ICOT Technical Memorandum: TM-0900

TM-0900

Verification and Synthesis of Concurrent
Programs Using Petri Nets and
Temporal Logic
by
N. Uchihira & S. Honiden (Toshiba)

July, 1990

{©1990, 1ICOT

Mita Kokusai Bldg. Z1F {03 456-3191—5

|C:DT 4-28 Mita 1-Chome Telex ICOT 32964

Minato=-ku Fokyve 108 |apan

Institute for New Generation Compl;ter Technology

Verification and Synthesis of Concurrent Programs
Using Petri Nets and Temporal Logic

Naoshi Uchihira Shinichi Honiden

Systems & Software Engineering Laboratory
TOSHIBA Corporation
Yanagi-cho 70, Saiwai-ku, Kawasaki 210 JAPAN
Phone: (044)548-5465 E-mail: uchi@ssel.toshiba.co.jp

ABSTRACT

Beth Petri net and temporal logic have been widely
used lo specity concurrent systems. Petri net is
appropriate to explicitly specity the behavioral
structures of systems, while temporal logic is
appropriate to specify the properties and constraints of
systems. Since one can complement the other, using
a combination of Petri net and temporal logic is a highly
premising approach o analyze, verily and synthesize
concurrent programs. Several reporis on research
efforts have been presented to combine a non-
restricted Petri net with propositional temporal logic.
However, the Petri net combined with temporal logic in
these reports is so powertul that i is inappropriate for
use in automatic program verification and synthesis,
because of its undecidabiiity. This paper reports a class
that is formulated as an infinite language and whose
satisfiability problem is decidable. We then show how
to verify concurrent programs using Petri nets and
temporal logic, and also propose a compositional
synthesis method that can tune up a row program
(reused program) to satisfy a temporal logic
specification.

1. INTRODUCTION

The Petri net is widely accepled as a graphical and
mathematical modeling tool, appiicable to concurrent
systems [FeB1]. Temporal legic is also successiully
applied as a tool for the verification [Pn77] and
synthesis [MWB4] of concurrent syslems, The Petri
net and tamporal logic have different features with
each other. The Pelri net is suited for modeling the
behavioral structures of a concurrent system, and
temporal logic is suited for specilying the timing
constraints of the system. In other words, one can
model or program concurrenl systems operationally
using Petri nets, while one can specify them
declaratively using temporal logic. For example, a
prohibiting constraint, such as “once an error event
occurs, a stant event must not be aclivated” can be
described explicitly by temporal logic, but it can only be

described implicitly by Pelri nets. Reversely, it is often
tedious work to describe concrete action sequences
by temporal logic, which can easily be accomplished by
Petri nets. It is an excellent idea to comhbine the Petri
net and lemporal logic as a specification language for
analyzing, verifying and synthesizing concurrent
systems, because the Petri net and temporal logic can
complement each other. However, most classes
[CK87, 5189, HRES), in which the unbounded Peiri
net is combined with linear time proposilional lemporal
logic, are undecidable in regard 10 the salisfiability
(emptiness) problem. In this paper, we select a class
that is decidable in section 3. In that class, a transition
firing sequence corresponds to a model of temporal
logic formula, and we can combine Petri net and
termporal logic as infinite Patri net languages. Infinite
Fetri net languages are well investigated by Valk
[Vad3 VJB5]. The following results will be shown
using technigues of infinite Petri net language: (1) It is
decidable whether a Petri nel satisties a propositional
tempaoral logic specification, and (2) for given Petri net
N and propositional temporal logic specification {, the
new Petri net N' can be constructed by modifying N
such that N' salisties f. We apply these resulls to
verification and compesitional synthesis for concurrent
programs, in Sections 4 and 5, respectively. Our
verilicalion method allows us to verify properties such
as mutual exclusion and partial ordering of events. It
promises to complement the traditional Petri net
analysis methods. Our synthesis method can tune up
an griginal congurrent program such as a robot contraol
program lo satisly a given temporal specification in the
composilicnal way.

