ICOT Technical Memorandum: TM-0894

I M-0894

Reflective Computation in Logic
Language and Its Semantics
by
H. Sugano

July, 19

© 1990, ICOT

Mita kokusal Bldg. 21F (03) 456-3191—5

" :D | 4-28 Mita I-Chome Telex ICOT J32964

Minaro-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Reflective Computation in Logic Language and Its Semantics

i SREC BT RV 7 v o 7 4 ThitE & FOSHD
Hiroyasu SUGANQ
BYF

International lnstitute for Advanced Study
of Social Information Science, FUJTTSU LIMITLED

= () ERR R SRR
[-17-25 Shin-Kamata, Ota- ku, Tokyo 144, Japan

E-mail: suga@as fujitsu.co.jp

Abatraet

We propose reflective lagic programming language K-Prolag® formalizing its operational and declarative
semantics, and we show the seundness and the completeness resilts based on these semantics. In R-Prolog*,
we can deal with rames of syntactic objects and compuiational states explicitly by means of guole, up,
down and reflection facilities. As a resull of that, some of extra-logical predicates of actual Prolog can be
redifined from a eonsistent frameweork. At the end of the paper, we introduce an idea of reflective concurrent
lugic langnage Rena, which is given by incorporating cuncurrency in fi-Prolog®.

L= E

VoL i BRITER B Prolog* $ S L, ToBEN, & XUrESNesRsETETS. X6
o, o briat, Tt ERAR o 2 IEHTE. R Prolog® Tk, M@ ofRdat
ToREE RIS ¢ kAT E, WRO Prolog 280 GAEEE V 7L v m v E n s BE—IR
EHFITER LR T C TR ¥hichivbiti, R Prolog® KHETEABATSC 2388,)
FL¥F g FhHEVIRER S Rena £380T 2.

1 Introduction

In this paper, we investigate reflective computation in logic programming language and its formai semantics,
We proposed a reflective logic programming language R-Prolog in[8] and gave it the formal semantics. The
modified version of R-Prolog, called B-Prolog?, is presented in this paper. Same as R-Prolog, R-Prolog* can
be obtained by meta-level extension and reflective extension from pure logic language, Meta-level extension
is the employment of quote, up, down symbols; we can solve the problems of variables 5] by means of them.
Reflective extension is the introduction of computational reflection[§] by means of reflective predicates. Re-
flective extension allows us to redefine several extra-logical predicates in Prolog. In this paper, we provide the
operational and declarative semantics and prove the soundness and completeness of R-Prolog* computation
with respect to the declarative semantics. Furthermore, we try to incorporate concurrency in R-Prolog* in
order to investigate what reflection is to be in concurrent logic languages. We introduce a concurrent reflective
logic language Rena, and the idea of it is described,

In logic programming area, several works on meta-programming and reflection have been carried out so
far, e.g. [10, 2, 7]. Hill and Lloyd analized meta-programs in logic programming language with negation[3].
They present a many-sorted logie language in order to distinguish object lavel and meta level computation, '
Unlike their language and some other formalizations, R-Prolog* has only one sort and it amalgamate object
level and meta level, just like an idea by Bowen and Kowalski [2]. This feature is not a disadvantage of our

language because levels of terms and atoms are distinguished by quote symbels. Furthermore, the language
has a consistent framework including capabibity of computational reflection.

The organization of this paper is as follows; we introduce reflective logie programming language R-Prolog?
im the next seetion; in section 2 the syntax of R-Prolog* 1= presented introducing up , down, quote symbols and
reflective predicates, and its computational semantics, with new unification called p-unification and reflective
computation rule, 15 described. In Section 3, a declarative semantics of R-Prolog® is provided and some
semantic properties {soundness and completeness) of R-Prolog* are shown. We try to incorporate concurrency
in reflective logie language in the section 4, In the section 5, we make some discussions and concluding rernarks.

