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Outline of the FGCS Project



The FGCS Project of Japan

e R & D of technology bases for
“knowledge information pro-

cessing systems” in 1990s

e Project spans 1982 to 1992.



General Framework of R & D

Knowledge processing

~—Logic programming

Parallel processing

Parallel Inference System

Application programs

User languages

B KB system
Operating system: PIMOS

Kernel language: KLll

Hardware: PIM, Multi-PSI I
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General Research Plan

e R & D of parallel software and parallel
hardware must proceed concurrently.

« Stepwise bootstrapping

Parallel software <= Parallel hardware
Chicken and egg

Egg —Mnult1-PSI
Chicken —PIBTOS/VI
Egg -PIM/p
Chicken -PIMOS/V2
Egg ~Final PIM
Chicken ~Final PIMOS

* Cultivation of pavellel computing
7



Sequential systems

1984

1986

PSI-1, KLO 37K LIPS(KLO)

—ESP, SIMPOS

PSI-1I 330K LIPS(KLO)
( KLO oppend )

Parallel systems

1985
1986

1988

Now 1990

1492

—GHC

Multi-PSI/V1, FGHC 1K LIPSx6PE(FGHC)
—>Small sample programs

Multi-PS1/V2, KL1 150K LIPS x64PE(KL1)

(KL1 appemf}
—PIMOS/V1, Demonstration programs

PIM/p 600K LIPS x128PE(KL1)
—PIMOS/V2, Application programs

Final PIM system

—Final PIMOS, Large application programs

LIPS: Log{cal Inferences per Second

KLO, KL1,: Kernel languages
GHC, FGHC

SIgIPOS. PIMOS : Operating Systems



Target Domain of Parallel
Processing

o Hardware: Large scale (scalable), and
loosely coupled MIMD machines

~Powerful processor and large memory pair

= not SIMD

= local memory — non global

e Logic language based
« |ess logicbased than Prolog

o Domain of application:
—Knowledge processing
—General purpose parallel processing

» non uniform deta /processing

e Maximum n times speed up using n pro-
Cessors
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0 Multi-PS1/vz

— Early prototype of PIM

— RsD tool for parallel software

Application programs

User languages

KB system
Operating system: PIMOS

Kernel language: KL1

‘ Hardware: PIM, Multi-PSI

[
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PIM/p

— Pargllel Inference Machine /model p

Application programs

User languages

KB system
Operating system: PIMOS

Kernel language: KL1

up l Hardware: PIM, Multi-PSlI l
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Processor Element Configuration

64-bit data path

[ 9

NIU ——— Network router
(network
interface unit) Input/Output (FEP)
¥ and Disks
FPU
(floating
point unit)
int-addr 1M
(internal
cPU int-code instruction
Genera| re,imrwut,u memory)
] S0bit x BKw
Instruction Cache address
64.KB |
*Z | |nstruction :___“
cache
CCU
| (cache
.g Data cache CDI‘ItrD”Er
units)
HCDLnn;Dn
u
+ Coherent cache ( Shared bus )



Processing Element Design Features

1. Efficient Implementation of KL1-B
(Abstract Instruction Set for KL1)

= Instruction set amalgamating both RISC and
CISC features

= Efficient data type checks by tag architecture

= Conditional macro-call instructions for high-level

functions.

2. Efficient implementation of MRB garbage collection

= Special instructions for MRB and dereferencing

e Hopefully 1 instruction / cycle (50nsec)
by 4 stage pipeline

e Append performance : about 600 Krps
(Including GC overhead)

20



Processor Connection Design Features

1. Hierarchical Structure

— Cluster: Eight processing elements connected

with shared memory and bus.

- Fast network to connect 16 (<) clusters.

2 Efficient communication within a cluster.

— Coherent cache design using the characteristics
of KL1

3. High performance inter-cluster network

= Network port in each processing element

— Hyper-cube network (Doubled)
— Cluster throughput : 40 M Bytes/sec

= 1/0 device can be connected with most

processing elements.