2. PRELIMINARIES

Deflnition 1 {Petri net) [Mug9]:

A Petri net is a 5-tuple, N=(P,T,F w,mp) whers:

P ={p1,p2...., pr} is a linile set of places,

T = {11 12,...tm} is a finite set of transitions,

FC (PxT)uw (TxP)is a sel of arcs {llow relations),
w: F—{1,23, .} is a weight function, '
mg: P—{0,1.2,...} is the initial marking.

PrTe@and PUT =@

A marking in a Petri net is changed according to the
following firing rule:

1} A transition is said to be enabled, if each input place
p of t is marked with at least w(p, 1} tokens, where w{p.1)
is the weight of the arc fromp to 1.

2) Only one of the enabled transitions can fire at a time.
3) Firing of an enabled transition t remaves w(p.1)
tokens from each input place p of t, and adds wi(t,p)
fokens fo each output place p of t, where wit,p) is the
weight of the arc fromt to p.

Let t be a transition and P={p1,p2,...pn). We define a
n-dimensional differential vector A(t)=(w{t,p1}-
wipil}...., wit,pn}-w(pnt}}. Furthermore, A{t12_tm) =
A1) + A(l2) +..+ A{tm) for a transition sequence
t1t2...m.

Definition 2 (Product of Petri nets)

For given Petri nets N1=(P1,T1,F1,w1,mgq) and
N2=(P2,T2 F2 w2 mpz) where P1~P2=0@, N=N1xN2
is a product of N1 and N2 such that N=(P,T,F,w,mq},
P=P1uP2, T=T1UT2, F=F!UF2 wipti= wi{pt} +
w2(p.t). wil,p)= w1{tp) + w2(t p), mg=mgqmgz.

Example:

t.| t

Fig. 1 Product of Petri Net
Definition 3 {Labelled Petri net)
A labelled Petri net is a 8-tuple, N = (P, T, F, w, h, mg)
where (P, T.F.w,mg) is a Petri net, and h: T X
(alphabet) w {A{empty string)] is a labelling function.

Let X © X be a finite set, @ means infinitely many.
The set of all finite sequences, including an empty
sequence, over X is denoled by X*, and the set of all
infinite sequences over X is denoted by X9, X™= = X*
XW_ The labelling function h: T-E is extended to h:
T==X"by h{8)(i) = h(8(i)) for all 8 ¢ T and 1<i<|d ,
where x(i) means the i-th element in sequence x and
ld is the length of 8. A sequence of transition (6 € T*)
is called a firing sequence for the Peiri net
(P.T,F.w,mg), it the legal firing sequence of the
transitions is allowed by the firing rule in N; an infinite
sequence of the transitions (B € T®) is an infinite firing
sequence if every prefix is a firing sequence. The set
of all {infinite) firing sequences of N is denoted by F(N)
{(Fe(N)).

Definition 4 (Petri net language)
L(N) Is a Petri net language generated from Petri ngt N
it L(N) = {h(8) |6 € F(N)}, and L(N) is a Petri net o

language generated from Petri net N, it Ly,(N) = {h(e)l 8
€ Fm[””

Whenoe T*and T < T, we define 8/T'=h{8) whera
hitl=tifte T', olherwise hit)=A . Also, L{N}T= [&/T| 8
L{MN)}. This means t € T s visible and te T-T" is invisible.

Definltion 5 (Fair Petri net language)

LoMHM(N) € Ly(N) is a fair infinite Petri net language
from Petri net N which supposes the fairmess condition
that whenever a transition 1 is infinitely enabled then t
will eventually fire.

Definition & (Linear time propositional temporal logic):
{1} Syntax

Linear time propositional temporal logic (LPTL)
formulas are built from

= A setf of all aloemic propositions: Prop={p1, p2, p3....]
= Boolean connectives: A,—

= Temporal operators: X(™next™), U{"until")

The tormation rules are:

= An alomic proposition p € Prop is a formula.

s It 1 and 2 are formulas, so are f1 A 92, =11, XM, M U
2.

{2} Semantics

The operators intuitively have the following meanings:
= NOT, » : AND, XI {read next f) : f is true for the
next state, 11 U 12 (read {1 until 12) : {1 is true until {2
becomes true. The precise semantics are given as a
Kripke structure in [Wo83).

