermicolon (%)
Waits for the termination of commands before the delimiter, and then execute remaining commands,

{sequential execution.)

s vertical line (%]")
After executing the commands before the delimiter, displays the value of variables after this sign. The
delimiter between variables is & comma, and al1 stands for all variables,

Lists of commands may be embedded in {) to form nested commands,

€ ex®» | 7= comp("banch");(atat(bench:primes(1,300,P))|P),save(bench).
% After compiling “bench.kli", executes the goal 'beach:primes’
% and saves the code in parallel. During the exacution of the
% goal, reports statistical information and indicates
% the valua of variable 'P' aftar termination.

Constant description macros in a command line(terms) are expanded, Macros are described in 2.7,
<. 8x [7- X=16#"FF",¥=16"2Z" ,2="FF"|all. .

I=255
Y=1g#"FF"
Z="FF"

3.1.2 Commands

Here are the commands supported by the command interpreter, in its currenl version. Some of the cornmands
expect files to have an extension. If po extension is found, operation is done with the default extension, following
the specified filename. Strings or atoms can be used to specify filenames.

Built-in predicates
The command interpreter can execute the built-in predicates which can he described in the body part as a
cormmands. Description using := and arithmetic macros are also possible.

Basic commands

ModuleName: Goal
Executes Goal in the module HoduleName. Maximum number of reductions is set according to the value

of environment variable reduction. If the number of performed reductions crosses the limit, the user will
be asked whether to continue or to abort.

help
Displays the list of available help commands.

help(Type)
Displays the list of available commands specified by Type as follows -
I: builtin, 2: basic, 3: code, 4: dir, 5: debug, 6: env, all.

EC
Invokes GC over the heap area.

ge(all)
[ovokes GO for both heap and code areas.

take(FileName)
Executes the command file specified by FileMame. There is no restriction as to the type of command

which can be used in such a file,
%or /* %/ are available to mark comments, as in KL1 program.

eputime
Display the CPU {ime since PDSS started. Unit is millisecond.

eputime(~Time)
Unifies the CPU time since PDSS started with the variable Time. The result is an integer and unit is
millisecond.

apply(CommandName, ArgsList)
Executes CommandName upon each element specified in ArgList. ModuleName:PredicateName is also
possible for CommandName.

stat
Digplays the current memery status,

stat{ Commands)
Displays the execution time (CPU time) and reduction count of Commands.

window (10Stream)
Opens a new window. About commands which deal with I/0 streams, refer to the section 3.2. Window

name is set automatically.

add_op(Precedence, Type, Operator)
Add an operator to the window of command interpreter,

remove_op({Precedence, Type, Operator)
Deletes an operator from the window of command interpreter.

operator{ Operator)
Displays the definition of the operator Operator in the window of command interpreter.

30

operator{ OperatorName, “Definition)
Unifies the definition of operator l!lparat.or, {f::rrmat. s {P!’HFHI[HHEHI 'T”w}] in Lthe wir.lrln:rw of r:nll:unn.nd

interpreter with Definition.

repla_r.e_up_pnnt{ - ﬁlrlnppnnlﬁwewnppnnl :I
Unifies the old operator pool with 01d0pPeol, and replaces the operator pool with NewOpPool. The format
of an operator pool is [{OpName, [{Precedence, Type}, ..}, ...

change_op_pool{NewOpPool)
Changes the operator pool to NewlpFool.

halt

Terminates PDES, All windows are closed autoamatically

Code commands

comp{FileName)
Compiles the KL1 sonree file (with extension .k11) FileNama and loads the result into code area. Trace

mode 15 off for the newly loaded module.

comp{FileName, OutFileName)
Compiles the KL1 source file {with cxtension .k11) FileName and cutputs the result into the file {with
extension .asm) DutFileName.

compile{FileName)
Compiles the KL1 source file (with extension .k11) FileName and outputs the result into file (with
extension .asm) FileName. Then, loads it into code area and saves into file (with extension .sav).
FileName can also hold a list of files.

load(FileMName)
Loads the previously saved file FileName (with extension .sav) inte code area. If such a file does not

exist, assembler file (extension is .asm) is loaded into code area. Trace mode of the newly loaded module
is off.

'hmtl{FHeNﬂmE} ‘
Asg above, but trace mode of the newly loaded module s on. Then debug mode of it is set to on.

save{ModuleName)
Saves the executable code module ModuleName to the directory specified by environment variable savedir.
By default, the directory is ~/.PDSSsave, It can be changed with the "ch_savedir’ command. ModuleKame

is also used to determine file name. Fxtension is .eav.

save{ ModuleName, FileName)
Saves the executable code ModuleName to the file FileNane (with extension .sav).

save_all
Saves all loaded modules (except the ones which have already been saved by the sava(ModnleNama)

command} into the directory specified by environment variable savedir.

ch_savedir(Directory)
Changes the default directory for auto_load and auto_save, o the directory specified by Directory. The

existence of directory is checked.
listing
Displays information about loaded modules,

listing("Modules)
(zenerates a list of all loaded module names and unifies it with Modules,

public{ModuleName)
Displays a catalog of public predicates within the module specified by NodulaName.

public{ModuleName, “Public) _
Creates a list of information about predicates declared as public, and unifies it with Public. Each element

of the list is a two-elements-vector of form {predicate-name-atom, arity}.

i

Directory commands

ed{Directory)
Changes current directory to the directory specified by Diractory.

pwd
Displays the pathname of eurrent directory.

pwd(" Waorld)
Unifies the pathname of current directory with Werld,

ls(WildCard}
Displays the pathname of file WildCard.

Is{WildCard, “Files)
Creates a list with the pathnames corresponding to WildCard and unifies it with Files.

rm(WildCard)
Deletes the file corresponding to VildcCard from the directory.

Debug commands

trace{ModuleName)
Sets the trace mode on for the code of module ModuleName. The debug mode is set to on.

notrace{ModuleName)
Sets the trace mode off for the code of module KoduleNams,

spy(ModuleName, PredicateName, Arity)
Enables spying of the predicalc PredicateName/Arity in the module NoduleName. Then trace mode and

debug mode is set to on.

nospy (ModuleName, PredicateName, Arity)
Disables spying of the predicate PredicateMame/Arity in the module NoduleNana,

spying(ModuleName)
Displays the list of the predicates currently spied in the module ModuleNams.

spying(ModuleName,"Spying)
Creates a list of the predicates currently spied in the module ModuleName, and then unifies it with Spying.
Each element of the list is a two-elements-vector formed as {predicate-name-atom, arity}.

debug
Sets debug mode on.

nodebug
Sets debug mode off.

hacktrace
Sets display mode on for backirace information {deadlock information).

nobacktrace
Sets display mode off for backtrace information (deadlock information).

varchk(FileName, Mode, Form)
Checks variables in the KL1 source file (with extension -k11) specified by FileName in the mode Koda.
The result is displayed on the window in the format Form. FileKame can also be a list of files. The

definition of Mode and Form follows

Mode:: o or ons ... Displays variables which appear once in a clanse.
mormrb .. Displays variables whose MRR is set.
aor &ll --- Displays variables of both one and mrb modes.

Form:: & or short --- Qutputs clauses as a single line.
1 or long --- Qutputs clauses using line feeds and indentation.

12

varchk(FileName, Mode)
Checks variables in mode Mode and displays in long format.

varchk(FileName)
Checks variables in mode one and displays in leng format.

xref{FileName, Mode)
Performs a cross reference check upon the KL1 source file FileName (with extension *.x11*) and displays
result on the window. FileName can also be a list of filenames, In this case, references across modules are

also checked. Mode can be taken amongst the fullowing values :

¢ or check «ov Checks only predicate calls.

1 or list o+ Outputs the reference list (Lable of definition freference of predicates),
& oF system -+ Uhatputs the predicates referring to PDSS modules.

bor builtin --- OQOutputs predicates referring to body-built-in predicates.

g or guard <+ OQutputs predicates referring to guard-built-in predicates.

aor all <=+ QOutputs all of above predicates,

List -+ Outputs a reference list for specified elements.

Where List can include :

* Module name.

* Body-built-in predicates.
* User-defined predicates,

short ++= Checks with no display of predicate information.
short(Mode} -~ Checks according to Mode with no display of predicate inforimation.
update -+- When duplicate module names are found in specified files,

recognizes Lhe latter definition as efficient,
and checks without & caution.
update(Mode) - When duplicate module names are found in specified files,
recognizes Lhe latier definition as efficient,
and checks according to Mode without a caution.

xref(FileName)
Cheeks the cross-references in check mode,

xref(FileName, Mode, OutFile)
Checks the cross-references and outputs the list to OutFile. Any mode is available except chack.

profile(ModuleName, Mode)
Displays how many times the predicates which are defined in the module ModuleName were called and
suspended. ModuleName can also be a list of modules. Mode ean be chosen as follows

¢ or ¢all .- Sorls according to call count and displays.
§ or susp --- Sorts according to suspension count and displays.
norne - Displays following the order of appearance within the code area.

profile(ModuleName)
Executes profile command in call mode.

reset_profile{ ModuleName)
Resets counts of calls and suspensions for predicates defined in ModuleName. ModuleName can also be a
list of modules.

Epvironment commands
These commands can be used to change values of environment variables for the command interpreter. The
following environment variables are used :

33

[name (atom) nieaning

world Pathname string of current directory. T

trace Mode of tracer (om or off). Initial value is off.

backtrace Display mode of backtrace {on or ef£), Initial value in on.

modules | List of module names in which commands are searched.

reductien Upper limit of the number of reductions assigned when the task was created. The basic allocation
unit is 10000 reductions. {0 < number < 100000, Initial value is 10000)

ucounter Counter used to create the names of work files or work windows.

savedir String with the pathname of directory in which save/1 and save_all will produce their effects.
Initial value is /. PDSSsave.

leaddir list of pathnames of directories to examine when auto-loading code.

Initial value is [*/.PDSSzave, pathname of library directery, ...]
Note: There are more than two library directories, which may differ from one machine Lo anather,

auto_load Flag for auto_loading (yes or na). Initial value is yes.

plength Maximum length of structure which can displayed in the windew of the command interpreter,
Imitial value is 10.

pdepth Maximum depth of structure which can be displayed on the window of the command interpreter.
Initial value is 5.

pvar Displays modes of variables in the window of command interpreter. The value = nu or na.

(nu works as _0,_1,_2, ... , and na works as A, B,C, ...) Initial value is nu.

setenv(MName, Value)
Scis the environment variable Rame after Value. Environment variable is set afier that Name becomes an

atom and Value becomes a ground term.

getenv{Name, ~Value)
Unifies the value of environment variable ¥ame with Valus.

printenv{Name)
Displays the value of environment variable Name.

printeny
Displays the values of all environment variables of the command interpreter.

_resetenv .
Initializes all environment variables of the command interpreter,

3.2 I/0O functions

Micro PIMOS offers two types of 1/O services : window and file I/O services. To use them, Micro PIMOS
predicates are provided, which give access to command streams. How commands can be inserted in these
streams is now described. [J closes a command stream and, by the way, the associated 1/0 device. Commands
are inserted in command stream by a merger.

3.2.1 Command stream attachment
Windows

window:create(Stream, WindowName, ~Status)
Creates a window with name WindowName (8 bits string). Command stream is unified with Stream. Status

is unified with the following terms -

Buccess -+~ Window successfully created.
error{cannot_create_window) --- Failure : window cannot be opened,
error(bad_windew_name_type) --- Failure : VindowName is not an 8 bits string.

< ! Z»When the window is created, it is not in visible state. Use command show to make it appear.
window :create(Stream, WindowName)

Creates a window with name WindowName (8 bits string). Comnmand stream is unified with Stream. If the
window cannot be created, the whole task 15 aborted,

< ! >When the window is created, it is not in visible state. Use command show to make it appear.