2 Reflective logic language R-Prolog*
2.1 Syntax of R-Prolog*

The syntax of R-Prolog* 1= an extension of Horn clavse logic {pore Prolog) s languape has cxtra three
symbols, ' (guete), 1 (up), | (down). Furthermare, besides usual predicate symbals, a special kind of predicate
symbols, called reflectove predicates, are included to materalize the refleclive comptation

Definition. 2.1 {Language of It-Prolog*)

Lunguage af ReProlog® [is a sextuple; L = {VAR, FUN OGP RP ML, 55) where VAR is the countable sel, of
variables; F'{7N is the finite set of function symbols; OF is the finite set of ordinary predicate symbaols; 2P is
the finite sei of reflective predicate symbols; DL is the set of delimiters, commal,), period(.), implisation]—),
parentheses{ { | i 55 is the set of special symbals, [{down}, T{up], {quote). a

Each element of FUN OF BF s related 1o o non-negative integer ealled is arity, We always assume FUUN
contains two special funetion symbols, cons(arity 2) and nél{anty 0).
Terms and atoms of R-Praolog* are deflined as follows,

Definition. 2.2 (Terms, atoms, upped form and downed form)
Terms, atoms, upped and downed forms of R-Prolog* are defined recursively as follows;

1. Terms

(a) A variabde i3 o term.
(b} An upped form and a downed form is a term. an wpped term,

{c} Il s is a function symbel, an ordinary predicate symbol, a reflective predicate symbal, up symbol,
down symbol, or a variable, then 's is a term. This term is called o guoied symbol.

{d) Let f be an m-ary function symbol (n < @) and £,,... 1, be terms. f(t;,...,1a) is a term. This
term is called & compound term.

2. Atoms,
fa) IMty, ... 1, are terms and pis an n-ary ordinary (reflective) predicate symbol, then plty, ... 1) is
an atom. This atom is called an ordinary [reflective} atom.

(b) A downed form is an atom.
3. Upped and downed forms.

{a) If ¢ is & term or an atom, then | t is an wpped form.
(b) If ¢ is a term, then | ¢ is g downed form.

O

We write TERM for the set of terms and ATOM for the set of atems. Note that TERM and ATOM
are not disjoint due to downed forms. Following the conventional list notation, nil is denoted by [| and
cons(ty, cons(ty, ..., cons(ia, nil}...)) is denoted by [t1,89,...,). These terms are called fisf. If 1 iz a term
and { 1 a list, term cons(t,1} is also a list and denoted by [t]{]. Furthermore, we adopt the following syntactic
sugar. For a term ¢ = f(1;,...,15) and an atom a = p(ty,.. ., t,), 't stands for ['f,'{;,..., t,] and ‘a stands
for [pfty, .. [ta].

Quoted terms, upped terms and downed terms are newly introduced in R-Prolog*, which allow us to deal
with meta-level object legally in its own language. So we sometimes call them mulii-level terms. A quoted term

repregsents a “term” before quoted as syntactic object. They are dealt with as ground terms because they are
data as they are. Contrasted with that, upped and downed terms have somewhat dynamic feature. Variables
in these terms can be binded to some terms by unifications when goals including them are executed, and after
that they are transformed to their name{gquoted form). In other words, they are used as information carrier
from object (meta) level to meta (object) level,

Atoms of R-Prolog® are defined almost same as that of usual logic programs. The distinctive difference is
that downed terms can be used as atoms.

As stated above, terms without up and down symbol are considered as ones staying in the same level
everytime. This leads to the foliowing definition. We call a term withoul up apd down symbol an S-ferm.
Similarly, we call an atom without up and down symbol an S-afom. S-terms and S-atoms play important roles
in the procedural and declarative semnantics of R-Prolog®.

Clauses of R-Prelog* can be classified into the following three ; ordinary clauses, reflective clauses and
reflective definition clauses. In the followings, we define these kinds of clauses and some special terms. the
following three definitions are mutually recursive ones,

Definition. 2.3 {Clauses and some special terms)

1. Clauses
[a} Let ap be an ordinary 5-atom and ay, ... 0, (n > 0} be ordinary or reflective atoms. Then,
ag o iy, ..o, i 05 called reflective clowse] HO') if a, is a reflective atom for some @ (1 < i < n),
erdinary clause (O0) otherwise,
(L) Let r be a reflective predicate and ay, .., iy, be ordinary (or reflective) atoms. Reffective definition
clouge (ROC) for vis rlarg, envl env®) —ay, .. a,. where arg,envl, env? are S-terms satisfying

the following condition.

i. they are either a variable or a list structure,
. if envl {envl} is a two element list, its first element is a program term and its second element
15 a substitulion term.

vlarg, enwl, env?) is called an RD-atem. Note that an RD-atom is not an atom.
2. Clause term, program term and substitution term

(a) Tor an ordinary, a reflective and a reflective definition clause a — a;y, ..., 8,, its guoted form is a list
of quoted atoms, ["'a,"ay, ... a,]. This kind of terms are called cleuse terms

{b) If & term is a variable or a list of quoted forms of clauses, it is called a program ferm.