2/



KL1 Language

Kernel language for Multi-PSI
and PIM

Concurrent logic language

Application programs

User languages

KB system
Operating system: PIMOS

‘ Kernel language: KLl =

— T T —

Hardware: PIM, Multi-PS]|

Y



Logic-based object-oriented programming

O e A Iy g, e i R e Ny, g 3 e
¥ J

KL1-C
Flat GHC + Exiensions

+ Pragma

,t current
- l L evel o
=KL1-c=

S-KL1b

r/,—l_._ PrTTETr . :.-:: s :_"-' ._' 5
2 KL1 system ' R F3 N
:ﬁ-m JTIMET L -ty ..-.-:.' Gy
et 2
t R
d kLq-U Future work User
program

K11 compiler

a2

23

micro OStI
I -
program coﬂer
‘ RISC inst.
. _ + macro call
micro inst.
. PIM/p
Multi-PSI hardware
hardware




Kernel Language: KL1-¢

Flat GHC + Meta-control features
+ Features for efficiency

e Sho-en features:
—Starting/stopping/aborting execution
—~Exception handling

—Resource consumption control
e Higher order extensions
e “Updatable” arrays
¢ Optimized merger

e Pragma:
-Priority control 300‘?@ priority (x)
—Load allocation 30&@) chgss‘w(‘f')

2¢



A Small Program in KL1

Reportl
'/‘ - Cowﬁ!*&L B ~—
T \ R

., control(Rep,Ctl), execute(gsort(X,Y),Rep,Ctl),.

mela - ca,z’ﬁ:/‘ ,/

gsort (Xs,Ys) :-truelgsort(Xs,Ys, [1).

qsort ([], Ys0,Ys1) :- true | YsO = Ysi.
gsort ([X]Xs],Ys0,Ys3) :- true | part(Xs,X,S,L),
gsort(S,Ys0, [X]Ys2]),

. qsort(L,Ys2,Ys3)Qprosessor(ry) .
pragma for |oad distriéutro

part([X|Xs],A,S,L0) :- A< X |

LO=[X|L1], part(Xs,A,S,L1).
part([X|Xs],A,SO,L) :- A>=X |

50=[X151), part(Xs,A,S1,L).

‘part([], X,8, L) :- true | § = [J, L = []-,
quard T bn?y
I :
pattern match and commitment goal expansion
condition test Df“ﬁ‘-r;.’r."':c r  (parllel execut:'un)
(sync.hraniza’tfon ) se| EC'LIL'H,Q
a. clause

25



a"ll’/Iii'fra?r::u_:’]r a

Meta

Reporl
/_EVE£ cowit'ﬂ’.. —\\ —-\* .ffr
., control(Rep,Ctl), execute(gsort(X,Y),Rep,Ctl),.
Task (S‘.FE-I’L) mele - call

LAY t\‘\'\\mﬁ /W/ﬁ\“

\gsort (Xs,Ys) :-truelgsort(Xs,Ys, [1). Oé}ed Level
ve

\gsort([], Ys0,Ys1) :- true | YsO = Ysi.
quort([Xle],YsU,YSS) :— true | part(Xs,X,S,L), §>
N gsort(S,Ys0, [X|Ys2]),

N . gsort(L,Ys2, Ys3) @prosessor(sz) .

. pragma for |oad dr.r?né\ ro

part([X|Xs],A,S,L0) :- A< X |
LO=[XIL1], part(Xs,A,S,L1).
part ([X|Xs],A,S0,L) :- A>=X |
SO=[X1S1], part(Xs,A,S1,L).

ars(Ll, X,8, LY :-true | S =[], L = [].
Y \\_\x\x\x\\\\xu NS OUANA LN

—~

ff LT T 7

26



KL1 -c

e Born parallel

—Fine grain execution model

~Medium or large grain on real execution

¢ Implicit data-flow synchronization

e Independency of load mapping specifi-

cation and logical program structure
— Pragma

e General purpose concurrent

programming language

27



KL1 implementation issues
(for PIM/p and Multi-PSI/V2)

1. Intra-cluster/processor:
KL1-b Abstract machine instruction set
Tagged word 8+32 bits
MRB 1ncremental GC
Copying GC

2. Inter-cluster/processor:
Message passing
Independent address space
WEC Lncremental GC
Distributed goal management
Distributed unification

.8



Multiple Reference Bit

1 bit flag in each pointer of structure or variables

Kernel Language

to represent multiple reference information.

Ir‘f'

on-the-fly garbage collection

destructive updation of array elements
managemet of out-going and in-coming pointers
in loosely-coupled multi-processors

(Multi-PSl,

PIM inter-cluster) )

single reference

O———

structure

29

multiple reference
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DI M O S (PIM Operating System)

Parallel operating system for
Multi-PST and PIM

Application programs

User languages

KB system
. Operating system: PIMOS
| S

. I
Kernel language: KL1

Hardware: PIM, Multi-PS]

——ta o — e}
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Development support

e PDSS: PIMOS development support system
—KL1 language processor on UNIX machines

—Pseudo-parallel execution

e Pseudo Multi-PSI
—Multi-PSI simulator on PSI-11
—Compatible execution environment with Multi-

PSI/V2

o Multi-PS1 CSP

——Multi-PST console processor system
—Debugging facilities for Multi-PSI/V?2

. PSL/VPIM

KL1 development environment for PIM

3%



Part 2.
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Part 2.