M

Filos

filerereate(Stream, FileName, Mode, “Status)
(pens file with name FileName (8 bits string) with mode Mode. Mode is an atom chosen among ; T for
read, w for write and a for append. The command stream of this file is unified with Stream. Status is

unified with one of the following terms

guccess -+ Open successful.
error{cannot_open_file) .- Cannot open the file.
error(bad_file name_type) --- FileName is not an § bits string,
error{bad_ocpen_mode_type) --- Mode iz not atom.

errer (bad_open_mode} --- Mode is an atom other than r, w or a.

file:create(Stream, FileName, Maode)
Opens a file as the previous command. Stream, FileName and Mode have same meanings, but if open does
not succeed, the whale task is aborted.

3.2.2 Command List

Commands allowed in stream are now listed, These commands are common to window and file, unless otherwise
specified.

Input commands

getc(~ Char)
Reads an ascii character from [/0 device. Value is between 0 and 255. Char is unified with the result of
input. Upon end of file, Char is unified with the atom end_of_file.

getl{"String)
Reads one line from 1/0 device. This line is converted into an 8 bits string, unified with String. Upon
end of file, String is unified with the atom end_of_file.

gelb("Buffer, Size)
The number of character specified by Size is read from I/O and converted into an 8 bits string, which is
unified with Buffer. If a carriage return or an end of file is encountered, only characters read before are
considered as input. Upon end of file, Butter is unified with the atem end_of_file.

gett{"Term)
A string containing one term is read. (A term ends with . 4+ CR or . + space) These characters are
analyged and transformed into a term, which is unified with Term. If an error occurs during analysis, if
input deviee is a window, error is output on this window and term input is resumed. If input device is a
file, error is displayed on the command interpreter window, then next term is read from the file. At end
of file, term is unified with end_of_fils.

gett(~Term, ~Status)
Almost same as gett/1, except that Status is unified with cne of the following terms.

Success .-+ Input a term successful.
syntax_srror(Position) .. Syntax error in Position.
ambiguous(Position) --- Ambiguous expression in Position.
end_of_fils --- End of file.

eof_in_quote --- End of file between quotation marks.

When Status is syntax_error, ambiguous, eof _in_quote, Tern is unified with a token list {See Appendix-
1 gettkn/4).

getft("Term, “NumberOfVariables)
This command is very similar to gett/1, but variables in the term are analyzed then cutput as $VAR(N, VE).
N is the variable number (0 < N < NumberOfVariables) and VN is the variable name (8 bits string).
HumberOfVariables is unified with the number of variables appearing in the term. Upon end of file, Term
is unified with end_of_file and NumberOfVariables is unified with 0.

35

getft{ “Term, “NumberOfVariables, ~Status)
Almost same as getft/2, and see gott/2 about Status.

skip(Char)
Skips until the charactor code Char or end of fle is found

<. ! Zelf end of file has been encountered during the execution of previous commands, successive input commands
will return end of file,

i:lutHut commands

putc{Char)
Outputs on the [/0O device the character with ASCII code Char, between 0 and 255.

putl{String)
Outputs the & bits string String on the 1/0 device and adds a new line character.

putb{anﬁ:r}
Qutputs B bits string Buffer. No carriage return is added.

puth{Buffer, Count}
Outputs on the I/0 device the charactors by certain length specified by Count extracted from & bits sLring.

If the length of Bffer is less than the specified length, this is the same as puth/1.

putt{Term, Length, Depth)
Outputs term Term. If structure depth exceeds Depth (> 0) or length exceeds Length (> (), remainder is

output as ', ", This is similar to Prolog’s write.
4 ! pAtoms are not quoted, so that the result of this command may be unsuited to further read using
Eetl or gﬂ.l.'.ft..

putt{Term)
Similar to the previous command, but default value is used for depth and length.

puttg{Term, Length, Depth)
This is similar to putt/3 command, but atoms are quoted when necessary.

puttqg{ Term)
This is similar to putt/1 command, but atoms are quoted when necessary.

ni

Oulputs a new line character.

tab(IN}
Outputs ¥ {) < N < 1000) space characters.

< ! 20n Micro PIMOS, 1/0 is blocked, for efficiency reasons. Buffers are flushed only in the following cases :
= Buffer is full.
¢ flush comrmand has been recejved,

* 1/0 device is closed.

* (in the case of windows) some input or show /hide command is received.

Control of output format
Output limitations for structure in putt/1 and puttq/] commands can be changed as follows -

print_length(Length)
This command changes the default length limit to Length {Length > 0). Initial value is 10 for windows,
100 for files.

36

priont_depth({Depth)
This command changes the default depth limit to Depth (Depth > (). Initial value is 10 for windows, 100

for files.

print_var_mode{ VariableMode)
This coramand is used to change the output format of terms describing variables, VariableMode is the
new mode which must be nu or na. Initial value is na.

na - Name Mode @ BVAR(N,VN) — VN (Variable name string).
SVAR(N] — ABC..-.
no = Number Mode = $VAR[N,VN) - _N (Variable number).

SVARIN) — _N (Variahle number).

Output buffer commands

The following commend control output buffer parameters.

Hush({ Status)
This command flushes characters left in buffer. After completion, Status is unified with atom done,

buffer_length{BufferLength)
This command changes output buffer length to BufferLength (> 0). Initial value is 512 bytes for a

window and 2048 bvtes for files.

Operators

The following commands are related to operaters for parsing.

add_op{Precedence, Type, OperatorName)
This command adds an operator with precedence Precedence (1 < Precedence < 1200), type Type (an
atom chosen among fx,2y, x1, y2, xfy, 2%, yfx) and name OperatorName (atom).
< | 2=When the specified type is competilive with already defined type (fx — fy, xf = y[, xfy = xfix o
¥Ix), the latter is deleted.

remove_op{Precedence, Type, OperatorMName)
This command removes an operator. Parameters have the same meaning as in the previous command.

operator{OperatorName, *Definition)
‘This command return a list Dafinition of operators matching name OpsratorFame (atom). Each element
of the Lst is in the form {precedence, type}.

replace_op_pool(*0OldOpleol, NewOpPool)
Unifies the old operator pool with 01d0pPocl, and replaces the operator pool with NewDpPool. The format

of an operator pool is [{OpName, [{Precedence, Typel, ..]}, ..].

change_op_pool{NewOpPaool)
Changes the aperator pool to NewOpPool.

Grouped processing of commands

do{CommandList)
This eommand groups the list of command CommandList within a single command, Even though merger
is used to insert commands in the stream, sequence of commands in CommandList is preserved.

Control command
close(Status)

Closes 1/0 operation. 1t is not possible to send other commands after that one. (Only [can be sent to
close the stream.) Status is unified with atom success.

Window commands

The following commands are effective only for windows.

a7

show
An hidden windew will show up when this command is executed.

hide
A visible window will be hidden when this command is executed.

clear
Clears the window space,

llH‘Ep
Rings the terminal bell.

prompt(~0ld, New)
Changes prompt string displayed in execuling gett or get£t command. 01d is unified with current prompt
string(# bits string) and the new prompt becomes Bew (also an 8 bits string). The initial prompt is *7="

3.3 Directory management

The directory services of Micro PIMOS are availahle through the directory command stream. This stream is
available via a Micro PIMOS predicate, in a similar fashion to I/O services,
Operations on the directory are done by inserting commands into this stream. The stream can be closed

with 0.

3.3.1 Acquisition of command stream

directory:create(Stream, DirectoryNamne, “Status)
Accesses the directory named DirectoryName (8 bits string} and unifies the command stream connected
to the directory with Stream, Status can be unified with the following terms :

success oo Access succeeded.
error{cannot_access) -+ The directory cannot be accessed,
error(bad_directory_name_type) --- DirectoryName is not an 8 biis string.

3.3.2 Commands

The following commands can be inserted into the command stream.

pathname(~PathName)
Unifies the full pathname of the directory (8 bits string) with PathName.

listing(WildCard, ~FileNames, “Status)
Creates the list of pathnames of files corresponding to WildCard and unifies it with FileNames. Status
can be unified with the following terms :

guccesas -+ List successfully created.
orrur(cmat_linti.n,g} <+« List cannot be created.

delete(WildCard, “Status)
Deletes files corresponding to Wildcard (8 bits string) from the direetory. Status can be unified with the

following terms ;

BUuccess -+ Deletion successfu).
error(cannot_delete) - Cannot delete the file.

open(Stream, FileName, Mode, "Status)
Opens the file FileName (8 bits string) with mode Hode (atom ¢ for read, w for write or a for append) and
unifies the command stream connected to the file with Stream. Statue can be unified with the following
terms :
success -+ - Open successful,
error{cannot_open_file) --- Cannot open the file,
error(bad_file_name_type) --- FileName is not an 8 bits string.
error(bad_open_mode_type) - - Node is not atom.
error(bad_open_mode) - ... Mode is an atom other than I.¥ora.

38

3.4 Device Stream for I/O

To use Input/Output device functions directly from Micro PIMOS, one can use the libraries now described.
‘The purpose of the functions therein is to describe other OS than Micro PIMOS (e.g. PIMOS) in KL1. Average
user does nol need device streams shown below.

These device streams are supervised by Micro PIMOS. So if & wrong command is inserted, it only results in
the failure of user task; the language processor is unaffected.

3.4.1 Securing device stream

User can extract a deviee stream from Micre PIMOS by using the following predicates. mpimos_io_device can
also be used as a module name.

mpimos_window _device:windows{Stream)
Unifies the stream which has a function of window device with Stream,

mpimos_file_device:files(Stream)
Unifies the stream which has a function of file device with Stream.

mpimos_timer_device:timer(Stream)
Unifies the stream which has a function of timer device with Stream,

3.4.2 Command

The commands which can be senl to cach device stream, stream of opened window, file and directory are just
the same as mentionned in Appendix-1. As to the 1/0 commands for file/window streams, only the commands
shown below are allowed.

¢« Window

Input Only getl(*Line, ~Status, Cdr) is available,
gete/3, getb/4, gettkn/4 are not available.

Output Only putb(Buffer, “Status, Cdr) is available.
pute/3, putl/3, putt/5 are not available,

* File

Input Only getb(Size, “RBufferm ~Status, Cdr) is available.
gele/3, getl/3, petthn/4 are not available,

Output Only putb(Buffer, “Status, Cdr) is available.
pute/3, putl/3, putt/5 are not available,

3.5 Code management

The principal funetions for code management on Micro PIMOS now follow.

= Functions to manage the name and information (like the catalog of public predicates and spied predicates)
of loaded modules and display this information upon request.

* Auto_load function of modules which are saved by save(ModuleName) or save_all commands from the
command interpreter.

The directory from which anto_load is performed is decided after the environment variable loaddir of
command interpreter. User had betier make a directory ~/.PDSSsave to use the auto_load function, because the
default value of first element of both loaddir and savedir is ~/.PDSSsave. The value of environment variables
can be changed. User can disable the auto load function by setting the environment variable auto_load to no.

39

3.6 Displaying exception information

The KL1 exceptions handled by PDSS are shown in section Appendix-7. On Micro PIMOS, information about
an exception which has occurred within the user task is displayed on the window of command interpreter. The
task in which exception has oceurred is unmediately stopped and its resources (windows and files) are released.

Other cxceptions, reported by Micro PIMOS, are handled by Micro PIMOS. Those are consequent to an
illegal command to the window, trying Lo open 2 file that does not exist, etc. In those cases, as in Lhe case of
language definition exceptions, information is displayed on the window of command interpreter and the task is
irmmediately stopped. All resources of the task are released.

4 PDSS Optional Parameters

PDSS 15 usually invoked under GNU-Emacs. This may be seen as the best way to use PSS, from an execution
environment point of view, as all PDSS functions are available, It is possible to execute PDSS on a stand alone
basis, hut in this case, some functions disappear.