(¢} I a term is a variable or a list whose elements are lists of a quoted variable and a quoted term, it
is called a subsivintion term.

a

A Program P ol K-Frolog is a finite set of ordinary clauses, reflactive clauses and reflective definition
clauses. A program form is a corresponding term to a program. A substitution is defined as a function o from
VAR to TERM whose domain (the subset of VAR whose elements are mapped to different elements by o)
is finite. A substitution form alse corresponds to a substitution. For a program P and a substitution ¢, a
program term corresponding to P is denoted by P, a substitution term corresponding to o is denoted by &.
On the contrary, a program corresponding 1o a program term { is denoted by I, a substitution corresponding
to a substitution term s is denoted by 7.

A notion of a goal in R-Prolog* is defined as almost same as that of ordinary logic language. Let ay,...,a,
be ordinary or reflective atoms. A Goal elause of R-Prolog* is defined as follows, «— ay, ..., a,. It is sometimes
written as < ay,...,a, > in a semantical context because we just expect them to be sequences of atoms. We
present some examples of R-Prolog® programs below.

In the actual representation of R-Prolog* programs, we declare each reflective predicate to be reflective
to distinguish it from ordinary predicates. In the followings, we employ a declarator “reflective” to specify
reflective predicate symbols. The example below is a definition of assert in R-Prolog®.

reflective assert/1
assert([X], [Pr,Sub], [Prl, Sub]) — insert_clause(X, Pr, Prl).

where insert_clause embeds X in a suitable place in Pr and return Prl.

2.2 Computation of R-Prolog*

Tu this subsection, we describe the operational semantics of R-Prolog*. Computations of R-Prelog* programs
are sequential, depth first search without backtracking.

We first have to define the unification in order to deal with multi level terms, i e wpped, downed and
quoted terms. The unification s hased on g-eguivalence relation =a on T'ERM U ATOM.

Definition, 2.4
We define a relation > on set TERM U ATOM as the smallest one satisfving following conditions.

L If{ andd & arc S-terms or S-atoms and ¢ = 5, then ¢ = 5.
217t and s are terms or aloms without variables and ¢ =ap s, then 't >p1 1.
3 If tis a quoted term “s for some s, Ahien s =] £

4. Let f be an n-ary function symbol, and #;, .. #, 81, ., s, be S-lerms. If{; > & for any i(1 < i < n),
then f{fy, . 1a) 2 Sz 800
o

The synumetric transitive closure of >y is denoled by =pr. The relation 2 defined above is clearly a
partial order relation and the relation =y is clearly an equivalence relation. In the fellowings, TERM/ =y
is denoted by ETERM, ATOM/{ =4 is dencted by EATOM. Each equivalence classes in ETERM and
EATOM has the maximum element with respect to =57, and we write pit) the maximum element of the
equivalence class inchiding ¢ In R-Prolog® computation, if two terms are equivalent in the above sense, they
are identified. The p-untfication defined below unifies Lwo terms under that constraint. Let £ and s be S-ferms.
tand & are said to be peunifiable if there exists a substitution @ such that Lo =4 s, Furthermore let a and b
be a pair of S-atoms or RM-atoms. a and b are said to be g-unifiable if they have the same predicate symbol
and each corresponding arguments are p-unifiable. We can also define a generality relation between u-unifiers
and can prove the existence of the most general g-unifier of two S-terms, S atoms up to renaming, It is also
proved the most general p-unifier of terms, atoms or unifies them into an S-terms or S-atoms,

Next, we have to introduce an imporiant partial function to give an operational semantics of reflsciive
apetaticr. A partial mapping n - TERM UATOM — STERM USATOM maps well-formed terms and atoms
to the greatest element with respect to >y in the equivalence class it belongs to. For example, g7 ¢ = ‘e,
7L’ s} = 5. 7 transforms terms and atoms to an S-term and S-atom respectively if it is defined.