KL1 Programming, Examples and Per-

formance Measurements

. GHC and KL1 Programming ----------- 4l

. Concurrent Programming and Parallel
Processing —Research Themes and

an Approach—- e Iy

| Concurrent Programming and Paral-

lel Processing —Examples and Per-

formance Measurements— ----------- 63

Conclusion and Future Plan
40




0 GHC and KLL1 Programming

’ I Application programs ]

User languages

KB system
Operating system: PIMOS

L

Kernel language: KL1

Hardware: PIM, Multi-PSI

¢/



Concurrent Logic I_anguages and GHC

IC-PROLOG
Relational Language \
\ (OR—//)
PARLOG (83) Concu’rrerlt Prc:-log Pro °3
) Delta-
Prolog
P_PT<DS/
STRAND &8 Andorra
ANDOR CC Prolog
AN 1) |
¥ Pandora

e use guarded clauses
» feature don't-cave nondeterminism
. caPable of describfng concurrency

%2



Ovevrview of GHC

. Stjﬂ'tar:.‘ti'::a“lj ,

GHC = Horn clauses + Guards

? ?
Aiﬂnfi’chm — LDBTC + Contral
[ Kowalski]

. Semantica[hj ,

GHC = Logic Proﬂramming
+ Partial order on brndrnﬁs
+ Don’t-care nondeteyminism
cf. Prolog = Logic Progro.mmin_c)
+ Total order on
goals and clauses
+

%3



GHC : Syntax and Informal Semantics

. Program = a set of program clauses

. progrgm clause = conditional rewrite
rule of a goal

lat
Ee;)i?ti EZ additional (sub)goals
conditions to be spawned

rewritten

h .= 91,.,., sm,b1,...an

LA —

guard bod y

( h, 9i, bi : atomic formulas)

» Goal clause = initial multiset of goals

- b‘l:'*-: bn.

e Process = a multiset of 90{1[5

Unification ('t1=‘tg) — genevates
a substitution

Non-unification - reduced into other goals
Pnssiblg after observing
a substitution
g4



Logic. Pr'ogramming and GHC

« The purpose of computation — two aspects:
(a) whether :—G can be refuted
(b) b?nali‘nas (substitutions) generated in
the course of refutation
Theorem proving: (@) ~(b)
Programming lungua,ﬁe: (a) < (b) or (Cl) < (b)
<Prc:h'_33‘) <GHC>

X=5  Y=120
f

[ fact (X,Y) ] : Process

e HC introduces Partfo.l ordevy on bfndfngs

btj restricting dataflow caused by
unification.

cf. the basic idea of dataflow computation

45



The Factorial Program

@ fact(0,Y) := true ' Y=1.
@ fact(X,Y):- X>0 |
X'=X-1, fact(X,Y"), Y:=Y*X.

reads:

% If there is o gcm[ of the form

"F{:Lct( , )} and the first argument
's known to be i 0 },, then ...

pusitfve

* Goal = Process = Concurrent object

% Biﬂding = Information (constrain't)

4é



Con‘trolling Bindings Repfaces Se?ué‘:ncina
X=5

( fact(X,Y) )

ﬂ(seeins that X 70)

X=5 Y=120

)

(=x-1) (fact(x,¥)) (Yi=Yx)

- Since each 900[ has its own direction, we
need not serialize 9uals themse|ves.

&y



GHC as a Process Description Language.

. System of *—*Con_junctiue bndj joals
processes (dgnamicaﬂj uarﬂinﬂ)

« Process ~—Body goal

+ Process state<—(retained by the argu-
ments of subguals)

» Computation & +—=Observation (guard) and
Communication generation (body) of
br‘ndings (by unification)

. Synchroniza:tfond—--Suspensian nf unifica-
tion invoked in quards

. Rewri'te rule -'—I-Pro_g'ram c:[a.u.se.
of processes

filter (P, [X]Xs1],Ys0) 1"} reduction
Xmod P # 0 I condition
Ys0=[X]|Ys1], reducerd
filter(P, Xsl, Ys1). } Precesses

48



Generating Prime Numbers

Top Level:

go(Max) :- true |
primes (Max,Ps),
outconv(Ps,0s),
outstream(0s) .

Writing the Integer Stream:

outconv([X|[Xs1], 0s0) :- true |
0s0=[write(X) ,nl|0s1],
outconv(Xsl,0s1).

outconv([], 0s0) :- true
0s0=[].

Executing the Program

7- ghc go(300).

|
2
3
S

281

283

293

562 msec.