4.1 Usage under GNU-Emacs

To call PDSS under GNU-Emacs, send the following comumand. Libraries are automatically loaded and PSS
slarts.

meta-X pdss return

To specify options, type ctrl-U before meta-X. Option contents are described Jaber,

ctrl-U meta-X pdss return
PDSS Option?: | parameter | refurn

Vhen PDSS starts, a window named “console window” is created. This window is used to trace execution
and for input/display at console. Then, several modules are loaded, including runtime support and Micro
PIMOS. Then, Micro PIMOS starts. After that, command interpreter window is created and waits for user
commands.

When operation is done within GNU-Emacs, PDSS input is asynchronous, Therefore the whole system does
not hold when input occurs. There is an exception to this for console inputs while tracing. In this case, systermn
halts until input completion. Tt is possible Lo control PDSS by striking control kevs in the window. ‘I'hese keys
are defined in a GNU-Emacs library. Besides following commands, a complete list of supported keys can be
found in Appendix-9.

etel-C etel-C 0 Turns on trace flag.
etrl-C cirl-Z ' Sends interrupt code 1
In Micra PIMOS, this aborts task,
ctrl-C etrl-T @ Sends interrupt eode 2.
In Micro PIMOS, this prints number of reductions perfarmed so far.
etrl-C ! : Starts GC.
ctrl-C @ . Aborts PDSS.
etel-C ctel-B ;' Generates a window buffer menu for PDSS.
ctel-C ESC i Heexecutes PSS system.
ctrl-C k :+ Removes contents of current window.
ctrl-C etrl- K 0 Deletes contents of the window created by PDSS.
crl-C etrl-Y :: Heprints the last input string.
ctrl-C ctrl-F - Prints manual of built-in predicates,
ctrl-C f . Prints manual of command interpreter.

<. ! »When a PDS5 window is removed by ctel-X k, subsequent execution results are not guaranteed to be
meaningful.

4.2 PDSS on stand-alone
To uze PSS without GNU-Emacs, type the following command :

pdss | parameter | refurn

Outside of GNU-Emacs, all messages to windows are merged. If any window waits for some nput, the whole
systemn stops. Window control keys are not available but, on the other hand, keyboard interrupt is supported.
If ctrl-c is typed, one can enter control commands after the prompt.

4.3 Optional parameters’

Optional parameters can be specified at start, to modify the execution environment. Possible parameters follow

41

=hNEN
-cNEN

file name
/=t

=V

-d¥NN
~bNRN

~rHE,55 KNN

=a
-

i Size of heap area is WK words. Default is 200 kwords(1 word = § bytes).

i Bize of code arca 18 NNN bytes. Default is 300 kbytes.

i: Uses this file instead of the standard startup file,

:: Uses start up file or not. Default is to use it,

it This option changes the way variables appear during trace. By default variables

are printed using their name. If -v option is used, they are identified by their
relative position to heap bottem. This may change after each GC, so be careful,

:t Scheduling politics for goals are changed to depth-first. NNN gives depth limit

for TRO.

it Seheduling polities for goals are changed to breadth-first. NEN gives depth limit

far TRO.
Scheduling politics for goals are basically depth-first, and some of goals are

pushed to the tail of the scheduleing queue according to the calculated random
number. This makes possible to simulate the undecided reduction ordering. RR
specifies the ratio of goals pushed to the tail of the queue by percentage. S5 is
the seed of the calculation of random number. NEN gives depth limit for TRO.

2 Inhibits timer interrupt. Thiz iz used when debugging PDSS itself, under dbx.

There are two ways to specify these options :

¢ Options can be given when starting PDSS. They are treated as arguments of the PSS command,

axample-1}

FDSS Dption ¥: -h300000 -c50000 =v (Execution under GNU=-Emacs)

example-2)
[vNIx]Y

pdas ~h300000 -cEOOOO -v {Execution on stand alena)

Options can also be specified through an environment variable,

example }
[UsIzl%

[URIzl%

setenv PDSSOFT "-h300000 -cEBOOOO -
pdas

42

5 Tracer

The tracer functions supported by PDSS are now deseribed.

5.1 Principle of operation

Basically, in PDSS, trace operations can occur whenever a goal is in one of the following states. These events
are called trace points.

« Goal call.
s Suspension due to an uninstanciated argument,
¢ End of suspension.

{7cal failure.

+ Swap out (Caused by interruption or scheduling of a higher priority goal).

There are two ways to operate trace in KL1 ; upon predicate execution or upon goal call

To trace upon predicate execution is to trace when the code, which ones want to trace, is executed. In this
case, il is possible to specify trace mode for each module. In the following description, this mode is called “code
trace”. Tt is also to trace each predicate separately. This is called “code spying”.

To trace upon goals is to trace, or not to trace, descendant goals of each generated goals. In the following
description, we eall this “goal trace”. It also possible to limil trace to the descendant goals of specific goals.

This is called “goal spying”,

Let’s see some example. In the following program, we assume that oo is in trace state and bar is not .
Then, q and r which are called from foo are also traced. Conversely, g and r which are called by bar are not
traced.

foo := p. bar :- p. F :i- 49, I.

In PDSS, it is possible to specify before or during execution whether or not code trace is done. On the other
hand, geal trace status must be on at first; then, some of the goals can be untraced by relevant commands
during tracing. Only goals which have both code trace status on and goal trace status on are actually traced.

In case of spying it is possible to specify before or during execution whether or not code spying is done.
Goal spying can be done only an goals which is speculated by tracer. The four pussible cases of spying are the

following -
s Code is spied.
+ (ioal is spied.
+ Code or goal are spied.
+ Code and goal are spied.

5.2 How to read the display

Trace display contains 4 differcnt information zones :

[0012] caLL *§ module:goal (al,al)
1 2 3 4

L. Identity of the Sho-en to which this goal belongs.

2. Type of trace event :
CALL :: Dequeue from poal queue.
Call :: Goal called during TRO.
SUSP :: Suspension due to an uninstanciated argument.
Susp :: Suspension due to an uninstanciated argument which specifies the ratio caleu-
lating the priority.
RESU :: End of suspension.

FAIL :: Goal failure.
SWAP :: Swap out.

43

3. Spy flags :
: Code of executing goal is spied.
£ Goal is spied.

4. Goal
Terms in argument list which are potentially referred several times (MERB is on) are appended with an x

mark.
Variables are shown as follows, according to their type

¢ Ordinary unbound wvariable :
First letier is upper case, or underscore, and is followed by a number.. X1, _23811.

* Some goal waits for instantiation of this variable .
Format is the same as an ordinary unbound variable, followed by a tilde... ¥17, _23811°.

s Merger input variable :
As above, replacing tilde with carret... X217, _23611°.

In addition to this deseription, priority is displayed whenever it changes

5.3 Commands

The description of tracer commands has the following meta syntax ;

Command name ;2 input format {argument} { [options] }

Help = 7
Command help.

Mo Trace iz X

Mo trace from now on.

No Goal Trace :: x
Turns off trace for the descendants of current goal, i.e. goals called from this goal.

Set Goal Spy : g
Spies current goal from now on.

Reset Goal Spy :: G
Stops spying current goal, from now on.

Set Module Debug Mode :: d MODULE { MODULE ... }

Sets debug fag on for specified modules. By this mean, code teace is done when predicates from this
module are executed,

Reset Module Debug Mode :: D MODULE { MODULE ... }
Effects are opposite to the previous command.

Set Procedure Spy :: p MODULE:PROCEDURE { MODULE:PROCEDURE ... }
Sets trace on for a given predicate in a given module.

HReset Procedure Spy :: P MODULE:PROCEDURE { MODULE:PROCEDURE ... }
Opposite of previous command.

Step 1 8 [COUNT)
Stops again at next trace point. If COUNT is given, stop occurs only after that COUNT trace points have
passed. Here and in the following, COUNT can be considered as a repetition factor.

Step to Next Spied Procedure 12 sp [COUNT]
Continues until the next spied predicate is called, then sfops.

Step to Next Spied Goal :: ag [COUNT)]
As above, but we look for a spied goal.

Step to Next Spied Procedure or Spied Goal : ss [COUNT)
In this case, any spy case causes stop.

Step to Next Spied Procedure and Spied Goal :: §5 [COUNT]
[n this case, procedure must be traced and called from a traced goal, to cause stap.

Skip to Next Spied Procedure :: np [COUNT)
This works similarly to sp command, but no trace is done until stop.

Skip to Next Spied Goal :: ng [COUNT]
This works similarly to sg command, but no trace is done until stop.

Skip to Next Spied Procedure or Spied Goal :: ns [COUNT]
This works similarly to ss command, but no trace is done until stop.

Skip to Next Spied Procedure and Spied Goal :: NS [COUNT)]
This works similarly to 55 command, but no trace is donc until stop.

Enqueue This Goal to Head of Ready Goal Queue 3: <
Enqueues the goal displayed at the time to head of ready goal queue. This can be specified at RESU and

SWAP.

Engqueue This Goal to Tail of Ready Goal Queue >
Enqueues the goal displayed at the time to tail of ready goal queue. This can be specified at RESU and

SWAP.

Depth First Schedule :: << [DEPTH]
Scheduling politics for goals are changed to depth-first. DEPTH gives depth limit for TRO. Initial value is
231,

Dreadth First Schedule :: >> [DEPTH)
Seheduling politics for goals are changed to breadth-first. DEPTE gives depth limit for TRO. Initial value

s 100,

Random Schedule :: >< [RATE[SEED[DEPTH]|]
Scheduling politics for guals are basically depth-first, and some of goals are pushed to the tail of the sched-
uleing queue according to the calculated random number. This makes pussible to simulate the undecided
reduction ordering. RATE specifies the ratio of goals pushed to the tail of the queue by percentage. SEED
15 the seed of the calculution of random number. DEPTH gives depth limit for TRO.

He-Write Goual :: w LENGTH [DEPTH]
This redisplays current goal and arguments, with modified format limits LENGTH and DEPTE. This is useful

when arguments are large.

Where call from :: where
Shows the names of predicate and module which called current traced goal, This is valid only for run-time
support routines or built-in predicates (D code).

Monitor Variable :: m VARIABLE_NAME [NAME] [LIMIT] _
Mounilors the value of variable, whenever it is bound. If the value is a list or a stream, display sccurs
whenever the top element is bound. Using FAME, it is possible to assign a new identifier to the monitared
variable, 8o that the value is shown under that name. LIMIT is the number of times value can be shown
without stepping the system. Without this parameter, whenever a variable is bound, the value is shown
and the tracer waits for a user command,
During display of value, whether the value is a list or not is distinguished :

mon#var-name => value %Y <+« In the case of a list.
mon#var-name == valus §¥ vor Otherwias.
In this situation, the following cammands are available :
? = Help.
x i Stops monitoring this variable or list.
8 [COUNT| it Goes ahead monitering value without stop, for COUNT times.

w LENGTH [DEPTH] :: Redisplays value.
m VAR [NAME] [LIMIT] i Sets a different monitoring.

45

Inspect Ready Queue :: ir [PRIORITY]
Shows goals in ready queue. If PRIORITY is given, only goals with that physical priority are shown.

Inspect Variable :: iv VARIABLE NAME
Shows state of specified variable. When state is HOOK or MHQOK (goals are waiting for the instantiation
of this variable), shows the waiting goals. When state is MGHOK (inpul merger variable), shows merger

output variable.

Inspect Sho-en tree :: is
Shows Sho-en tree structure at current time. Horizontal drawing axis is used to represent the par-
ent/children dependency, whereas the vertical axis is used to represent brotherhood. Each Sho-en is
described using 5 characters : the first one corresponds to the state of Sho-en and the remaining 4 to its
ID. Possible Sho-en status follow -

R :: Ready.
5 = Suspended.
A Aborted.