We now describe states of R-Prolog* computation. Let PROG be the set of programs of L, Subst be the
sel of substitution of L, and GOAL be the set of goals of L. The set of goal guene (3¢ is defined as the sel
of finite sequence of goals. A goal queue is represented by list notation. Meta Confinuation v of B-Prolog* 1s
defined as a finite sequence of elements of GQ = Var » Var. The set of meta continuations is denoted by MC.
A meta continuation stacks the remaining goals in lower levels. Variables in a meta continuation are used as
conveyers of new environments.

Now, we define the computational state of R-Prolog* as follows. The set of computational states of H-
Prolog* is defined as follows.

STATE = GQ =« MC % Prog » Subst.

a eomputational state consists of goal quene of current level, meta continuation which stacks remaining goals
in lower levels, current program, and current substitution (binding information). A computation of R-Prolog*
is represented as a sequence of computational states, which is defined as follows,

Definition. 2.5 H-computation beginning af the state s € State is a (finitc or infinite) sequence of
elements of STATE, 59, 81,...,8, ..., satisfying the following conditions.
1. 8y =3,

2. Assume §; = (Gy, Cy, Py, aq)(i > 0).

{a} If (3; is empty,
i. When € is empty, there is no descendent s;(; > 1).
ii. Otherwise, let C; = [fires|Crese] and criree = {7, V1, V2}, There exists the next state Biy) =
{Cis1, Cigrs Fgr, @iga), with the following form;

Gisin =G, Cip1 =Crenty Fig1 = Viey, oiyy = Vaog

by If G =1 ay, ..., an > |{Tiress|(n = 0}, then
i. The case the selected atom ag{l < & < n) is an ordinary atom.
There is a fresh variant of OC or HC ol = b — by, ... by in Po where apo; is p-unifiable
with the head &, and r be the most general geunifier of ago; and b There exists the next state
Sip1 = 0G4, Cigr, Figr, s), with the following form;

Giwg = [< by, by > my, o By sy, |Giru*]
Gi+| =, .Pi+1. = F, Tig) =0 " T

ii. The case that az is a reflective atom w{fy, ..., 4).
‘There 18 a fresh variant of KD ol = b — by, ... by, whose head b is unifiable with the RD-atom
d = v([n(l tyog), .. o9 W) [P 6] [Y, 2])
where ¥ and 2 are variables not appearing before, and = is the most general unifier of b and d.
There exists the next state 5,4y = (Gigr, Cigr, Fig1, Figa), with the following form;

Gipr = [by, oo by =]
f-i+|_ = [{[‘: LS IR | A R - |GI-F|!!'I}-Y|Z:I'IG|']
Pug=F, ou=c.r
O

In the above definition, a fresh vartant of a clavse means a variant of the clause which docs not include any
variables which appeared before.

The definition 2.5 deseribes the whole computation in R-Prolog®. The case {(a) is for the current goal
quere is empty. In this case, if the meta-continuation is empty, the R-continuation terminates at thatb state.
Otherwise, there exist the remaining goals of lower levels and the next goal should be the goal at the top of the
meta-continuation. The next environment is represented by the variable in the top of the meta-continuation.
When the goal queus is wol smply, an atom in the goals at the top should be selected. If the atom is
an ordinary one, the R-computation succeeds same as pure logic programming language. If the atom is a
teflective one, say r(f. ..., 1,), all the arguments are upped and the function n is applied to them, RD-
atom r{[n(1 fye5), ... (T tim)) [P, @3l [Y, Z]) is eonstructed where [#, ;] is the current environment, and a
reflective definition clause is selected whose head is unifiable with this RD-atem.