&9
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Prime Sequence Generator

primes (Max,Ps) :- true |

gen(2,Max,Ns) ,
sift (Ns,Ps).

gen(NO,Max,NsO) :- NO=<Max |
NsO=[NO|Ns1], N1:=NO+1,

gen (N1,Max,Ns1).

gen(NO,Max,Ns0O) :- NO >Max |

NeO=1[].

sift ([P|Xs1],Zs0) :- true |
Zs0=[P|Zs1], filter(P,Xs1,Ys),

sift(Ys,Zsl).

sift([], Zs0) :- true |

Zs0=[].

filter (P, [X|Xs1],Ys0)
YsO=[X]|Ys1],

filter(P,Xsi,Ys1).

filter (P, [X|Xsl1],Ys0)

filter(P,Xs1,Ys0).

filter (P, [], Ys0)
YsO=[].

50

= X mod P=\=0 |
= X mod P=:=0 |
:= true | ]



Displaging Prime Numbers

2
Max = 300 3 )
Ps Os out
primes outconv gﬁg stream

o — i m—— S p—

e

i I
(b2~ T,

[293]Ps ] f;:i_’re(z‘ﬁ), nl | 0s'**]

N |
(] ]

stream of stream of output commands
primes (cf. PD‘Sth.T'iFt Pr"m‘tt‘f‘)

51



Generating Fibonacci Numbers

Fagerly:

go :— true |

fib(Ns), outconv(Ns,0s), outstream(0s).
| 4

fib(Ns) 1~ true |
fib(1,0,Ns).
fib(N1,N2,Ns0) :- true |
N3:=N1+N2, y§p=[ﬂ8lﬂslj, fib(N2,N3,Ns1).

Lazily:

golazy :— true |

fiblazy(Ns), driver(Ns,IOs), instream(IOs).
A |

fiblazy(Ns) := true |
fiblazy(1,0,Ns).

fiblazy(N1,N2, [N3|Ns1]) :- true |
N3:=N1+N2, Fiblazy (N2,N3,Ns1).

fiblazy(_, _, [1) :— true | true.

c*rer(Ns ,I0s0) :— true |
I0s0=[read(X) |I0s1],
driver (Ns,I0s1,X).
driver(Ns0,I0s0,more) :— true |
NsO=[N|Ns1],
I10s0=[write(N),nl|I0s1],
driver(Nsi1,I0s1).
driver (Ns, IOs ,done) :- true | Ns=[], IO0s=[].

§£2

—
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History-Sensitive Objects—Stack

stack(Xs) :- true | stk(Xs,[]).

stk([push(T) [Xs1],Ls ) - true | stk(S, [T|Ls]).
stk([pop(T) [Xs1],[L|Ls1]) :- true | T=L, stk(Xs1,Lsl).
stk([pop(T) 1Xsi1l,[] ) :— true | T=error, stk(Xsi,[]).
stk(L], Ls ) :—= true | true.

?- s° .i(Xs), Xs=[push(6),push(4),pop(X),pop(Y¥),pop(Z)].

— X=4, Y=5, Z=error two-way communication
using incomplete messages

Merging Streams - many-to-one communication

merge ([A]Xs1],Ys, Zs) :- true |

Zs=[A|Zs1], merge(Xs1,Ys,Zs1).
merge (Xs, [AlYs1],Zs) :- true |

Zs=[A|Zs1], merge(Xs,Y¥s1,Zs1).
merge([], Ys, Zs) :- true | Zs=YVs.
merge (Xs, (1, Zs) :- true | Zs=Xs.

meyge mumm—ctock

$4



A KL1 brogram example :

I 11
Performans Meter

— To measure each processor work rate and display
in veal time (in every two seconds )

Mul-t:‘ '?SI//UE

built-in
processes

{d s p‘&ﬂ
S,

-—'-"r

-

timer.precess

output_process .

r{.‘_‘\ ~~-Timer
v Liwey control

highaﬁt prfnrityJTwﬁ '

medium priority

lowest prior ty

@
Autput
contyrol

Im Evpy

PE1

FE2

| §atevery
ot
A

e |

+

PE¢3

work rote
(%)
FE #,

{63, £0}

e

LSEY
processes

idling-process

id lfﬂj_Prnms

idlmg. process

| fCounter.
L\ process

i every
(&

L

trigge
NP

idling- process

Numbers encircled in the figure covrespond 1o

numbers m the source list.

Pror:.ass structure of the ”Perhrmaﬂs Mater"

£§



" PERAFORMANCE. METER " —-- PROCESS DESCRIPTIONS --

idling process @ Continues to send "trigger” messages to the counter_process
(in every 10.2 micro seconds) as long as it can run. Runs only when
no runnable user processes. A lowast priority process.

counter_process : Suspended until a message arrives.
Counts up the counter value keeping by itself whem "trigger" message
arrives, then suspended again.