Trace Shoen tree :: ts
Turn on/off the trace flag of Sho-en tree structure. When on, tree structure is shown before and after
each modification(e.g. generation, abortion, termination). The format of the description is the same as
for above command.

Set Tracer Variable :: set NAME [VALUE]
Tracer variable NAME is set to VALUE, if present. Otherwise, current value is displayed. Current tracer
variables and their default values are pow listed,

pv 2 Print variable mode. If value is n, variables are displayed alphabetically. If a

is used, relative address are used.

pl :: Print length value,

pd :: Print depth value,

g i Gate switch which determines whether trace is done or not upon each trace
point. Value is made of five characters, each one with value &, t or 5. These
values correspond to “no trace”, “trace (no stop)” and “trace (stop)” respec-
tively. Characters correspond to points CALL fcall, SUSP/Susp, RESU, SWAP
and FAIL, respectively.

i Gate Switch for CALL points. Value is n, t or s.
i (Gate Switch for SUSP points. Value is n, t or s.
= Gate Switch for RESU points. Value is n, t or s.
i Gate Switch for SWAP points. Value is n, t or s.
:: Gate Switch for FAIL points. Value is n, t or s.

w2 M om on

46

6 Dead-lock Detection

In PNSS, there are two dead-lock detection mechanisms. One acis through global GC, whereas the other tries
to detect deadlock during execution. During GC, deadlock is always detected, whereas deadlock check done

during execution sometimes fails.
In the following, types of deadlock detected in PIISS and tracer messages are shown.

Dead lock detection occurred during GC : Type=0

Example : when executing the following goal -
Goal :: 7= add(X,_,Y), divide(Y,_,Z), module(Z,._,_).
Following information is shown on the console window.
Ge-1 ELi-Data Srec Grec Prec HeapTotal Code
Uzad : 2554 20 [10 30112 0
Deadlock:: [0001]$$$5YSTEM :modulo(a™,B,C)
Deadlock:: [0001]8$$SYSTEN :divide (D" ,E, A7)
Deadleck:: [00011$$ESYSTER add(F- ,5,07)
*** Pravious goal is deadleck root!
Shoen is terminated by deadlock!

After: 1083 14 &7 3 16324]
GCed : 1511 & 18 T 14768 o
word Tec rec rec byte byte

GC Time: 40 msec

The goal appearing before message “Previous goal is deadlack root!” on console window is the root of the
data dependance teee. There are some cases where several such trees exist and root is not unique in general. If
there are loops structures, there is no root.

Variable referred only by itself (void variable) waiting for instantiation : Type=10

Example : In the following program, after execution of p(X) is executed.
Goal :: 7- module:ge,
Clause-1 :: go - p(X).
Clause-2 :: pla) :- true | trua.

Following information is shown on the console window.
#*% Deadlock occurred. [suspend(UNDEFoo)]
*** Wailting for instantiation of a void variable,
[0001Imodule:pla),

Waiting for instantiation of a variable which will never be instantialed by other goals : Type = 11

Example : In the following program, after execution of p(1), q{X) is executed,

Goal :: 7= module:go.
Clause-1 :: go :- true | p(X), gq(X).
Clause-2 :: pla) :- true | true.

Clause-3 :: gq(a} :- true | true,
Following information is shown on the console window.

#++ Deadlock occurred. [suspend(HOOKeo)]
**# Waiting for instantiation of a variable which never be instantiated.

[0001Imodule:q{a~).
(0001 medule: plA~).

Input variable of the merger, referred only by itself, waiting for instantiation : Type=12

Example : In the fallowing program, after execution of merge(In Out), p{X} is executed.

Goal :: 7- module:go.
Claugse-1 :: go :- true | merge(In, Dut), p(In),
Clause-2 :: p(a) :- true | true,

Following information is shown on the console window.

47

#*% [eadlock occurred. [suspend(MGHOKo)]

#** Waiting for instantiation of a merger input variablae.
(0001 module:pla~),

[0001]mergea(A~,B) in module:ge/0

Variable, which has a | waiting for instantiation, is unified with a void variable : Type=20
Eoa a=<l

Example : In the following program, after execution of p(X}, §(X,¥) is executed. This case also occurs if ¥
was nol void, but would turn void as a result of the execution.
Geal :: 7- module:ga.
Clause-1 :: go :- p(X), gq(X,¥Y).
Clause-2 :: p{a) :- true | true.
Clause-3 :: g(A,B) :- true | A=8.
Following information is shewn on the console window.
*** Deadlock occurred. [unitfy(HO0O0Kee,VOID)]
#+% A variable which has a goal waiting fer instantiation is unified with
##¢ o void variable.
#*#% Unification occurred in medule:g/2
(0001 Tmodule: p(A™) .

Merger input is unified with void variable : Type=21

Example ; In the following program, p(In, _) is executed after merge(In,0Out).

Goal :: 7- moduel:go.

Clause-1 :: go :- true | merge(In, Out), p(In,_), g(Out).
Clanse-2 :: p(k,B) :- true | A=B.

Clause-3 :: q([_lcdr]l) :- true | q{cdr).

Following information is shown en the console window.

=4% Deadlock will occur. [unify(MGHOKo,VOID)]

##% A merger input variable is unified with a void variabla.
#*# Unification ocecurred in module:p/2

[0001]merge{a-,B) in module: go/0

Unifying two variables which have goals waiting for instantiation : Type = 22

Example : In the following program, r(X,Y) is executed after p(X) and g(x}.
Goal :: 7= module: ga.
Clause-1 :: go :- true | p(X), q(¥), r(X,¥).
Claunse-2 :: p{a) := true | true.
Clause=3 :: gi{a) :- true | trus.
Clause-4 :: r(A,B) := trne | A=,
Following information is shown on the console window,

#** Deadlock occurred. [unify(H0OKeo,H00Kao)]

**#* Unifying two variables which have goals waiting for imstantiation.
% Unification eccurred in module:r/2

[0001]1module: p(A=).

[0001]module: q(B~).

Unifying input of merger and variable which has a goal waiting for instantiation : Type=23

Example : In the following program, q(X,In) is executed after merge{In,0ut) and p(X)}.
Goal :: ?- module:go.
Clause-1 :: go :- true | merge(In, Out), p(X), q(X, In), r(Out).
Clanse-2 :: pla} :- true | true,
Clause-3 :: q(A,B) :~ true | A=B,
Clause-4 :: r{[_|Cdx]) :- true | r{Cdr).
Following information is shown on the console window.
*++ Deadlock occurred. [unify(HDOKos,MGHDKa)]
*** Unifying variable which has a goal waiting for instantiation is unified
#** and & merger input wvariables,

48

#+% Unification occurred im module:q/2
[0001]module: p(A™).
[0001]merge(B”,C) in module:go/0

Unification of two merger inputs : Type = 24

Example : In the following program, In1=In2 is executed after merge(Inl,Out1) and merge(Ini,Out2).
Goal :: 7= module:go,
Clause-1 :: go :- true | merge(Ini, Outi), merge(InZ, Dut2),
plInl,In2), g{Outt), r{Dut2).
Clausge-2 :: p{d,B) :— true | A=B.
Clauge-3 :: q{[_lCdr]) := true | g(Cdr).
Clause-4 :: r([_[Cdr]} := true | r{Cdr).
Fallowing inforimation is shown on the console windaw,

#=» Deadlock will occur. [unify({MGHDKc ,MGHOKo)]
*ex Unifying two merger input variables.
#+% Unification occcurred in module:p/2

[0001ilmerge(d”,B) in module:go/O
[0001]Imerge(C”,D) in module:go/O

A variable which has a goal waiting for instantiation is not referred : Type=30

Example : In the following program, q(X} is executed after p(X).
Goal :: 7= module:go.
Clavse-1 :: go := true | p(X), q(X).
Clause-2 :: pla) :- true | trua.
Clause-3 :: g(_) :- true | true.

Following information is shown on the consale window,
*#=» Deadlock oceurred. [collect{ED0Koo)]

**% A variable which has a goal waiting for instantiation was abandenad.
#+¢ Collect_value occurred in module:g/1
[0001]module:p(A™).

A merger input variable is not referred ; Type=31

Fxample : In the following program, p(In) is executed after merge(In,Out).
Goal :: 7- module:go.
Clause-1 :: go - true | merge(In, Out), p{In), q{Out).
Clause-2 :: p{_) :- true | true,
Clause-3 :: q{[_lcdr]) :- true | g{Cdr).

Following information is shown on the console window.

##* Deadlock will oceur. [collect(MGEDKo)]
#++ A merger input variable was abandoned.
4% Collect_value occurred in module:p/1
[0001Imerge(A” ,B) in module:go/0

40

Appendix-1 T1/0 devices

PDSS provides windaw, file and timer [/0 devices. Commands to these devices are inserled in streams. These
devices are defined in modules named pdss_windew_device, pdes_file_device and pdes_timer_device. This
specification is based upon “FEP-Host /0 Interface (V0.9)". Full features have not be implemented. Some of
the messages or commands are therefore dummy or illegal. And macro expression fep#xzxx is in the library,
so Lo use these macros, the following definition must be declared in the module.

:= with_macro pdes.

Acquisition of device stream

Dievice stream can be obiained by the predicates listed below. These predicates can be called only once after
the emulator has heen invoked. Twice or more calls will fail.

pdss_window_devicerwindows(Stream)
Unifies Stream with the command stream of window device.

pdss_file_devicefiles(Stream)
Unifies Stream with the command stream of file device.

pdss_timer_device:files{Stream)
Unifies Stream with the command stream of timer device,

Device commands

1. Window device
Window device provides multiple window facility within GNU-Emacs. The following commands can he

gent to this device -

create(BuffarName, WindowStream, ~Status, Cdr)

Opens a window with buffer name BufferName (8 bits string), then unifies its command stream with
WindowStream. When window is opened successfully, Status is unified with fep#normal. PDSS
can't open more than 16 windows at a time, Therefore, it fails when user tries to open Loo many
windows. In this case, Status is unified with fep#abnormal. 1/} commands and control commands
described below can be inserted in the command stream of a window which has been succeasfully
opened. Note that reset/4 command must be applies before those commands to set up abort and
attention lines. The window is automatically closed when its stream is closed,

create(WindowStream, ~Status, Cdr)
Creale/3 without buffer name is not available.

get_max_size(X, Y, PathName, “Characters, “Lines, ~Status, Cdr)
Always returns Characters = 80, Lines = 40, Status = fep#normal.

2. File device
This device provides standard facilities of UNIX files. The following commands can be applied to this
device :

open(PathName, Mode, FileStream, ~Status, Cdr)
Opens file with path name PathName (8 bits string), mode Mode (atom:fep#read = read made,
Tep#write = write mode, fep#append = append mode), then unifies FileStrean with the command
stream. When the file is opened successfully, Status is unified with fep#normal. Otherwise, Status
is unified with fepfabnormal. I/0 commands and control commands can be applied to a file which
has been suecessfully opened (reset/4 is also requisite for files). The file is automatically closed when
ita stream is closed.

directory(PathName, DirectoryStream, “Status, Cdr)
Opens directory with path name PathName (8 bits string) and unifies DirectoryStream with its
command stream. When open is successful, Statua is unified with fep#normal. When it fails,
Status is unified with fepfabnormal. Commands can be inserted in a directory stream which has
been successfully created (reset/4 is also requisite for directory.). A directory is automatically closed
when its stream is closed.