We use Ff ("eventually) as an abbreviation for true U
{ and Gf ("always f*) as an abbreviation for —F—{. Also,
f1v 12 and 11 5 2 abbreviate — (=11 =12) and
—f1 w12, respectively.

Definition 7 (Buchi sequential automaton) [Wo89]

Buchi sequential automaton is a tuple A=(Z,S,p,s0.F),
where

« ¥ is an alphabet,

* S is a set of states,

*p:Sx X —28% is a nondeterministic transition
function

= s0 € 8 is an initial state, and

+ F © Sis asel of designated states

A run of A over an infinite word w=t112..., is a
sequence s0, s1,..., where siep (511 t1) forall i 21. A
run s0,81,... is accepting if lor some seF there are
infinitely many i's such that si=s. An infinite word 8 is
accepted by A if there is an accepting run of A over 8.
The set of all words accepted by A is denoted L(A).

Theorem 1 [WVSE3]:

Given an LPTL formula f, one can build a Buchi
sequential automation Af=(X.5.p,s0,F), where
$=2PTOP, such that L(Ay) is exactly the set of
sequences satisfying formula f,

Proof. Omitted. B

Definition 8 (Single event condition) [MW84]:
A single avent condition is
Gi{ v~ pha (A
1=i=n 1
where p1,.., pn are all atomic propositions.

={pi » pi)),

A single event condition provides that just only one
atomic proposition is true at any momant. Whan wa

build a Buchi sequential automalton Ay = (L.5,p,s0,F)
where ' is { with a single event condition, we can make
Z=Prop in place of T=2P™P, because only one atomic
proposition is true at each time,

Example:

The foliowing Ar is built from LPTL formula f = Gii1 o X

(-1 U 12) ~ Git2 o X(=12 U 1) with a single evenl

condition:

Ap= (11,12} ,{50,51,52),p,50,{50,51,52)) where
-[{51}-9{5311} {s2}=p(s0.t2), {s0i=p(s1.t2), [s0}=

52 1)}
Tz

tl tl
Fug. 2 Temperal Logic and Automaton

Definitlon 9:

Ls(f) is a w language generated from an LPTL formula{
with a single evant condition if Ls(1) = L{ Ay) where f'
is f with a single event condition and Prop becomes an
alphabet of Ap.

Lemma 1:

Given an LPTL formula f, Ls{f\€ = Ls(—f), where Ls(fi¢ =
Prop® - Ls(f).

Proot.

In [WVS83], it is proved that L(Af1)€ =L(Af2), where 12
= -i1 and no single event condilion is assumed. This
lemma is a special case of the theorem. B

3. HOW TO COMBINE A PETRI NET AND
TEMPORAL LOGIC

There are several ways 1o combine a Petri nel with
temporal logic. The key point in combining is what the
atomic proposition in temporal logic corresponds to in
the Petri net. Some correspondences will be shown
between atomic propositions in LPTL and Petri net
properties:
a) atomic proposition p is true iff place p has al least
one token.
b) atomic propositions ge(p.c) is true iff place p has at
least ¢ tokens.

a) ks a spedial case of b), ie. ge(p,1).
c) atomic proposition en(t) is true iff transition t is
enabled.

d) atormic proposition 1it) is true iff transition 1 fires.
MNote fi{1) =en{1) aways holds.

Emptiness problem is roughly defined as to decide
whether for a given Petri net N and a given lemporal
logic specification f, there exists a legal firing transition
sequence on N satisfying f.

Empliness
Paper Type Petrinet Problem
[Kis2] a saie decidable
[CKET) bed nomal undecidable
[SLEY) acd nomal undecidable
[HRBS] becd conflict-free undecidable
[UKMIHZ0] o bounded decidabie

Table 1 Several Combinations of Petri Net
and Temperal Logic

For these correspondences, several research results
are presented as shown in Table 1. it can be seen that
the emptiness problem becomes undecidable in some
Petri nets combined with temporal logic. Some are
decidable but are restricted to bounded ones. Qur
purpose is 10 select an unbounded Petri net class
combined with temporal kegic in which the empliness
problem is decidable. The reaseon is that decidability is
necessary for aulomatic program verification and
synthesis, and unboundedness of the Petri net is
necessary for medeling asynchronous communication
in concurrent programs.