Caloolates sum of idling process run time (ms) when “clock" message
arrives, with dividing the counter value by 28. User process run time
is caloulated by subtracting the idling process run time from

"clock" interval (ms). PE work rate can be attained as below.

Effective work rate())) =
{ {clock interval(ms) - counter value / 98)
i clock intervalims) F = 100

Reports "{FE_mmber, Work_rate}' to the oc_precess through the merge
processes, clears the counter, then suspended again,

- Je process @ Merges two input streams to an output stream.

oc_process (output control process) : Constructs a fd~element vector with
recelving cosecutive sixty four "{FE _number, Work_rate}" pairs.

{80, 50, 75, e . B0}
wvork rate of PE0 FPE1  PE2 PES3

Sends the vector to the output_process when completed.
Suspended when no data comes.,

te_process (timer comtrel procesc)
Sends “{on-after, Interval=.000(ms), Timing}" to the timer_process,
then waits (suspended) until "Timing" will be instanciated to
"just_now". GSends "clock" te all the counter processes when 'Timing"
becomes "just_now". Then, sends the same message to the timer_process
again (starting the timer again), and waits.

The timer_process is started with receiving the "{on-after,

Interval=2000(ms), Timing}" message. After "Interval" time, the
timer process instantiates 'Timing" with a wvalue, "just_now'.

56



TUEAdES D UNGD AN FSERa I hu fwl Loy iy § I8 TR usanaad
Y unos Ao ] doesasesdil puazaiug f qunooT men T wea e i yet Llvancwam
loveays yamlayrg 15hahzem
T - JUNROY = JUMDD AEH

| #mr3 -0 [[waZaju) *jenod wvsags jiodoy wvas ﬁtlm—-_.l._.h.v!v.- WNgTasElp ssasoad
1] = weaaye 3saday

| #n13 <4 1Tfgfewarys giodey’ justIngiIie|p sSasoxd @

‘N2 | anal -0 (2] Y iabiaw ‘lroqaaa maN Gdt Junes mepdaveags andyng” Ipo ey ) seeccad Tas
A=E _ snii -: [g7a'[}labiaw - JUNGF = JUNGD mEE
iLzaE W ebraw’ (a7 |Al=g | #n2y <0 A2 (LA|A] xlebiow LI aas T Aan AT 30RO g T0T 0@ ) JUALE TE IO 0es 18 E
lpgtaciwlabaaw’ [az|Wf=2 [ @an33 = d24Rf|1u|¥]) 1akTas @ | & =%= 3uma3
-t L0334 Junol wea TyE yndang | Ips” @Y I wiwi gaop'ou =4]] ) sse0o1d oo
Claeysen” men 3454 P IpaTED ‘euer1s 3reday ) seesaad oo
g Io3es A ) 01084 may
lapaTegireraas  Aepdeipl | = meea3s andang
‘tapa srlssascad bupppy C[Ips sR[IabbyIy)] - weasie sebbyal | ®nag - laejaeatad g eeeays anding fewarys ysodey ) sesasad oo
| #na3 -: (mwarys abbyIrissacord BUTTRY @ ‘lzoinan ‘34 94 wea s and 30 ceesrisT jiodey ) sascoad o
‘ldd T 10%0as ) J0aes  mey
| #n1y a1 (g4 wwssix gnding ‘wearis yzodayglToriwanT yndyng

CIRAIGIUT (DO s (RRTY 2aXE = TRAJAIUTIF =i ajwd” aIdam
| TEATEYUEL oy AETI O@HE - (BINE YIOMYTPASSIU]OETY UM IRYRI 4 I0A ipeao3ul ‘Ips AL 1po” BELBuTeyL ) ewsocad o3
‘pow BRI NEOH L_.._u.“...w.h___u___:._-_..._.___ BINI IR R NG| = EVITIE Jemfl
| teareiup -¢ ampl ooKg - (83T JIONTRATEIU] BETY 2aNElaneIyion C[apaTBRL]¥3013| = wwaris GUTOTL
@3y - {[EATEIUT TWVSIIE Jaw (L weads bujmyl taou 3enl ) ssaooad oy
ATRAtaju] fapd wwsdgs BuymplEuterlizssnozd oy
lapa| fBute il wadajul ‘Ia3 ] ui)] = weslls Jamil

leATRU g tueRIyE g Iodey | #nEy -0 dwivedis buiEiLliweains IsepLf[esdagu] llodjues Jewty
..—___._:ﬂ_ul.._..a_z...Mﬂ...—lum.u..r._..__nuuuulm_:._"l._..ﬁulhyubu_-l-u_u_....E_u