60

3. Timer device

Unit of time of the timer device is millisecond, but updates are actually performed each second. The
following commands can be sent to the timer device ;

get_count (" Count, “Status, Cdr)
Count is unified with the total elapsed milliseconds since 00:00:00 AM. Status is unified with

fepdnormal.

on_at{Count, "Now, ~Status, Cdr)
When the time specified by Count is reached, Now iz unified with fepfvake_up. Status is unified

with fep#normal when the command is over.
on_after(Count, "Now, “Status, Cdr)

When duration specified by Count has elapsed, Now is unified with fep#wake up. Status is unified
with fep#normal when the command is over,

Window, file and directory commands

1. Control commands common to windows and files
These commands are available for window and file devices,

reset(AbortLine, - AttentionLine, ~Status, Cdr)
Sets up abort and attention lines. This command should be issued right after the 1/0 streamn has
been generated. To abort an 1/Q request, AbortLine must be unified with Teptabort by the host.
Onee unified, abort linc and attention line must be set up again with reset/4 command. Otherwise,
the stream can still be closed with []. AttentionLine is unified with interrupt eode generated by
device (integer). Upon interrupt, 1/0 should be aborted or attention line should be set again with
next_attension /3 command,

next_attention(~Attention, ~Status, Cdr)
Only attention kine is set by this command. This command is used when user does not want to abart

I/O after interrupt.

2. Common input commands

There commands are available for window or file devices working in read mode.

gete("Char, “Status, Cdr)
Reads one character and unifies it with Char. When input is completed successfully, Status is unified
with fep#normal. If end of file is encountered, Status is unified with fepfend_of fila,

< ! %»Not available on Multi-PSI V2 FEP,

getl("Line, ~Status, Cdr)
Reads onc line, converts it into an § bits string, then unifies it with Line. At this time, newline code
is removed. When the input is completed successfully, Status is unified with fepfnormal. If end of
file is encountered, Status is unified with fep#end_of_file.

€ | 2»Not available for files on Multi-PSI V2 FEP.
getb(Size, “Buffer, “Status, Cdr)
Reads the number of bytes specified by Size (integer), and converts them inte an 8 bits string,
unified with Buffer. If a newline is encountered while reading from a window, input steps at newline

character. When the input is completed successfully, Status is unified with 1 epfnormal. If end-of-file
is encountered, it is unified with fep8end_of_file.

% ! »Not available for windows on Multi-P5I V2 FEP.

51

gettkn("TokenList, “Status, “NumberOfVariables, Cdr)
Reads a string constructed as one term then analyzes this string to extract tokens. The list of
generated tokens is unified with TokenList,

variable : $VAR(E,String)

atom = atom(Atom)

integer 5 integer{Integer)

floating point = float(Float)

StTing ¢ string(String)

funetor : openfAtom)

signs = sign{Atom)

special character = atom that has special characier as print name.
illegal data ¢ illegal(String)

end i oend

When the input is completed suceessfully, Status is unified with fep#normal. If end-of-file is found,
it is unified with fep#end_of_file. If an error occured during token analysis, Status is unified with
Tap#abnormal.

< ! ZpNot available en Multi-PSI V2 FEF.

3. Common output commands

These commands are available for window and file devices opened in write or append more.

pute{Char, “Status, Cdr)
Writes the character corresponding to Char (integer) according to the ASCII code. Status is unificd
with fep#normal.

< ! Z»Not availahle on Multi-PSI V2 FEP.
putl{Line, ~Status, Cdr)
Writes string Line (8 bits string) and adds a newline character. Status is unified with fapfnormal.
. ! Z»Not available on Multi-PST V2 FEP.

putb{Buffer, “Status, Cdr)
Writes string in Buffer (8 bits string). Status is unified with fep#normal,

putt{Term, Length, Depth, -Status, Cdr)
Writes the term specified by Term, whith maximum length Length and maximum depth Depth. The
part of term which exceeds Length or Depth is printed as Status js unified with Teptnormal.
Since this command uses output function for debugging, variables in Term are written like A B C
with a symbol MEE or HOOK.

! 3Not available on Multi-PSI V2 FEP.

4. Window control commands

These commands are available only for windows.

close(~Status)
Cleses the window. Status is unified with fep#normal.

flush("Status, Cdr) '
No op. Status is unified with fep#normal. Data which have been written are automatically flushed,
even if flush/2 is not issued.

beep(*Status, Cdr)
Rings the terminal bell. Status is unified with fep#normal.

clear(~Status, Cdr)
Erases contents of window. Status is unified with fep#normal.

2

show(~Status, Cdr)
Makes window visible. Status is unified with fep#normal. Since the window stays invisible afler

creation, one has to make it explicitely visible with this command.

hide(“Status, Cdr)
Makes window invisible. Status is unified with fep#normal.

activate(~Status, Cdr)
Same as show /2.

deactivate(" Status, Cdr)
Samne as hide/2,

set_inside_size{Characters, Lines, ~Status, Cdr)
No op. Status is unified with fep#normal.

set_size{fep@#manipulator, “Status, Cdr)
No op, Ssatus is unified with fepd#normal.

sct_position{X, Y, “Status, Cdr)
No op. Status is unified with fep#normal.

set_position(fep#Fmanipulator, “Status, Cdr)
Mo op. Status is unified with fep#normal.

set_title(String, ~Status, Cdr)
No op. Statue is unified with Tep#normal.

reshape(X, Y, Characters, Lines, ~Status, Cdr)
No op. Status is unified with fep#normal.

reshape(fep#manipulator, “Status, Cdr)
No op. Status is unified with fep#normal.

set_font(PathName, ~Status, Cdr)
No op. Status is unified with fepfnormal.

select_buffer{BufferName, “Status, Cdr)
Not available,

get_inside_size(*Characters, “Lines, ~Status, Cdr)
Always returns Characters = 80, Lines = 20, Status = fep#normal.

get_position(~X, "Y, ~“Status, Cdr)
Always returns X = 0, ¥ = (), S5tatus = fep#normal.

get_title("Title, "Status, Cdr)
Returns name with which the window was created,

get_font(PathName, “Status, Cdr)
Mot available.

. File control eammands

These commands are available for only files.

close(~Status)
Closes file. Status is unificd with fep#normal.

end_of_file(*Status, Cdr)
Status is unificd with fep#yes when the end of file has been encountered. Otherwise, it is unified

with fepi#no.

pathname(“PathName, ~Status, Cdr)
Unifies file pathname with PathName, Status is unified with fep#normal.

53

fi. Directory control command

These commands are available for only directory streams.

pathname(" PathName, “Status, Cdr)
Unifies pathname of directory with PathName. Status is unified with fep#normal.

listing(WildCard, FileNameStream, ~Status, Cdr)
Unifies the list of pathnames corresponding to WildCard (8 bits string) with FileNameStream. Status
is unified with fep#normal. FileNameStream can include a command next_file_name (“FileName,
“Status, Cdr). Then one file name (8 bits string) is returned through FileNameStream and Status is
unified with fep#normal. When no more files are available, Status is unified with fop#end_of_file.

delete(WildCard, ~Status, Cdr)
Deletes all files corresponding to WildCard (8 bits string). PDSS can not recover deleted files. Status

is unified with fep#normal.

undelete{ WildCard, “Status, Cdr)
No op. Status is unified with fep#normal.

purge({WildCard, ~Status, Cdr)
No op. Status is unified with fep#normal.

deleted(WildCard, “FileNameStream, ~Status, Cdr)
Returns a stream from which deleted files corresponding to WildCard (8 bits string) can be extracted.
This list is always emnpty. Status is unified with fep#normal.

expunge(- Status, Cdr)
No op. Status is unified with fep#normal.

Appendix-2 Code device

This device manages code. Code can be manipulated by inserting commands into device stream. (Currently,
only Micro PIMOS s allowed Lo use code device stream, which is not available for the average user.)

assemble_module("ModuleName, FileName, “Status)
Assembles the file FileName (8 bits string) and loads it into the code area. ModuleName is unified with
the atom named after the assembled module name. Status is unified with success, cannot_open_tile,
memary_limit module_protected or load_error, depending on how the operation has been proceeded.

load_module{*ModuleName, FileName, ~Status)
Loads file specified by FileName into code area. File format should be either save or assembler format.
ModuleName is unified with the atom named after the loaded module name. Status is unified with success,
cannot_cpen_file, memory_limit, module_protected or error, depending on the course of operations.

save_module{ ModuleName, FileName, ~Status)
Saves the module ModuleName (atom) to file FileName (8 bits string). Status is unified with success,

cannot_open_file or module_not_found.

remove_module(ModuleName, *Status)
Deletes module Modul eName (atom). Status is unified with success, nodule_not_found or medule_protected.

debug(Flag, “Status)
Switches debugging mode on or off. Flag is on or off(atom). Status is unified with success or

undefined_module.

backtrace(Flag, “Status)
Switches backtrace (display of deadlocked goals detected during global GC) on or off. Flag is atom on or

off Status is unified with succeas or undefined_module.

trace_module{ModuleName, Mode, “Status)
Changes trace mode of the module ModuleName (atom) to Mode. Mode is on or off(atom). Status is
unified with success, medule_not_found, undefined_mode or native_code_module.

get_module_status(ModuleName, “Mode, “Status)
Checks trace mode of the module ModuleNane (atom). Mode is unified with on or of?, according to the
state of trace mode. Status is unified with success, module_not_found ar native_code_modula.

spy._predicate(ModuleName, PredicateName, Arity, Mode, “Status)
Changes trace mode of the predicate PredicateName/Arity in module ModuleName (atom), to Mode.
Mode is atom en or off. Status iz unified with success, module_not_found, predicate_not_found,
undefined_mode or native_code_module.

get_spied_predicates(ModuleName, “Predicates, “Status)
Unifies Predicates with a list of information about the predicates spied in the module ModuleFame {atom).
Each element is a two-elements-vector of the form {predicate name atom, arity). Status is unified with
either success or module_not_found.

get_public_predicates(ModuleName, “Public, ~Status)
Unifies Public with a list of information about public predicates in the module ModuleName{atom). Each
element is a two-elements-vector of the form {predicate name atom, arity}. Status is unified with either

guccess or medule_not_found.

55

Appendix-3 PIMOS commeon utilities

These utility programs were developped for PIMOS, but can be used on PDSS as well. When provided modules

are called, these utilities

are loaded automatically by Micro PIMOS auto-load function.

PIMOS provides the following conversion and store functions are commen utilities which can be used in both

PIMOS and application

programs. When one wishes to use these facilities, he can get the conversion result or

object connection stream by calling predicates of the modules provided in PIMOS. User manipulates objects

by inserting messages in

this stream, theough a merger.

» Comparison : a function which generates a total order upon KL1 data,

» Hashing : a classical hash function.

+ Pool without key :

bag, stack, quene, sorted bag.

s Pool with key : keved bag, keyed set, keyed sorted bag, keyved sorted set,

1. Cﬂllllrarist__m_rl

Generally, any KL1 data can eompare via this mechanism,

comparatorsort(X, Y, "5, "L, "Swapped)

Compares X and ¥,

then unifies the left hand element of the relation with 5 and the right one with L. If &

=¥, 515 unified with X and L with ¥ (like this relation is said to be stable). Besides, if X is larger than ¥,

Swapped s unified

Definition of the

with yes, or with no otherwise.

comparison relation :

I types of both data are different, order is the type order, ie. integer, atom, string, list, vector, from left
to right. Otherwise, the relation is defined as follows :

¢ integer- - .Comparison between integers.

& atom - -

‘Comparison between atom numbers.

» string ---Lexicographic order, if strings are of the same type. Otherwisc, type order.

* list

- Comparison of Car. If they are the same, comparison of Cdr, and so on.

+ vector ---Comparison of the number of elements. If it is the same for both vectors,

2. I'Iﬂ:li-l:l_.l.l:l+ £

proceeds as for lists,

Standard hash function via this mechanism.

hasher:hash(X, “H, “Y)
8 is unified with a non negative integer holding hash resuit. Y is unified with x.