Here, we adopt only d-type correspondence and
combine the Pelri net and LPTL in the world of formal
language over a set of transitions. In a previous
section, it was pointed out that Petri net language L{N)
is generated from Petri net N, and @ language L{f),
which is exactly the sel of sequences satistying the
LPTL formula f, can be represented as L{Af) where Aj

is a Buchi sequential automateon.

Whan combining Petri net N and temporal logic 1, all
transitions of N do not necessarily correspond 1o
atomic propositions. Some lransitions may be invisible
to a user who describes temporal logic specifications.

Let T he a setof all ransitions of Nand T © Tis aset
of visible transilions. A labelling function h: T=E is
defined such that hit)=t, if t € T is visible, and hit)=2, ift
€ T is invisible. We are now going 1o define a new
formal language from L{N) and Lsil).

Deflnition 10:

Let N = (P,T,w,mp) and Prop € T be a set of visible
transitions which appear in a temporal logic formula 1.
We define L{M,f) = Lw (N) ~ Ls (f) where Lw({N) is a
language generated from a labeled Petri nel
(P, T, w,h,mg) with h: T—=Prop, and Ls{f) is a language
genarated from f under a single event condition.

Theoram 2:

For a given Petri net N=(P T w,m0) and LPTL formula f
composed of a set of atomic propositions Prop, the
emptiness problem of L{N.1) (i.e. L{Nf) is empty or not)
Is decidable.

Prool.

It is sufficient to prove that the emptiness problem of
La{M} m Ls(f) is decidable. To begin with, a procedure
is provided which constructs a extended coverability
graph G from N and A4

Main Procedure

1) A Buchi sequential automation A¢=(Prop.S.p.50.F)
accepling Ls{f} is constructed according to [Woa9].

Here, Prop< T,

2) Then construct a extended coverability graph G from
M ard A, G is a labeled directed graph. Each node x of
G is represenied as a k+2-luple x=(x1,...,xk,5.f) where
xie (01,...) v w) (1=i=k}, s € 5, T {0 {normal nade),
1 {designated node)}. Each edge e=(xy) is labelled
with an element of T. We define t e Tis enabledin x if t
is enabled at a marking (x1,... xk} and p(s.t) = &, and tis
local enabled if t is enabled in the marking and t &
Prop. G is constructed as follows:

2-1) Start with a graph G containing enly an initial node
q0=(x94.,...x0y,50.1} where m0=(x01,....x0k), 50 is an
initial state of Aj and f=1 if 50 € F otherwise 1=0. Let g0
be an unapplied node.

2-2) Repeatedly apply the following Graph Addition
Procedure 1o the new (unapplied) nodes of G until all
nodes of G have been applied.

. idition P
1) Let x be a given node with x=(x1,.. xk,gf). Create
new nodes x' = (x'1,...,x%,s"f') from x according to (a)-
(d} for all enabled transitions t at x and all 5’ e p(s 1), and
also creale new nodes x'=(x1,....x'’k,5,0) according to
(a)-{c} tor all local enabled transitions t:

(a) x'i= @ it xi= w (1=i=k).

(b) If there is a node y = (y.....yk, &, fy) on some path
from g0 to x (that s an ancestor of x) such that yj<xj-
wipj.t)+w(tpjl for all j {1sj<k) and yicxi-w(pi,t)+wit,pi) for
some i, then x"i=m.

(e} For other i, x'i=xi-w(pl t)+w(t,pi).

(d) 1=1 if &' F, otherwise 1=0.

2) It x' is new In G, that Is G doesn't have the same
node, add a new node x' and a new edge e=(x,x’)
labelled wilh 1, otherwise add only a new edge e=(x,x’)
|labelled with 1.

Above procedure always lerminates, because G is
finite as same as the normal coverability graph of a Petri
net.