The next definition defines an R-computation at the top level,

Definition. 2.6 R-computation of goal {7 in program P is defined as an R-computation beginning at the
state sp = {7, [, F,€). O

If there is & finite K-compitation sq, 8, ..., 8, of a goal & in a program P, it is called an R-refutation of
G # (of length n). Furthermore, if 5, = {[],[|. P,), P’ is called the final program of the R-refutation and
7 ia called the final substitution of the R-refutation. Assume there is an R-refutation of a goal (7 in a program
P. Let r be the final substitution of the R-refutation and FV(G) be the set of free variables in . Restriction
ol & to FV(G), olpvia), 1s called an answer substitution of (¢ in P,

2.3 Examples of R-Prolog* programs

Up and down

In R-Prolog[8], up and down construction was closely related to freeze and melt proposed by Nakashima et al.
[5]. That is, up (down) transforms enly terms to their name (the name of terms to terms themselves) in one
direction. In R-Prolog*, however, they are used in both direction. See the following simple example.

p(X) = q(1 X).
ql'a).
gl'8).

In this example, goal « p('a). succeeds, but — p(a). fails. And — p{X). returns the answer X —aor X = b,
Note that +— p{.X') fails in R-Prolog with the same example.

However, reflective call do a kind of freeze operation. When a reflective goal is executed, its arguments are
freezed and transformed into their “names”. So, freeze operation can be redefined by means of reflection as

follows.
reflect freeze /2 mell f2

freeze([X, Y], [P, 5], [P, 51]) — insert binding(S, [Y, T X], 51).
melt([X,Y),[P, 5], [P, §1]) « insert_binding(S,[Y,] X],51).

Predicate var

The predicate var in Prolog is somewhat problematic in logical sense. Hill and Lloyd tried to give the lagical
semantics in their many-sorted logic language which strictly distinguishs meta and object levels[3]. Their
language is similar to ours in the sense that a notion of quote (or name) is utilized in it. However, there are a
large amount of difference between them, such that their language does not have up and down construction,
it can deal with “negation” but ours cannot, and so ou. Although the predicate checking whether a term is
a variable is difficull to deline generally, they showed it is possible by means of “negation”. Because we do
not have “negation” in R-Prolog*, we cannot adopt the same manncr. However, if we extend R-Prolog* by
allowing internal representation for quoted variables in a suitable style, we can define the predicate variable

to check if a terms is a variahie.

Meta Programming
Meta-level reasoning is also realizable by means of reflective operations. Using meta-interpreter presented in
section 2.2, well known predicate demo [2] can Le defined in B-Prolog* as follows:

Reflective demol 16, ().
demo([Db, Gl], Pr. Pr,Sub, Subl) «— solve(GI, Db, 1061, Sub, Subl).

1t has been shown that this kind of demo predicale makes many kind of applications realizable, such as database
management, knowledge representation, and so on (2, 1]. For example, with the following programs,

belicve(Person, Knowledge) «— haskb(Person, K B, demo| K B, Knowledge).
haskb{ john, ["azy(paul) lazyl. .0, ..., 1)

the goal — believe(john, 1 lazy(X)). retreives the person who John believes to be lazy.

3 Declarative semantics

In this section, we present a declarative semantics of R-Prolog*. Because computational reflection is a procedu-
ral notion, we cannot adopt the usual declarative semantics given as logical consequence of programs. In order
lo incorporate a procedural aspect of reflective computation, we define the extended notien of interpretations
and models, :

3.1 R-interpretation and R-model

We first define the equivalence relation on the set of programs PROG. Let P and P’ be programs. A relalion
=Zp on PROG is defined as ollows,

P =p P += For each clause ¢l in P there exist a clause eI’ in P’ and substitutions o and 7
such that ele = el and ef'r = cf, and vice versa,

=p s clearly an equivalence relation. We define EPROG as PROG! =p. Two programs are equivalent in the
ahove sense if they are same up to renaming.

Now, we define the reflective variant of the notion of interpretation. The set of JO-pair 10 is defined as
10 = EATOM x ENV x ENV, where ENV is defined as ENV = EPROG x SUBST. A subset of 1O is
called R-interprefation. It is easily shown that the set of all R-interpretation 279 is a complete lattice with
respect to set inclusion. In the following, elements of EPROG, ETERM and EATOM are denoted by B,
i and a respectively, where P, ¢, a are their reprsentatives. However, equivalence classes will sometimes be
denoted by their representatives for simplicity in case that it is obvious from context.

Definition. 3.1 Let P € EPROG, ol = a « ay,...,a,(n 2 0) be OC, RC or RDC in P. [0-description
of el in program P is defined as follows.