YL+ JUNGD e JATGS AGH

| #niy -: (Teanazuy‘ad weaiis yiodad
‘qunal’ [apa shas|sabbyas ) ‘weszys Butwyriesascad Jajupaa (ie0p s DA IO LAAR( [uaIaquT *ag
(wazaqul ag’aps oy ' ereags 1abbjiL ' 1pa ollssasord Tajunco ‘wrails jIodad wear e bujE]LecTRg s TR seacold
lIpS SE]I@ART qIcmted] ] = wesIge saodoy RGNy fa 1A FI0TIdE 0 fwreE e qilang  wea s 3aoday } [erjues " yndyna
e KioR fRadagul s AT anTy oAy 1wl yanm lrnor s bAaprorndfimear T huTE] L eed s 0L [RAISJU] ) TOITU0S T TRET
"BE S GEN0D =1 e AqTwwiy osag Bra - {measgs indIng eReiie JREL [vATeIN] Y Ed | Tejae souenIo] Tad
| wnag - lgeasagultad’ewaiis 3icdaed

‘qbmodfweaals aebbpac’ [apa sL|ysor3] jesascad 3ejunos @

USTINERG WN-3TIRg ¥ sv pomnssw 4 riwearie ynding }sssaord ndino
WOTIoENnG URLITTU] ¥ Bv pasinsse ) .._ldlh.ril.ﬁﬂ‘._h_-uliﬂuhnlu!lﬂu.

(gt 1Ay royadgluvenss 1abhyal)esasord bulpy AuTaIe ynd Ing e eayE JeafLl 0007 py lXa30w aouserejIed -

LEEOrt e bl a0 2dE TeaTe LT Tag Tewa 138 Inday
T tueway Brut,n.n._.Mr fuwerls bufetl)sssoord Iajgmos

" BERRARRANRERRRNAARANANAAS T OT WAGT ‘THRL E A UAFITAA  LRRERRTAREAALANL
#nag -0 [Tesdasu] e Eeer)s Jicdey ‘uwerys butelLjaInseas @

BALRRERRRRRRA AL T03Em sodowdogand w3 jo wvibord IDINCE  LRRARARAYEANALAAL




0 Concurrent Programing and
Parallel Processing

— Research Themes and an Approach —

——

. Application programs

User languages

] KB system
 Operating system: PIMOS

Kernel language: KL1

Hardware: PIM, Multi-PSI

§€



Cultivate the Farallel Computing
- Research Themes ~

User
A 0 .
Concurrent ]EO”C”W”TC algor '“{ms
Programming ° Frogramming paradigms
User languages
> | oad distribution
Paralle > Communication localizatio
Processing mmunication locali
Kerne! language
Y Pamllel OS
System Parallel hardware

Everything new !

I

Farallel computing New culture

on large scale MIMD of computing

machines
£9



— Approach —

* Preparation of R & D tools

o« Joint R& D teams
Apph‘mﬁ&fon beople

System builders

Application 1. Appli. 2 Appli. T

() r"'__—_.-"\f JOI“H.‘['. RRD

Application Appli. Appl. teams

people people |+ * + | peoble

+
e opie e
. itai S—’ Jff/ Generulization

feed- L team
back

Concurrent programming

Library of concurrent algorithms
and programming techniques

Pavalle| processing

Loa.d allocation /s‘cheduh'ng sc.h.e.mes‘
fed back to_ language , OS, Compiler ard architect



~Examples -

¥

- Development of CONnCurrent a

- Experimentation of IOCLd distri

[ -Different type of problems

- Different type of program structures
. and dynamic characteristics

gorithms

oution Schemes

The four experimental panllel application programs

I. PAX : a natural language parser

2.. Tsume-go * & board game

3. Paddng piece Puzzle ( Pentomino)

4. Shortest path finding problem

6 [



— Designing Concurrency
and Farallelism—

A

* (Concurrent a(gori thm
Concurrency,

- Keeping same time-complexity
with the best sequentia| algorithm
— Less centralized /Much concurrency

— Communication locality in algorithm

o Speculative computation
= Possibility 4 Algorithm

| — Amount < Load mapping
\ /schedul ng

e |_oad distribution

— Lead balance

Dynamic allocation
on-demmand, multi-level

Static allocation
-P ‘ multiple mapping with small
aral lE| sm granularity

— Communication locality in

; K
V . '20 ﬂ.d mo-PP |'ﬁ-3 -Jd ff,"l;":’"i'!"lu,i‘.:"‘.-ﬁ\.