Claim: Le(N) ~ Ls{f) = @ iff there exists a cycle
C=Xpxq..xkxp on CG such that xp is a designated
node (i.e. f=1) and A(8) 20 where 8=t1..4k+1 is &
transition sequence over ¢ {i.e. ti=e(xi-1,xi)). Note that
81is not necessary to be fegal The above claim follows
directly from the result (Lemma5.4) of [SCFM84).
Furthermore, it is decidable if there exists such a cycle

=

as follows [VJB5]: For each designated node x0, a set
of all transition sequences B which forms any cycle on
G passing through x0 can be represented by a regular
expression R. We want to decide if there are some 8 e
R such thal 4(8) 0. For this purpose, we can regard R
as commutative. Therefore, R can be expressed as
finite sum of terms of the shape 81*82*..8n* using the
decomposition rules (AB=BA, A*B*=(AB)*(A*+B"),
(A+B)* = A*B*, (A*B)*=1+A*B*B} [Co71]. For each
81" 62*...on"*, we can eHectively decide whether
AlB1%82°%..6n*%) = alA(B1) + a2A(082) + ... anA(Bn)20
for some al, o2, .., an20. W

When L{N.f) is nonempty, it is very important to find a
congrele sequence accepled by L{N,T) for the sake of
program synthesis.

Theorem 3:

Given L{N.f} thal is nonempty, we can construct a
deterministic transition sequence 8pfc® e L(N.1).
Proof. omitted. W

Furthermore, we can construct a new Pelri net which
reproduces transition firing A8 by tuning the
original net {i.e. adding several places, transitions, arcs
to the original net).

Theorem 4:
For given N=(P.T,F.w.,mp) and LPTL formula f with a

sel ol atomic propositions Prop, H L{Nf} that is
nonamply, wa& can construct a Petri net
N'=(P' T F'.w'mp") such that N' is dead-lock free,
Lefair (N)/Prop = [808c%), PSP, TST and FoF.
Proof, Firstly we can easily consiruct a Petri net N
such that L{N8)={8géc"}. Then, make a product Petri
net Np = N = N8, Finally, we can construct N' such that
N' is deadiock-free and there exists a legal firing
sequence from all reachable markings to any t
appearing in Bg, by tuning up Np according to the Valk
and Jantzen's wWwning method [VJB5] (cf. appendix). it
is clear Le!air (N')/Prop = {BpBc"} because N' can
reproduces Bp8eY under the fairess condition. W

Example:
Let 80=t0 and 8z=t112 and L(N8)={6g8c*). N', Np and
M@ are constructed from given N and 8gp8cY as the
followings.:

Ne:

Np: ta &g >t

Fig. 3 Tuning Method

4. CONCURRENT PROGRAM VERIFICATION

Consider concurrent program verification focusing on
the behavioral properties. After retracling the basic
behavioral structures represenied by Petri nets from
concurrent programs, it is possible to analyze the
behavioral properties of programs. This verilication
means to check whether or not a given Petri net
satisfies a given specification. What language should
be used to describe the speciications? Temporal logic
was adopted where alomic propasitions corraspond 1o
transition firng as described in the previous section,
However, only the w Pelr nat language Ly (N) is
considered there, which doesnt care tor finite
behaviors of N including deadlocks, Therelore, Petri
net N is extended 1o Petri net Ny which is made
deadlock-free by adding a dummy transition nop (no
operation) in Fig. 4.

hDP

Fig4 nop

It will be shown how to verify that a given concurrent
program meets a given specification. A concurrent
program is represented as a Petri net Ny, and a
specification is describad as a temporal logic formula f,
Thus, to wverify that the program meets the
spacifications, it suffices 1o check Ls(f} o Lg(MNg), that
means each of all possible computations in Petri net
Ny, is a model of temporal logic formula f,

Definitlon 11:

A deadlock-free Petri net Ny, salisties the temporal
logic specificalion f with a single event condition iff
Ls{l) = Ly (Nw). And it is called the veriflication

problem 1o decide whether Ny satisfies 1.

Theorem 5:

The verification problem is decidable.

Proof. From lemma 1, Ls{f) = Ly (Nw)= Ls
(=NrLp(Nw)=@. It is decidable from Theorem 2. B

It will now be made clear what the inputs and outputs
are.