Hash function definition

s integer- . -
atom -
gtring - -

s list
& yvector -

3. Pool without key
Any KL1 data stored

Bag

Absolute value,

-Alom number,
Ch = firsl-element + Cm x middle-element + Ce x last-element + string-

length. Cb, Cm and Ce are the same as KL built-in predicates.

«+{Car hash value + 5 » Cdr hash value.
-aumber of elements + sum (for the first, middle and last elements) of {(2 to

the power of element rank+ 1) x element hash value)

via this mechanism.

A basic pool. There are only basic functions put and get. To refer an element in the pool we have to extract
it, and there is no way to leave it inside pool.

poolbag(Stream)

Generates a bag ohject. Straan is the command stream associated to it,

56

Message protocol :

empty(~YorN)
Returns yes{atom) if the bag is empty, no otherwise.

put{X}
I"uts X into the bag.

get("X)
(iets X from the bag. Tt is not possible to select a specific element. After this operation, the element is
removed from the bag, If no element is in the bag, failure occurs,

get_all(~0)
0 15 unified with the hst of all elements in the ba,g If none, it is unified with [J.

get_and_put(~X, Y)
Pulls out, one element and unifies it with X, then puts ¥ in its place. If the bag is empty, failure oceurs,

Stack

Basically the same as bag, but element order is LIFO.

pool:stack{Stream)
Cienerates a stack object. Stream is unified with the control stream.

Message protocal @ Same as bag protocol.
Queus
Basically the same as bag, but element order is FIFO,

pool:queue(Stream)
Gencrates a quene. Stream is unified with the control stream,

Message protocol : Same as bag,
Sorted Baz

Works like a bag, but extraction order is "least clement first’, according to comparison function.

poolisorted _bag(Stream)
Generates a sorted bag ohject, with a standard comparator:sort/5 comparison routine. Stream is unified
wilh the cornmand stream.

pool:sorted_bag(Comparator, Stream)
Works the same, but comparison routine is specified by Comparator, whose format is {module name atom,
Pndicaﬁe name atom, arity}. Sorted bag object, which has a Comparater routine, is generated. Stream
i5 unified with the command stream. This predicate must have been declered as public, with the same
arity and function as comparator:sort/5.

Message protocol :
Same as bag. get returns the least one and get_all returns a list sorted in ascending order.

Keyed pool
KL1 data are stored with a key by this mechanism.

Keyed Bag
Basic pool with a key. This is based on a hash tahle.

pool:kkeyed_bag(Stream)
Generates a keyed bag object, using the standard hash function (hasher:hash/3). Stream is unified with
the ecommand stream. Initial hash table size is 1.

pool:keyed_bag(Stream, Size)
This works the same as the previous predicate, except that hash sige is given by Size.

57

pool:keyed_bag(Hasher, Stream, Size)
With this predicate, it is not only possible to specify hash table size, but also the hash [unction. Easher

is of the form {module name atom, predicate name atom, arity}. The corresponding predicate must have
been declared as public, and have same arity and function as hasher:hash /3.

Message protocol :

empty("~ YorN)
Returns yes{atom) if bag is empty and no otherwise.

empty({Key, “YorlN)

As above, but subset of elements with key Key is examined.

put(Key, X)
Puts X into the hag, usir.lg]-u-.:.r Key.

get(Key, "X}

Unifies X with one element with key Key. If there are several possible choices, one is picked up at random.
After this operation, the chosen element is removed from the bag. If no element with key Key is in the
I."‘H-E.. r-i.'l.il'l.l!.'l: CCUrS.

get_all(~0)
0 is unified with the list of all elements in the bag. Each item in the list is of the form {key, element}. If
the bag is empty, O is unified with [J.

get_all(Key, ~0)
0 is unified with the list of all elements with key Key.

get_and_put{Key, “X, Y)
Unifies X with an element with key Key, then replaces it with Y. If there is no such element, failure occurs.

Keyed Set
This works like a keyed pool, except that duplicated keys are not allowed.

pool:keyed_set{Stream)
This creates a keyed set. Stream is unified with the command stream. Standard hash function(hasher:hash/3)

15 used. Initial hash table size is one.

pookkeyed_set(Stream, Size)
This warks the same, but hash table size iz Siza.

pool:keyed_set{Hasher, Stream, Size)
This works the same, but it is also possible to specify the hash function which should be used. See

keved_bag/3d predicate above,
Message protocol :

empty({~ YorMN)
Returns yes{atom) if the bag is empty, no otherwise,

empty(Key, “YorlN)
This works the same, but only the subset of elements with key Key is analyzed.

put{Key, X, ~01dX)
Adds an element with key Key and value X. If there is already an element with the same key, its value is
updated, and 014X is unified with {old value}. Otherwise, 014X is unified with {}.

get(Key, “X)
Unifies X with the element with key Kay. If there is no such element, failure occurs. The element is

removed from the set after this operation.

get_all(-0)
All elements are removed from the set, and D is unified with a list whose elements are of the form {key,
data}. If the set was already empty, O is vnified with 0.

58

get_all{Key, ~0)
D is unified with a list containing element with key Key, which is removed from the set. If there is no such

element, O is unified with [J.

get_and_put(Key, “X, Y)
Replaces element with key Key with Y. Old value is return in X. If there is no element with such a key,

failure occurs.

Keyed Sorted Bag
This is similar to sorted bag, but sort is performed enly upen key.

pool:keyed_sorted_bag(Stream)
Generates a keyed sorted bag, using standards compare routine (comparator:sort/5). Stream is unified

with the command stream.

pool:keyed_sorted_bag(Comparator, Stream)
Works the same, but Comparator can be used to specify the sort routine. Refer io sorted_bag/? above,

and comparatorsort /5,

Message protocol :
Tt is similar Lo the one of keyed bag, but data comes out in increasing order of key.

Keyed Sorted Set
This is similar to keyed sorted bag, but identical kevs are not allowed.

pookkeyed_sorted _set(Stream)
(renerates keyed sorted set object, with standard compare routine (comparator:compare/5). Stream is

unified with command stream.

pool:keyed_sorted_set(Comparator, Stream)
Works the same but Comparator can be used to specify the comparison predicate, See sorted_bag,/2
above, and comparator:sort/5, for more information.

Message protocol :
This is the same as the one of keved set, but data comes out in increasing arder of key.

59

Appendix-4 Reserved module names

The following module names are reserved by PDSS, and should not be used. Names marked with = are available,

* # B =

L

'Sho-en’

directory

file

window

mpimes_io_device
monogyny_list_index
Epimos_booter
mpimos_builtin_predicate
mpimos _cmd_basic
wpimos_cmd_code
mpimos_cmd_debug
epimos_cmd_dirsctory
mpimos_cmd_anvironment
mpimos_cmd_utl
mpimos_code_manager
mpimos_command_interpreter
mpimos_libdir
mpimos_directory
mpimos_directory_device_driver
mpimos_file

Epimos_file device_driver
mpimos_file manager
mpimos_window_device
mpimos_file device
mpimos_timer_device
mpimos_macro_expander
mpimos_module_pool
mpimos_ocpcode_table
Epimos_ocperator_manipulater
mpimos_parser
mpimos_task_monitor
mpimos_unparsar
mpimos_utility
Epimos_varchk
mpimos_window
mpimos_window_device_driver
opimes_window_manager
mpimos_xreof
mpimos_xref_table
Epimos_pretty_printer
pdes_code_davica

60

pdss_window_device
pdas_file_device
pdse_timer_davice
pdss_runtime_active_unify
pdss_runtime_debug
pdss_runtime_exception_handling
pdes_runtime_body_builtin
klicmp blttbl
kllcop_command
klicmp_compila

klicmp _mrh
Klic¢mp_normalize
kliemp_output
klicmp_reader
Ellcmp_register
klicmp_macro
kllcmp_macro_arg
Ellcap_mthbl

Klicmp_struct

Appendix-5 Reserved operator names

The following operators are defined for PDSS windows and file input.

1200
1200
1200
1150
1160
1150
1150
1150
1100
1100
1090
10560
1000
8O0
To0
ToO
Too
TOO
oo
TaO
TO0O
TO0
Too
TO00
TOD
TOO
700
T00
T00
TOO
Too
TOD
Too
oo
TFOO
500
600
BOO
BOO
500
BOG
BOD
400
400
400
400
0o
300
200

xix

fx
xfx

fx

fx

fx

iz

fx
xiy
xiy
xfix
xfy
xfy
xfx
xfx
xfx
xix
xfx
xfx
xix
xfx
xzix
xix
xfx
xfx
xix
xix
xix
xix

xix
xfx
xfx
xfx
xtTy
vix

Ix
yix

fx
¥ix
yix
yix
yiz
yix
yix
yix
ix
xty

1x

-

module

public
implicit
local_implicit
with macro

EoT

160 xf
150 xf
100 =xix
100 fx

61

Appendix-6 List of built-in predicates
L. Type checking.

wait{X) :: &

atom(X) :: @

integer{X} :: ¢

floating_point(X} :: G

list(X) :: G

vector{X) :: G

string(X) :: G

unbound(X, “PE, "Addr, “NewX) :: B

2. diff
diff(X, ¥) :: &

The following operator is available @ \=

3. Comparison

aqual(Integerl, Integer2) :: G
not_equal (Integeri, Integer2) :: G
less_than{Integeri, Integer2} :: @
not_less_than{Integeri, Integer2) :: G

The following operators are available :
==, =‘"l=| <, =<, », 2=

4. Arithmetic Operations

add(Integeri, Integer2, “Newlnteger) :: 4B
subtract(Integer!, Integer2, “Newlnteger) :: GB
multiply(Integeri, Integer2, “NewInteger) :: GB
divide(Integeri, Integer2, ~NewInteger) :: GH
modulo(Integerl, Integer2, “NewInteger) :: GB
minus{Intager, "NewInteger) :: GB

increment (Integer, ~Newlnteger) :: GB

decrement (Integer, “NewInteger) :: GB

abs(Integer, "NewInteger) :: GB

min(Integeri, Integer2, “Newlnteger) :: GB
max(Integeri, Integer2, "Hewlnteger) :: GB
and(Integerl, Integer2, “NewIntager) :: GB
or(Integerl, Integer2, “NewInteger) :: GB
exclusive_or{Integeri, Integer2, "NewInteger) :: GB
complement (Integer, “NewInteger) :: GB
shift_left(Integer, ShiftWidth, “Newlnteger) :: GB
shift_right(Integer, ShiftWidth, "NewInteger) :: GB

‘=, %= can be used with the following operators :
*oome o ® /, med, A\ N, xer, <c, 33
5. Floating Point Comparison

floating_point_equal(Floatl, Float2) :: G
floating point_not_equal{Floati, Float2) :: &

62

floating point less_than{Fleatl, Fleat2) :: G
floating_peint_not_less than(Fleatl, Float2) :: G