1 Ifetis O or RO, an 10-desemption of el in P is
{{b, Po, o0}, (ak,, By), ., Pa, g}
where

(a) ai,,...,qc_ is a permuted sequence of a,, ..., a,.

(b) bis an S-atom p-upifiable with o and op is an mgmu of @ and &,
(e} ey, .., oy are subsbitulions, such thal &; = rpef for some of for each 1 (1 <1 < n),
id) Py, ...,P € EPROG and Py = P.
2 000 el s RDC and a = r{i,, b, 15) 15 BD-alom of o where ¢ is an n-ary reflective predicate, an f0-
description of el in P is)) ~
(b, By, ogh, fag,, Poedd, oo lae, P an))
where
(a) ag,,...,ac, 18 a permuted sequence of @y, ... a,.
(L) &= r{s1,59,53) 5 an RO-atom unifiable with o and =y is an mgmu of a and b,
(¢} e1,...,m, are substitutions, such that o, = oye! for some o} for each i (1 <i< n)
() Py, ..., By & EPROG and Fy = P,
(e} 5 = [y, ..., un), where mois We ariby of v aod uy, .., uy, are S-terms,
{{) 52 = [P,] for some substitution ¢ in which each free variable in ¢f does not appear,
(£} 83 = [X;, Xz] where X, and Xa are variables, Ximn is a program and Xorm, is a substitution.
a

Before defining a notion of model in R-Prolog*, we define a auxiliary function as a preparation of that. For
a program P and an R-interpretation [€ 2'9 Wp(I) is defined as {P} if I = 0. Otherwise, Wp(I) is defined
as the set of programe occuring in [,

In the followings, we use the notation rfs] for #{u;, ..., ua) if r i3 a predicate symbol and s = [uy, ..., u,].

Definition. 3.2 Let /' be a program and [be an R-interpretation. [is said to be an B-model of P if the
followings hald,
I. P e Wp(l).
2. Forany @ € Wp(l), @ €@, any O or RC in @, say el =a — ay,..., a,, any 10-deseription of ef in ¢,
{{b, P, oo}, {ag,, Proaid, .. ak,, P ond)

and any substitution ¢ in which each free variable in of does not appear, if for any (0 < i < n - 1),
{akhtl iy !H.'da"]' [P=+|*¢':i+1]} &1, i'rﬂ:J-=|+:| is an urdina.r;.r atom, {"J‘{HP{“!.+1 @y]jrl-P!:l ¢ﬂ{},[ﬂ'+1,¢ﬂi+1t} €
I, il ag ., i= a reflective atom, then (b, [Py, ¢).[Fa.den]) © L.

3. Forany @ € Wp(l), Q € Q any RDC in Q, say ¢l — a = ay, ..., 6,, any [O-description of el in),
({b, Po, o0, (@ky, Pry o)y {Gke, Pryon))

where b = r(s,, 53, 83) and s, = [Q. 8], if for any i (0 <i < n—1), (k4,7 [, 0], [Pigr. doip]) € 1, 0f
ag,,, 18 an ordinary atom, (g{up{ag,,, o)), (B, dei] [Pig1.dois]) € 1, if ag,,, is a reflective atom, then
{r[slll [Q| q“']lE‘E]nﬂll’YEan }I e I

u]

It is easily shown that, the intersection [J is also an R-model of P, where J = {;} is a non-empty set
of R-models of program P, The intersection of all R-models of program P is denoted by M(P). M(P) is the
smallest R-model of program P.

3.2 Fixed point semantics and some results

In this subsection, we show the smallest R-model of P, M{P), is obtained as the least fixed point of a certain
continuous function on 29 determined by P. Furthermore, the soundness and completeness results based on
given semantics are proved. We have shown these results for R-Prolog in a previous paper [8]. Because proofs
of those result in that paper are able to apply to theorems in the followings, we omit the proofs of the following

theorems.
We define the function Tp on 29 as follows. It is & reflective variant of the usual characterization function

of pure Prolog.