INPUT:

Concurment program structure

(represented by Petri net Ny}
INPUT:

Specification

{Repraesented by temparal logic f),
QUTPUT:

Yes / MNo,

where “yes™ means thal the program satislies the
specifications, and "no® means otherwise,

Some exampies will be shown to clear what is possible
ard what is impossible in this verification method:

=Possible to verity>

1) Mutual exclusion

ex. Intervals [11,12] and [13.{4] between two transitions
do not overlap each other:

Git1 o X(={13 v 11) U 12)) A G{I3 D X(~(t1 v 13) U id))
2} Partial ordering among transition firing

ex. Transition t1 and 12 fire in tum:

Gt = X {1 Ut2)) ~ Git2 o X[2 Ut1))

3) Firing prohibition

ex. G112 XG —412)

4) Deadlock inevitability

MNote: Each place in a Petri net represents either an
imternal state or a communication butfer in a concurrent
program. Places representing states can be taken
place of intervals of two transitions [t1,t2].

<lmpossible to verify

1) Number of lokens

It is impossible to verify about the number of tokens in
the places, which is used to represent reachability and
boundedneass proparties.

2) Possibility of deadlock (liveness property)

This arises from the introduction of nop.

However, the blind side of this veritication can be
complemented by the traditional analysis method
(liveness problem, boundedness problem, etc) for
Patri nets. The combination of both verification
methads is effective.

Example of Verilication:

As a simple example, veritying a concurrent program,
let's consider a mutual exclusion problem containing
unbounded buffers. Note that a bounded Pelr net
that is equivalent 1o a finite state program is easier 1o
verily using Clarke's model checker [CES86). A target
program is fllustrated in Fig. 5, where places P4 and P5
are unbounded buffers. And specification f is given

that intervals [t1,t2] and [13.t4] satisly a mutual
exclusion condition as follows:

Specification [:
f=Gil1 > X(=13U12)) ~G(13 3 X1 Ut4))

Petinet N:
{This Petri net is deadlock free itself, therefore we
ignore nop for simple explanation.)

P

t
t, >
p3 p6

P

= 13

P4 t': PE

A t={{t1,t2,13 14} {s0 =1 ,sE,sSEp,sg,{sa}}
Lt

Qtl

Fig. 5 Example of Verification

In G, there exisls no designated node, that means Ls
{—f) Lw{Nw} = & from Theorem 2. We conclude N

satisfies I.

E. COMPOSITIONAL PROGHAM SYNTHESIS

It is not easy for a ordinary programmer lo realize a
cormect synchronization in concurrent programs, and it
requires tremendous debugging eftorts. This seclion
provides a method to synthesize automatically a
concurrent program with reusable components by
program funing. The goal programs are synthesized
to satisfy the given specification by tuning up reused
programs that are represented by Petri nets. This
method differs from other synthesis methods
[MW84 CEBZ] that also use the lemporal logic
specification, in the point of utilizing software reuse.
We also emphasize our method adopls a
compositional way to synthesize. it is necessary for two
reasong: (1) Reusable software ilself is composed
compositionally in a ordinary software, and (2) global
synthesis of a large-scale program requires huge then
unpractical computing power. The model building
techmiques in Theorem 3 and Theorem 4 are used in
this synthesis method.

5.1 Concurrent Program Structure

It is assumed that a target program consists of one
controller and several agents. While the controller
conlrals each agent sequentially, the agent is
independent with other agents and can run
concurrently each other. This structure is very natural
in seme domain such as robot conlrol systems and
plant control systems. An example is shown in Fig.6.
The controlier and the agent | communicate with each
other by a set of synchronous communication
channels Ti, like CCS [Mi89). It is assumed that a raw
controller and raw agents has already been
constructed from reusable sofiware components up o
this step. Here, the raw controller is represented by
Petri net Ne=(Pe,Te,Fe.we,meg), and the raw agent i is
reprasent by Naj=(Pa;j, Taj Faj,wajmajp). Note that a se!
of channels Ti =TerTa;. In case of this example (Fig.6),
a controller and an agent may be represented as
shown in Fig.7.

Stuel l Sint?

erdi o

T1={start1,end1) T2={start2.end2)

Fig.& Congurrent Program Structure

end;

Controller

Agent i

Fig.7 Raw Controller and Raw Agent
represented by Petri net

5.2 Temporal Logic Specification

User specifies saveral constrainls by a LPTL formula i
wilh a set of atomic propositions Prop=Te £o that the
controller satisfies f cooperating with all agents.