1 Concurrent progmming and

Parallel Processi ng

_“ Examples and Performance —

» Application programs

User languages

/
| KB system
Operating system: PIMOS /

L
Kernel language: KL1

Hardware: PIM, Multi-PS|

£3



cf. Appendix. A

1. PAX

— Bottom-up all solution search
— Global comunication among processes

= | oad allocation focused on communication Jocalit

2. Tsume-go
— Qame tree search
= Parallel alpha- beta p|um"n.g a|gorithm

= Dynamic /static load allocation

3. Packing piece puzzle
— “OR- paralle! * all solution search
Independent search awong descendant branchs

= Dynam{c; /s‘tntm‘r; load allocation

4. Shortest path finding problem
— Best solution search
= Process oriented algorithm
= Static allocation with multi ple mapping
b4
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— Performance —

~ [500~

Q)

&

S

£

“— O
- IWU _-j
S By
L

o a
3 V)
9-'2 i

Q) L

0 T + T— Lnr al

148 16

To. of processors

Packing piece puzzle (10pieces, 5x8 box)

— V1. FGCS (first) versiom  static allocation

— V2 : Improved version, dr'mmfc. allocation

— V3 Most recent version, dynamic allocation
(2-level)

X Best execution time = 5.3 sec
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Tuning the Granularity of Subtasks

<= Distribution Level

Search Depth

Insufficient Number
of Subtasks

e »
oo
N " 5

O
et
O
| -
@Q
-
@
Q)]
=
w
g
0
3
W

=
9]
Y]
e
O
>3
)]

94 ¢ o

Good Load Balance

67

Search Tree

Subtask Supply
Bottleneck
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| Super-Subtask Generator

1st level

(Subtask Generator)
Subtasks

| Super-Subtasks
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Speed
pese ap multiple

20 20 <4 mnppijq_ **" }
b folds i

mapping

i
T T T T T L]

T T
1 4 9 16 25 36 . 49 64
Number of processors £ ﬂ

Shortest path finding (40,000 nodes)

* Simple mapping :
Yr Speed up with M processors

* Multiple mapping: 2~3 times faster

« T0times speed improvement from the
first version (improvement of algorithm)

X Best exec.ution%ime = 3 sec
prd



shortest path finding

prcessor work rate (in case of iﬁrEs)

(%) (%)
100 - 100 -
2s 1s
(simple)
50 50-

2m
4 x4 8x8
0 [Liritl plidd [1111]

Cmultiple, 16-fold ) (nm'.tfp!e, 64-fold )

E Communication
) Effective work

- ¥3



shortest path finding

S peculative com putations

Number of
messages
( x 10,000 )
40 1
2mixy
Is
/9___4__,‘—__._' om8x8g

ideal _ :
no speculative work

149 16 25 36 49 64
Number of PEs

g ¢



Performance figures for Tsume-go

Problem 1.
Sequential 1696 moves
15 sec
Scheduling @& | Scheduling b
1696 moves | 7901 moves
Parallel
5.2 times 2.5 times
speed up speed up
Problem Z.
: 2125 moves
Seetil] #1500 St
Scheduling Q. | Scheduling b
Para||e| 29269 moves | 48979 moves
70 sec 31 sec
('6 PES) 3.0 times 8.8 times
speedup speed up

Problem 1 1 The best wove is the leftmost branch .
'PWHLMZ . The best move i a far risl\‘t eru:k

g&



Speed up in PAX

Load allocation methed| 1PE |16 PEs
method 1 1 |0.45
method 2 1 | 2.4
method 3 1 3.0 x

Asentence with 106 words, 460 solutions

* Best executiontime = |5 sec

g6



Send_throw ( p{atom,EXREF,EXREF) ) [ 65 bytes ]
85usec (419 steps)

OF NNNNNNNNN
[ 65 bytes ]

Receive_throw ( p(atom,EXREF,EXREF))
(637 steps)

o IR

[ 14 bytes ]
(117 steps )

Send_read (EXREF)

© NN 25 1 sec

Receive_read (EXREF)

@ IR 354 sec

( [atom | EXREF]) [ 24 bytes ]
42 p sec (208 steps)

[ 14 byles )
(175 steps)

Send_answer_value

CENNNY
Receive_answer_value [ 24 bytes ]
BOu sec (397 steps)

2 NN\

3 } } ! i ;
80 100 120 140 (msec)

20 40 60
External pointer

() juum B US EXREF
Copy_ta_RPKB

Basic message handling routines

Ch) [—— 258
.
(L) [ 29 us [ ] Encode/decode KL1 term, efc..
without cache miss penalty