Definition. 3.3 Let P be a program. The funetion Tp : 219 — 270 js defined as follows. Let [& 2710,
Te(I) = Up(L)UVp(l)
where
Upll) = U;}gwp“] UQEQ Ucrsqo{{‘l’: [P"u.q‘i],[Pn, ¢aﬂ]}|{{b- ﬁﬂ-aﬂ:ll (ag,, Pro), ..., {ul‘.:ﬁn+aﬂ” be an
I0-description of el =@ —aq, .., an in B =Q, pisa suhﬂitutiop in Whil:h_ each {ree variahle
in ¢l does not appear, and for any i (0 < i < n - 1), (as,, 04, [B, é0u), [Py, doig) € 1,9
ak,,, is an ordinacy atom, (n(up(as,, o)), (7, 6:], [Pias, 00s41]) € I, if a,,, is & reflective
atom. }

Vell) = Udrgw,..:;‘] UQEQ UdEQk{{r[ﬁlL @, él, X1rﬁ-..m1'|{{fr. P.I!hal'l}; (o, , ﬁls“l}r ceey {ak.rﬁn;ﬂ'ﬁ}}
be an IO-description of of = a — a, cooe iy N J‘-—"';D =) where b = r{sy,.. . 85), and sy = &
and for any 1{0 < § < n=1}, {ap, oo, [Fs, dei], [Figi, dog)d € 1, if g, ., 15 an ordinary atom,
(luplae,,, m)) 1B, dog [Py, dea)V €0, if ag,,, is & reflective atom. }

]

Theorem. 3.1 Function 4% : M9 — 212 s cantinuous. o

It is well known that a continuous function on a complete lattice has the lcast fixed point given as the lub
of w-chain beginning at the boltom. We now write {fp(Tp) for the least fixed point of Tp. Then, we can get
the following result.

Theorem. 3.2 Let P be a progran:.
M{P) = lfp(Tp)
o

This theorem shows that the smallest R-model of an R-Prolog® progam P is obtained as the least fixed
point of the continuous function Tp. This correspands to the well-known result on pure logic language[4].

The fellowing theorems show the soundness and completeness of R-refutation with respect to the declarative
semantics defined abowve,

Theorem. 3.3 (Soundness of R-computation)
Let P be a program and G =+ a be a goal clause for an atom a. If & has R-refutation in F with the final
substitution &, and the final program P’

{a, P, P ¢ 0} € Lf{TPF).
o

This theorem shows that, for an atom a, if there exists an R-refutation of — a in a program P with the final
program P and the final substitution e, the 10-pair of the initial environment (P, ¢) and the final environment
(F’, @) for @ is in the minimal model of P.

The next theorem shows the converse of thearem3.3, i completeness of R-refutation.

Theorem. 3.4 (Completeness of R-computation)
Let @ be an S-atom, P, P be programs, o,¢' be substitutions. If

(a, P, P',0,0") € Ifp(Te)

then there exists an R-refutation of goal — a. in P]

4 Concurrency

In this section, we describe an idea how to incorporate concurrency in refiective logic language. Concurreney
brought several problems to logic language, such as one of syncronization. Following currently presented
concurrent logic languages, especially GHC[A], we adopt notions of guard, committed-choice and the suspension
rule of input guard. Thus, cur language can be said to be a kind of reflective dialect of flat GHC. We call this
concurrent reflective logic language Rena. Althouth the sematics of Rena in detail will be presented in other
paper, we describe just a general framework of Rena in the followings.

4.1 From R-Prolog* to Rena

In B-Prolog® computation, an atom 1o the goal clause 18 selected, candidate clauses are tested if they are unifi-
ahle with the selected atom sequentially, the first one satisfying the condition is selected and other possibilities
are discarded at that time. That is, R-Prolog® computation is executed sequentially without backtracking,
and it has a kind of commitment mechanism In Rena, like GHC, atoms in the goal clauses are executed
concurrently, and the commitment mechanism is extended by input guard commitment rules.

Fena has an extra symbol commiel (|} and the syntax of Rena s similar to GHC. Ordinary and reflective
clauses of Rena i3 defined as follows:

h—g1,....gmlbr,.... b

where b s an ordinary atom called head, g1,.. . gm{m = 0) and &;,..., b (n > 0) are atoms. The left hand
side of commit is called grard parf and the right hand side of commit is called body part. Reflective definilion
elauses are defined like in H-Prolog*. Furthermore, we give a restriction on aloms g1,..., §m in guard part.
Predicates in these atoms have to be non-productive predicates in the program, that is, executions of these
atoms do not produce any bindings. This restriction corresponds to a notion of “fat” in concurrent logie
langnage.