Example:
Prop=Tec={start1,and?, ctat2 e nd2}
t=Gistart! = X{—startz U end1)
~ Gistant2 5 X{-start1 U end2)
The above f means that once agent 1 starts, Agent 2
never starts until Agent 1 ends, and also Agent 2 starts,
Agent 1 never starts until Agent 2 ends.

Here, a concurrent program synthesie means 1o tune
up reusable components fo satisfy these specifications
{constraints). To start with, it is made clear what the
inputs and outpuls are:

INPUT:
Specification 1
(written by LPTL)

INPUT:

Reused Programs

Cne raw Controller and several raw Agents

(represented by Petri net Ne, Naj Nag, ... Nay)

QUTPUT:

Synthesized Programs
Cne Controlier and several Agents
(represented by Petri net Nc', Nay',Nag',... Nay')

First, we show the controller synthesis method and
then the agent synthesis method. This compositional
way is highly practical to synthesize large-scale

programs.
5.3 Controller Synthesls

This controller synthesis method consists of the
following four steps:
1) Each Petri net Naj of agent i is reduced as possible

[LF85] into Na;" with L{Naj)/Tj = L{Naj"y/T;.

2) Make a product Petri net N = Nc x Naq" x ... x Na".
3) Construct a infinite firing sequence B=BpAgW
L{M.f). from Theorem 3.

4) Construct a Petri net Nc' such that L{NC)={606c"}.
Nc' is a Pelri net of synthesized controller, that is a
deterministic sequential program.

Example: Nc¢' is synthesized from a transition
sequence 8 = (starl1 end1 stant2 end2)@,

Fig. 8 Synthesized Controlier

5.4 Agent Synthesis

For each agent, we can construct a tuned agent Petri
net Naj' from Na; and B8c® as follows:

1} Construct a Petri net Ngj such that L{N8;}={8g8c"/Ti).
2) Make a product Petri net NajP = NajxNg.

3) Tune up NajP into Naj' using the Valk and Jantzen's

method, (cf. Theorem 4)
st))

o

Example:

r:"- "'-'.l'lhrt 1 "

4
t;andf _} '\3_3':"," endr J

NajP
Fig. 8@ Synthesized Agent

Note that the synthesized controller is deterministic
sequential program while the tuned agents can be
nandeterministic concurrent programs. Here we must
assume a faimess condition for each agent that if a
transition t Is infinitely enabled then t will sometime fire.

Naj'

Theorem 6:

i Petri net Nc', Nay',Naz',...,Nay' are synthesized from
Petri net Nc, Naj,Nag,...,Nak and LPTL formula 1
according to the above synthesis method, then
N'=Nc¢'x Naji'xNag'x..xMay' is deadlock free and

LofaI" (N)/Prop = {808c?} < L(N.).
Proof. Omitted. W

The main drawback in this synthesis is that a
synthesized conlroller is delerminislic, because the
program is serialized by a deterministic firing
sequence. However,when expanding a deterministic
one to nondelerministic one that may be more natural,
it is indispensable to consider invisible transition of
each agent, which requires other information besides
given communication channels. Thal is estimated to
decrease concurréncy of a synthesized program.

6. CONCLUSION

This research was carried out to establish a method o
verify and synthesize concurrent programs
automatically using the Petri net and temporal logic. In
this paper, (1) we define the class combining Petri net
and emporal logic which is decidable, (2) the decision
procedure for this class is applied to concurrent
pregram verification, and (3) a compositional synthesis
methed is provided by modifying reusable
components to satisty a specification. The significant
lealure of our approach is to relax automatic verification
and synthesis for only finite-state pragrams
{MWa4 CES86] to infinite-state programs such as Petri
net.

This research has been supported by ICOT.

REFEREMCES

[CEB2] Clarke, E. M. and Emerson, E. A., Design and
synthesis of synchronization skeletons using
branching time temperal logic, Logics of programs
{Proceedings 1981), Leclure Noles in Computer
Science (LNCS) 131, Springer-Verlag, pages 52-71,
1882,

[CE583] Clarke, E. M. , Emerson, E. A., Sistla A.P.,
Automatic verification of finite-state concurrent
sysiems using temporal logic specifications, ACM
TOPLAS Vol.B No.2, 1986.