The following opérators are available
f=:=, &=h=, $<, $=<, $>, §>=

. Floating Point Operations

floating point_add(Fleatl, Float2, “NewFlcat) :: GB
floating_point_subtract(Fleoatl, Float2, “NewFloat) :: GB
floating_point_multiply(Floati, Fleoat2, “NewFloat) :: GB
flearing point divide(Floatl, Float?, “NesFloat) :: GB
floating point _minus(Fleat, ~“NewFloat) :: GH
fleoating_point_abs(Fleat, “NewFloat) :: GB

fleating point_min(Floatl, Float2, "NewFloat) :: GB
fleating peint_max(Fleatl, Float2, ~“NewFloat) :: GB
floating peint_fleer (Fleat, ~WewFloat)] :: GB

floating point_sgrt(Float, "“WewFloat) :: GB

floating peint_ln{Fleat, “KewFloat) :: GB

floating point_log(Float, “NewFleat) :: GB
floating_point_exp(Float, “NewFleat) :: GB

floating point_pew(Floatl, Flaat?, “NewFlsat) :: GB
floating_point_sin(Fleat, “NewFlcat) :: GB

floating point_cos(Float, “NewFloat) :: GB

floating point_tan({Fleat, "NewFloat) :: GB
floating peint asin{Float, “NewFloat) :: GB
floating_point_acoes(Fleat, ~NewFloat) :: GH

floating point_atan{Float, “NewFloat) :: GB

floating peint_atan{Fleatl, Fleat?, "NewFleoat) :: GB
floating point_sinh{Fleat, “NewFloat) :: GB
floating_point_cosh(Float, “WewFloat) :: GB

floating point_tanh(Float, “KewFloat) :: GB

$:=, ¥<= can be used with the following cperaters :
+, =, &, f, w=

. Floating Point Conversion

floating point_to_integer(Float, “Integer) :: GB

integer_to_floating point(Integar, “Float) :: GB

. Veelors

vactor(X, ~Size) ::
vactor(X, ~Size, “NewVector) :: B

new_vector(~Vector, Size) :: B
vector_element(Vector, Position, “Element) :: G
vector_selement({Vectoer, Position, “Element, “NewVector) :: B

set_vector_eloment(Vector, Fosition, "OldElem, NevElem, ~HewVect) :: B

. Strings

string(X, ~Size, "ElemantSize) :: G

string(X, “Size, "ElementSize, “NewString) :: B
new_string(“String, Size, ElementSize) :: B
string_elemeat{String, Position, ~“Element) :: G

63

string element(String, Position, “Element, “NowString) :: B
set_string element (String, Position, NewElement, “NewString) :: B
substring(String, Position, Length, ~SubString, “NewString) :: B

10

1.

12.

13.

14.

15,

set_substring(String, Position, SubString, “NewString) :: B
append_string(Stringl, String2, ~“NewString) :: B

Aloms
intern_atom(“Atom, String) :: B
new_atom{ " Atom} :: B
atom_name(Atem, “String) :: B
atom_number(Atom, ~“Number) :: B
Code

predicate_to_code{Med, Pred, Arity, “Code) :: B
code_to_predicate(Code, “Mod, “Pred, ~Arity, “Info) :: B
Stream support

merge{In, "Cut) :: B

Second order function

apply(Code, Args) :: B

Special 1/0

read_console{“Integer) :: G
dizsplay conscle(X) :: €
put_cocneele(X) :: G

Others

raise(Tag, Type, Info) :: B
censume_resource{Reduction) :; B

hash{X, "Value, "HewX) :: B
current_processor(“ProcessorNumber, “X, “Y) :: B
au:runt,prinrity(‘CurrantPrinr;ty. “ShoenMin, “ShoenMax)

64

: B

Appendix-T Exception codes

lllegal Input L'ype = 0
An illegal data type appeared as an input argument of some built-in predicate.

* Range Overflow = 1
The range of some input argument of a built-in predicate{excluding arithmetic operation) is incorrect.

o Integer Overflow 2 §
As a result of integer cperation, overflow occurs, Zero division is included here,

¢ Floating Point Error 0 5
The range of some input argument of a floating point operation is incorrect. Or as a result of floating

point aperation, overflow occurs,

s lllzgal Merger Input o: 8
Data different from [1 or list ar vector has been input through merger.

+ Reduction Failure @@ §
No candidate clause are selected for goal execution.

» Unification Failure :: 10
Body unification has failed.

¢ Haised - 12
A built-in predicale raisa/3 is executed.

+ Incorrect Priocity 2 16
Assigned priority is outside of the Sho-en bounds,

¢« Module Wot Found @ 17
An unloaded module has been referred to.

¢ Predicate Not Found - 18
A given predicate does not appear in the required module.

o Deadlock 2 11
Neadlock is detected in the Sho-en.

65

Appendix-8 Reserved Sho-en tags

In current version, the following bits of Sho-en tag are reserved for the KL1 language and for Micro PIMOS

usage.

31 (12 bits) 19 {4 bits) 15 {16 bits) 0
language{KL1) Micro PIMOS avaible to the user

Figure 8: Sho-en exception tag

bit 16 — 1/O stream required from parent Sho-en.
bit 17 — Error message sent to parent Sho-en.

e bit 18 — Message output on Micro PIMOS shell window,
e hit 189 — Not used,

hit 20 — Deadlock detected.

s bit 21 — Hlegal input type.

& bit 22 — Range overflow.

e bit 23 — Integer overflow.

s bit 24 — Floating point error,

* bit 25 — Not used.

o bit 26 — [legal merger input.

* bit 28 — Unification failure.

o bit 20 — Incorrect priority.

s bit 30 — Module not found.

» bit 31 — Exception while calling a built-in predicate.

Appendix-9 GNU-Emacs library

There are two library modes in PDSS. The first one is the kll-mode, used to edit programs, and the second is
PDSS5-mode, used to run PDSS. Commands defined in each mode are shown below ;

1. kll-mode

ctrl-C ctrl-C
Compiles all the text in the buffer in which command has been executed, as if Lhis text was KL1

source code.

ctrl-C ctrl-IL
Copics specified range of text in the buffer PDSS=COMPILER,

ctrl-C ctrl-D
Compiles the contents of the buffer PDSS=COMPILER as a KL program. Then, looks for the
assembler file(*.asm) which has the same name as the buffer and updates parts of this file which
have changed. Eventually, generates save file.
This command is used with ctrl-C ctrl-R to recompile updated parts only. Asgembly files
should therefore not be deleted.

meta-X pdss-kllecmp-switch-macro-mode
meta-X pdss-kllemp-switch-indexing-mode
meta-X pdss-kllemp-switch-debug-mode

mata-X pdss-kllcmp-switch-system-mode

Changes options of the Prolog version compiler. Commands with no argument work as toggle
switches, while arguments 1/0 corcesponds to onfoff. Detailed meaning and initial values of these
options are deseribed in Appendix-10. Above commands correspond to e, 4, 4 and = options,
Tesp.
When using KT.1 version compiler, these commands are not availahle,

< ! Zrlnformation and prompt are cutput in buffer PDSS=COMPILE, but basically, user does not
need to type anything in this buffer.

ctrl-C ctrl-F
Displays the manual of built-in predicates.

2. PDSS-made
a. Window [bufier operations

meta-,
Displays a eandidate string, beginning with 7- and matches the previous string which has been
entered. This is used to repeat the lact interpreted command,

ctrl-C etrl-Y
Redisplays previous input,

ctrl-C k
Deletes all text in the buffer.

etrl-C etrl-K
Deletes all text in all PDSS-imnode buffers.

ctrl-C ctrl-B
Displays buffer menu of PDSS-mode buffer.

ctrl-C m
Looks for the pattern module-name:predicate-name from the beginning of current line, and start
insert at its current position. This is convenient to set variable name when setting variable
monilor 1n the tracer.

67

ctrl-C ctrl-F
Displays built-in predicate manual.

ctrl-C f
Displays command manual for command interpreter.

ctrl-X k
Kills buffer, but gives a warning if PDSS is running.

b. KLI program contral

etrl-C ctrl-Z
Inserts 1into the attention stream of the KL1 window process that corresponds to current buffer.

This is treated as a task stop request by Micro PIMOS,

ctrl-C etrl-T
Futs 2 in the same buffer as above. This causes display of statistic information from Micro

PIMOS.
¢. Emulator contral

ctrl-C !
Garbage collection request,

ctrel-C &
Stops PDSS system, but the buffers used as Micro PIMOS windows are left untouched.

ctrl-C ESC
HRestarts PDSS.

3. Mode independent command

ctrl-C ctcl-P
Displays next PDSS-mode buffer in current window. The PDSS buffer group is managed as a
circular list. So, if user repeats this command, all buffers are displayed one by one.

ctrl-C p
This is almost the same as the previous command, but display occurs in the other window.

Appendix-10 Using command procedures for compiling

This is the description of the cornmand procedure to compile a KL1 program, used as a UNIX command. [t
may be uselul to compile it within a makefile. There are two versions of this comumand @ one for the KL1/KL1

compiler and the other for the KL1/Prolog compiler. Basic usage rules are the same, but some available options
are different.

Command ;

pdsscmp | options | file names ...

Options :

+i / =i = Indexing code is generated or not. Default is not to generale it EL1/Prolog
only.
+m /S -m o Uode for MBR-GC is generated or not. Default is to generate it.

+a / -a : Assemble is performed or not. Defanlt is to perform it. When performed, an
assembler file (xxx.asm) and a save file (xxx.sav) are generated. Otherwise,

only assembler file is generated.

+8 / -s :: Compiles for Micre PIMOS or for uscr. Default is to compile for user. System-
mode private built-in predicates can be used in the first case. Built-in predicates
in this manual can be compiled with the user version. KL1/Prolog enly. (All
buili-in predicates can be compiled in KL1/KL1.)

~o=PATH :: Chauges output directory to PATH, Current working directory is the default.

xxx.asm o Assembles an assembler-file (xxx.asm} and creates a save file (xo0x.sav).
xxx kil Compiles a source file (xxx.kl1), makes assembler file and then assembles it 1o

make save file,
MK it same as xxx k1],

Examples :

* To compile and assemble the two source files append.kll and queen.kll, and then to make append.asm,
append.sav, queen.asm and queen.sav in the current direetory

pdsscmp append . k11 gquean, kll or
pdsscmp append gquesn

* To compile and assemble append kil and assemble queen.asm -

pdssemp append.kll queen.asm

* To compile and assemble all ki1 files in the directory source and then to put assemble and save files in
directory object:

pdsscmp -o=object source/+.k1i

Appendix-11 Sample program

i~ module samplae.
:= public primes/2, primes/1.

primes(E, PL)} :- true | gen{2, N, WL}, sift(KL, PL).

primes(N) :- true |
gen(2, ¥, NL), sift(NL, PL),
vindow:create([show|Window], “sample"),
ontconv(PL, Window).

goniMax, 5):- true | gen(1, Max, 5).
gen(N, Max, S) :- N =< HMax, M := §+1 | 5=[N[51], gen(M, Max, S1).

gen(W, Max, 5) :- N > Max | 5=[].

sift{[PIL], 8) :- true | s=[Flsi], filter(P, L, K), sift(K, 51).
gift([], 8) := true | 8=[].

filter{F, [QIL], K) :- Q med P=:=0 | filter(P, L, K).
filter(P, [QIL], K) :- Q mod P=\=0 | K=[QIK1], filter(P, L, Ki).
filtex(P, [, K} := trua | E=[].

ottconv([P|PL), W)} := true | W=lputt(P),nl|¥w1}, cutconv(PL, Wi).
outconv([], W) :- true | W=[putb(“ERD"),getc(_)].

| 7- sample:primes{10,PL).

yes,
| ?7- sample:primes(10,PL)|PL.
PL = [2,3,5,7]

yll.

| ?- sample:primes(10).
2

3

)

T

END

yes,
| 7= halt.

T

Appendix-12 What to do if a bug is found out...
1. When you find system bugs, please inform the PDSS development group. E-mail address is :
pdss@icot21.icot. junet
In your mail, include the following information :
a. PDES (emulator, Micro PIMOS) version number.
b, Compiler version number.
¢. The program in which you found the bug.
d. How to start i, and what happens.

e. Execution log and queer points.