What should be explicitly dealt with as a computational states in concurrent language when reflective
computation occars? The answer depends on how the semantics of GHC is given., While we do not describe
it here, we give an example. We can consider input and ouiput stream as computational states in addition
to that of R-Prolog*. ENV = PROG « SUBST = INS » QUTS Examples of Rena reflective programs are
followings;

reflective remdf 1
read([X], [P, 5, [A|IS), O8], |P, 51, I§,05)) — |insert binding(5, [X, 4], §1).

This defines input predicate read by means of reflection.

When we incorporate refiective computation in concurrent language, we have to consider scope of reflec-
tion. Scope of reflection means what amount of current esmputation should be influenced when reflective
computation occurs and states has been changed. In R-Prolog*, becanse computation is executed sequentially,
the whole curcent level computation pauses and meta-level computation is started when reflection occurs, In
concurrent language, however, the whole computation does not have to be influenced and it depends on what
components of states are changed by reflection. This brings us the critical problem of the scope of reflection.
One resclution for the problem is an introduction of a notion of process in Hena and managing the scope of
reflection by means of that. However, this is just an immature idea and a further investigation is required. We
are golng to present it later in other opportuniiy.

5 Conclusion

We proposed reflective logic language R-Prolog*, formalized its semantics and proved soundness and complete-
ness of ibs operational semantics with respect to the declarative one. Based on these fundamental results, we
believe we ean discuss the formal properties of behaviors of programs with reflective operations. Furthermore,
we introduced the idea of concurrent reflective logic language Rena. More detailed investigations on semantics
of Rena is required. Other important worke to be occupied with are listed as follows,

In R-Prolog* programming, anything is allowed to be changeable by users in some sense. Although this
increases the language's flexibility, it involves somewhat dangerous situation, e. g. a given program might be
a sell-destroying one. We have to investigate in which case programs describe meaningful computation and in
which case it leads to inconsistency. In order to enable that, much finer arguments about R-Prolog* programs
is required. We are very interested in making behavioral characterization of some syntactic classes.

Rena is a new-born language and we must make more detailed investigation on its semantics. There are
lots of things to make clear to understand the reflection in concurrent language. We are also trying to make
more illustrative applications for reflective computation in sequential and concurrent logic language.

Acknowledgements

This research was carried out as a part of Fifth Generation Computer System project of Japan. I wish to
thank Susumu Kunifuji, Jiro Tanaka, Masaki Murakami, Youji Kohda and Munenori Maeda for their fruitful
discussions and helpful comments.

References

11} K. Bowen. Meta-level programming and knewledge representation. New Genergfion Computing, Vol. 3,
pp. J5H8-183, 169845,

[2} K. Bowen and R. Kowalski. Amalgamating language and metalanguage in logic programming. In §. Tarn-
lund, editor, Legic Programming, pp. 153-172. Academie Press, 1982,

[P. M. Hill and J. W. Lloyd. Analysis of meta-programs. In Proceedings of the Workshop on Meta-
FProgramming in Logic Programming (META A8}, pp. 27-42 1988,

[4] J. W. Lloyd. Foundations of Logic Programming, Snd. edition. Springer, 1087,
[5] H. Nakashima, S. Tomura, and K. Ueda. What is a variable in prolog? In FGCS &4, pp. 327-332, 1984,

[G] B. C.Smith. Reflection and serantics in lisp. In Proc. 11th ACM Symposium on Principles of Programming
Languages, pp. 23-35, 1984,

[T} V. S. Subrahmarian. Foundations of metalogic programming. In Proceedings of the Warkshop on Meta-
Frogramming in Logtc Programming (META 88}, pp. 53-66, 1088,

[8] H. Sugano. A formalization of reflection in logic programming. Technical Report No.98, ITAS-5IS, FU-
JITSU LIMITED, 1989,

[8] K. Ueda. Guarded Horn Clauses. Technieal Report TR 103, ICOT, 1985,

(10] Richard W. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence,
Vol. 13, pp. 133-170. 1980,

Y