[CKB7) Cherkasova, L. A. and Kotov, V. E., The
Undecidability of Propositional Temporal Logic for Petri
Nets, Computers and Artilicial Intelligence 6, Vol. 2,
1987.

[Co71] Conway,J.H., Regular Algebra and Finite
Machines, Chapman and Hall, 1971,

[HR89] Howell, R. and Rolser, L. E., On Questions of
Fairness and Temporal Lagic for Conflict-free Petri
Nets, LNCS 340 Advances in Petri Nets 1988, 1989,
[KI82] Katai, ©. Iwai, S., Construction of Scheduling
Rules for Asynchronous, Concurrent Systems Based
on Tense Logic (in Japanese), Trans. of SICE, vol. 18,
MNo. 12, 1882,

[LF85] Lee K.H., Favrel,J., Hierarchical Reduction
Method for Analysis and Decomposition of Petri Nets,
IEEE Trans. on SMC, Vol SMC-15, No.2, 1985,

[MigS] Milner,R., Communication and Concurrency,
Premtice Hall, 1989,

[MuBg] Murata, T., Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, Vol. 77, No. 4,
1589.

[MW84] Manna, Z. and Wolper, P., Synthesis of
communicating processes from temporal logic
specification, ACM Trans. on Programming Languages
and Systems, Vol. 6, No. 1, pages 68 - 93, 1984,
[Pe81] Peterson, J. L., Petri Net Theory and the
Modeling of Systems, Prentice-Hall, Inc., 1981,

[Pn77] Prueli, A, The Temporal Logic of Programs,
Proc. of 18th FOCS, 1977,

[SCFMB4] Sistla, AP., Clarke, E. M., Frances, N.,
Meyer, A. R., Can Message Buffers Be Axiomatized in
Linear Temporal Logic?, Information and Control &3,
18984,

[SLBY] Suzuki, I, and Lu, H., Temporal Petri Nets and
Their Appiication to Madeling and Analysis of a
Handshake Daisy Chain Arbiter, IEEE Trans. on
Computer, Vol 38, Mo. 5, 1989,

[UKMIHES] Uchinhira, N., et al., Concurrent Program
Synthesis: Automaled Reasoning Compiements
Sofiware Reuse, Proc. of IEEE 23rd Hawaii
International Conference on System Science, 1390,
[VaB3] Valk, R., Infinite behavior of Petri nets, Theoret.
Comput. Sci. 25, 1983.

[VJa5] Valk, R. and Jantzen, M., The Residue of
Vector Sets with Applications to Decidability Problams
in Petri Mets, Acta Informatica 21, 1985,

[VWBE] Vardi, M. Wolper, P., An Automata-Theoretic
Approach 1o Aulomatic Program Verification, Proc. 1st
Symp. on Logic in Computer Science, 1586.

[WoBS] Walper, P_, On the Relations of Programs and
Computations to Models of Temporal Logic, in Proc., of
the 1987 Manchester Workshop on Temporal Logic,
Springer-Verlag LNCS vol, 398, 1989,

[WV583] Wolper, P, Vardi, M. Y., Sistla, A. P,,
Reasoning about infinite Computation Paths, Proc. of
24th FOCS, 1983.

Appendix

; .
Detinitions.

I N=(P.T.Fw,mp) is a Petri net.

2. A marking m is T-continual, if an infinite sequence of
transitions can fire (i.e. be regal) in m containing each t

e T'C T infinitely often.
» CONTINUAL(T) | {m| m is Tcortinual}.

« N is a set of non negative integers. Let K& NK, then
the residue set of K, written res(K), s the smallest
subset of K which satisfies res(K)+NX=K+NK,

Theorems.

= res{CONTINUAL(TY) is finite and can be effectively
constructed.

s Using res{CONTINUAL(T)), we can construct a new
Petri net N' whose all reachable markings are lying in
CONTINUAL(T") with the same number of places of N,
but possibly additional transitions.