2. Ifit1s a bug of a program of your own, go at the least through the following list -

a. Have you done varchk?

b. In case of deadlock, if there are the following goals in the incriminated part, you may have forgotten
to close command stream to file or window, or you may have requested the output of undefined

variables. Check your code,

mpimos_file:zzxzxz(...) oT
mpimos_window:xxxxxzx(...)

merge{ ...) in mpimos_file:xxxxx/z
merge{ ...) in mpimos_window:zxzxx/x

Tl

T2

ahs | . 12,1423
BOOE Lo i it e e e e e 16,23
Y 11,23
add_op ... i 30,37
Bdd_TESOUFCE . e e,

add_resourse 3
alternatively_ &

and e, 1223
append_steing 19
apply 5,20,30
Arithmetic Comparison Macros 22
Arithmetic Operation Macros 22
L 16,23

Atan 16,17,23
2 10
ALOINS oo §
ALOITI_TLAITIE . .ttt sanasne e e e nnnnnn.. 19
stom_number - 149
auto_load function a8

backiraceo i

Bag o 5
T 38
buffer_length 37
Built-in Predicates 9,30
Arithmetic Comparison(Floating Point) ... 13
Arithmetic Comparison(Integer) 10
Arithmetic Operations(Floating Point) ... 14
Arithmetic Operations(Integer) 11
Atom Predicates0000s 19
Code Predicatesooooo it 19
Conversion ceiiiirirnnnnn. 17
Second Order Funetion 20
Special 1/O Funetions 20
Stream Support ..o 20

String Predicates 18
Type Checking %
Vector Predicates . _...................... IT

L a2
change_op_pool 31,37
chosavedir ... 31
Clause Orderingoo ... 8
ElERE 38
elose L a7
Code o 3
Code Device ... 0 55
Code Device Stream R 1.1
Code Management 39
Code Trace ..o 43
code_to_predicate 0.0l 19
Commafund Interpreter .
Commands ke eaeenas 30
Command Interpreter 20
Commands
Basic Commands 30

73

Code Commandso0veenon... a1
Debug Corumands
Directory Commands 32
Environment Commands 33

Command Input Format 29
COME . ettt e i raaeaanaaneas H
Compile ..o 31,6769

Command Proceduresoooooo.... 69
COMPIle e a1
complement ... e 13,23
Conditional Branch Macras 27
Constant Description Macros 21
Constraint of Macro Expansion e 23
CONSUIME_TESOUTEEl nnrnnnns veenn 21
Control Stream 24
DO e raaae e, 16,23
eosh L s 17,23
EPULIITIE oo ie it et e e e 30
CPEALE .. eie e 34,35,38
Cross Reference Check0iiiiinnnna.., 33
current _BROTILY Lo i 21
CUTFENL_Processorouvieiennsnnnnnnn.. ., 21
Data Types .o e cie e &
Deadlock . ..0ovuiinn... .. 6,47
deadlock e 47
debug .o e 32
decrement ..., 12,23
delete ... 38
Device Stream iiiiiiieninnnnn... 20

Command0.... 39

Securing Device Stream 39
T 10
directory ...ovivvniiii e 38
Directory Management_.............. 38

Acquisition of Command Stream 38

Commands iean. a8

Directory Command Stream 38
display_consaole 20
divide ..o 11,23
dload ..., 3
do o v
Environment Variables 33
equal .. - 10,22
Equality i 2
Evaluation i, 8
Exceptionooo .. e 2,40
Exception Code iviiinrrnnnnns 65
Exception Information 5,40
Exception Tagcoovevnviinnienneonnnnnn, 29,66
exclusive_or ..., . i s 12,23
eXecute ... e aaas 3
L < coeen 15,23

Token Formatocvvivieiiieianeace. .. 52

trace . i s a2
B 43
Commands 44
Trace Points . .. i 43
unbourd ... 10
Unbound Variables 8
Unification Macrosvvevnrerinreniieinns. 22
varchk 32,33
Variables Cheek a2
VECLOT Lt iet i 1017
BT T g
vector_element ... L L 18
¥]
Windew 34,50,51-54
WIRDOW e 30,34
with_maero ..., o 28,50
HOT o inirianrianiassarsaananrsrnesrannnnnn 12,23
Xl e 33
b o e i reearaaaeere ey 29
B e 21,28
B i i BB Bl A e e nna s ean et s 22
$= e R 22,2425
B e ieraerearaes 13,22
§=:= . 13,22
85 13,22
BT 13,22
o e 13,22
B 13,22
R 23
B e e 24
B e e eaee ey 16,23
E e aeeeraeraeraaiaes e 11,14,23
e aamea s 11,12,14,23
T 29
L 12,23
F et taer e 11,14,23
e e e ara e sessaneeaaes 22
R 29
T it e it ae s iama et aaaiaeaans 24,25
L T T T T 13,23
TS i e e e, 22.24,25
i iiiiiann . v o e 10,22
B i iiareassna s ressamra e na s sar s 10,22
B i reaaaiaiassas e sssere e na 11,22
B et R e e tee bt eretanannnn 28
=\= . - . 10,22
e e ir e eeaemeranraanen 2
= . . 11,22
- . . - 13,23
-3, . ve .24
- .. e el 27
> Cereers ceeeane. 10,22
o ... e raeraaeeaaean e ratarseianeeraraeiians [+

76

... 23

...................................

Module definition o B
modulo ... 11,23
Momitor Variables 45

mpimeos_fle_device 30

mpimos_timer_device, 30
mpimos_window_deviee ... 39
multiply ., 11,23
oW _ALOIM Lo i e e e 19
MEW_ELTIME .. i, 1B
new_vector e T
3 a6
nobacktrace 32
nodebug .o, 32

notrace
not_equal
not_less_than 11,22

Oldnew Argument 25

OPem ...y, E e e a8
operator ., SR {1 . I
OF 4ty smrnncncinacntorsnrenmrnnrnnensnssnss 12,23
OERErWISE e B
pathname 38
Pssemp o (i
PDSS-mode ..o 67
PDSS Configurationoov.o 1
PDSS Invocationo.ccvvveeeeea... 41

Optional Parameters 41

Stand-alene 41

Under GNU-Emacs 41
PIMOS Common Ulilities o

Comparison i 56

Hashingc.oiiins 56

Pool without Key, 5

Stack uviiiii e 57
predicate_to_code, 19
PIRLEOY ... s d4
primt_depth ..., o ar
print_length, 36
print_var_mode ..o 37
Priority .. o e G

Logical Priority_.................... 6

FPhysical Priority [i]

Rate Specification fi

Relative Self Specification ..., Cebiieeranas 6
Priority Management 3
profile ..o, 33
Prompb ..o e 38
public A .. B3
Public Declaration B
puth .. 36
PULC . e 36
PUL] oo 38
L SR e e 36
PULL g e 36
put_console ... e 20
pwd e e 32

75

QUELE e a7
FAISE e s 20
read_console . L., 20
PEITIOVE _OD o vte e e et o e e e e e 30,37
replace_op_pool ... L. 31,37
Report Streamoooovi i, 24

Exception Information 3

Statistic Information, 5

Status Information b
TesebenY e iaeas 34
reset_profile 33
Resource ... o 2

Maximum Number of Reductions 3

Resourse_low Exception 3
Resource Management Functions 2
L 32
BAYE L ai e i s e s e ee i aEssssas Pamo 31
save_all oL 31
Scheduling 8
Sequentiality ... L 2
SELEIIV i e e 34
set_string_element, 18
set_substring 10
sel_vector element, cees 18
Shared Argument 4
shift_left 13,23
shift_right 13,23
Shoen ... 2

Generation_............ 3

Tag 3,66
Sho-en Priority 3
Sheeen System Module 3
Sho-en Tag ... i 3,66
SHOW 38
T 16,23
sinh o 17,23
SKIp oo, coree 36
Sorted Bago.o a7
] 3z
SPYINE oo 43

Code Spying Ceeiean 43

Goal Spyingo.. i, 43
T T S 32
Spy Flags e e ean e 44
sqrb e e 15,23
Blal . s 30
Stream argument 25
SEPINE ... 10,18
Strings e e 9,21
String Argument, sevees 26
string_element, 18
substring B 19
subtract e, 11,23
SYREEX ..ot 6
tab . vere.. 36
take L. 30
2 16,23

File 34,35,50,51-54

file o e ieeramsasiseeas 35
5 17,23
Floating Pointc.coeeeveee..... @
floating_point e 11
floating_point_abs 14,23
floating_point_acosoveeiievnnnene.... 16,23
floating_point_add 14,23
floating_point_asinociiieiiinsn, 16,23
foating_point_atan 16,23
floating_point_cos0 0. 16,23
floating_point_cosh ..ot 17,23
floating_point_divide ... 14,23
floating_poinl_equal, 13,22
floating_point_exp 15,23
floating_point_floorl 15,23
floating_point _less_than 13,22

floating_point_la
floating_point_log
floating_point_maxcc00eenee... 15,23

floating_point_min ..., ... 14,23
floating_point_minus0.0e..s 14,23
floating_peint_multiply0000al 14,23
floaling_poini_not_equal 13,22
floating_powmnt_not_less_than 13,22
floating_point_pow e eaeeas 15,23
floatimg_point_sin0, 16,23
floating_point_sinh, 17,23
floating_point_sqrt 15,23
fioating_poinl_subtract 14,23

floating_point_tan0. ... 16,23

floating_point_tanhcco0evivenie.n, 17,23
floating_point_to_integer 17,23
floor 15,23
Aush oo, 37
L= 30
geth L.l b e e R s e 35
gele oo beresrsasannnnanrnns i1
. 34
Eetft e aae e, 35,36
gotl cereiens. 35
L 35
Goal Definition Pertaining to a Different Module 8
Goal Trace ... iiiiiiiiiniiiaaaia., 43
Guard ..o e vees 2
hall e n
hash ... 21
help b E e e e ety 30
hide ... e 38
implicit, Cererriraeriatieeeea.. 24

.24

Implicit Argument Macroa
Access to Arguments 24

EXpamsioncooiiiiiiiiiiainneninan 24
Expansion Control errerr e . 26
Global Declaration 24
Local Declaration 24
Terminating Process caeens 26

74

Update Arguments e 24
IMEFEMENL ..o e innemranneiranennn 11,23
Input/Cutput Device 380

Device Commands_........ &0

Dievice SIream ..o vvveiiieiiiiieinnnnnn.s. 50
File Device, e eiaaeaeeas &0
Securing Device Stream a0
Timer Device 51
Window Deviee ... inioiinnen.. 0
b e 17,23
IEEET L.t 10
Imtegers ccieiiiiaiiiiiinn, e a
integer_to_floating_pointl 17,23
IMLETO_ALOMT ..ttt e 19
I/O Devices .o iiee e e teraeeeieen .. B0
I/O Functions ... iiviiiiiiinninennn, 3
Commands ... e, 15
Command Stream 34
Command Stream Attachment, 34
Control Comumands 37
Control of Output Formak a6
File o 35
Grouped Processing LT
Input Commands 35
Operalors ...ocounin e 37
Output Buffer Commands 37
Output Commands e eeans k1]
Window ... s KE]
Window Cammands aw
T B 57
Keyed Pool i iininns a7
Keved Set .. . iy, 58
Keyed Sorted Bagcoiiiiuaa 58
Keyed Sorted Setooo ..., 59
Kll-mode ..o &7
KL! Language Specification_.............. 2
lees_than e e e 10,22
LSt e e aaer e 10
Bsbing .. e e 31,38
Listso i, e B
1 15,23
load o 31
local_implicit veen M
e ver 15,23
Is b e e e e e e 32
Macros ...l 21
Macro Library ...ovveiveniinis i 28
FEAN . ai et ie s ae e e e a e aaaaans 12,15,23
Maximum Priorityv0uss S 3
TRELEL . ouueivnnnnsnn e b vesns 20
Micro PIMOS B 29
V1 vannenss 12,15,23
Minimum Priority0viirnn. 3
TOIUB .00t e e et e e hanaaans 11,23
mod ..o ceene 11,23
Moduleoovevii Cereeeaan 2
module veas 8