@) append LI
(h) pentomino LT » | 1. ot of 1 reduction

(L) bestpath LI
Figure 3: Message Handling Cost

34 KUPS is used for l:e;s;:pn:th instead ot 23K
g

( [atom | EXREF] )




0 (Conclusion and Future Plan

Application programs

User languages

KB system
Opecrating system: PIMOS

L ]

Kernel language: KL1

Hardware: PIM, Multi-PSlI

2]



— Development of sample programs —

Development of first versions before FGLS 88

prog ram programmers size (source lines)
PAX 3 g K
Tsume-go 2 25K
Facking piece punle 2 2.5K
Best path problem 1 1L.5K

Deuelapment pEr‘n'acl 8/m ~ | '/E . 1988

— Experiences ——
-~ Almost no Synchrom’zation /:ommum'cat.‘an
bugs
— KL1is usable .

Suitable for process oriented programs
Suitable for experimentation on load distributior

— Priority control (with alot of levels) is valuable,

&9



Summary

R & D of parallel inference systems

1985
1986

1988

1990

1992

—GHC
Multi-PS1/V1, FGHC 1K LIPSx6PE(FGHC)

—Small sample programs
Multi-PSI/VZ. KL1 150K LIPS x64PE(KL1)

2~ 5 M UPS
—PIMOS/V1, Demonstration programs
PIM/p 600K LIPS x128PE(KL1)

[0~ 20M LIPS

—PIMOS/V2, Application programs
Final PIM system [o00 PE {00 M LIPS
—Final PIMOS, Large application programs

Continuous research on

e Concurrent programming and Paraliel

processing for large scale, loosely coupled
MIMD machines

Q0



Future Plan

* Development of PIM/p system
(completed in [$70)

* Also final PIM System. — 5Gmaching
* Improvement of PIMOS

* Continuous research on
Concurrent programming and
Load distribution/” Scheduling schemes

* More practical and larger application
prog rams

LST CAD
Natural language processing

Go game solver ({ull system)

heorem prover

Expert systems
Genetic information pro cessing , etc.



Appendix A.

Parallel Software Development System

and Application Programs



Titlel Parallel Software Development System
Research and development of parallel operating systems, parallel algorithn
Purpose | cesign and load distribution methods on an nnplementation of a concurrent
logic programming language on a parallel processor
e The Multi-PSI connecting up to 64 CPUs of the sequential inference
marhine (P51)
o A high performance distributed language iinplementation for a conenr-
Outline reat logic programiming language (IWL1)
& = A parallel operating systemn (PIMOS) for rescarch and development of
Features parallel soltware
e Used to extend and optimize the kLI language processor and the PIMOS
for parallel inference machines [ PIMs)
Parallel software development system
[C Ré&D of parallel software 1\
in KL1
4
System
Configu- ]
Parallel operating system
ration PIMOS
Ihstributed language processor
for logic programmuing langugage
KL1
Parallel processor
Multi-PSI

A-1-1




Title

Hardware for Parallel Software Development — Multi-PSI

Purpose

The Multi-PS! hardware offers high processing power and useful functions
for (1) research and development of parallel software and distributed processing

mechanisms, and (2} designing PIM architecture.

Qutline
&

Features

The CPU and memory of the compact version of the sequential inference
machine, PSI. are used as the processing elements (PEs) of the Multi-PSLL
PEs are connecled to each other to form a two-dimensional mesh network by a
specially designed message switching and automatic routing network controller.
The system can he configured with up to 64 PEs in units of eight PEs.

The compact version of the ISl the PSI-TI, is used as the front-end pro-
cessor (FEP). Up to four front-end processors can be connected to the network
to perform 1/O functions for the Multi-PSI system.

Tag architecture :  8-bit tag + 32-bit data

PF contral :  Horizontal microprogram control
Cycle time ;200 nsec (whole system synchronized)
Main miemory : 80 MB (16 MW)/PE max.

Network channel : 5 MB/s
Devices : 8K, 20K-gate CMOS gate array L5I, and others

System
Configu-

ration

TOXY b vl Tadkyn
Front-end processor

(PSI-m) FrET7—7WEER EXToE,v

Hetwork controller Processing &leaent

/) ff ;; .-r’ -

P A . A
- L - ar
~ /,f -~ /
H - 8 PEs
,—l/ "

/J / L/

8 PEs
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Processing element (PE)

The wide (53-bit} micre instruction architecture of PEs allows flexible ex-
periments of KL1 language implementation. The tagged architecture enables
efficient execution of logic programming languages. It is especially suitable
for high level abstract machine instructions because tag manipulation and
multi-way branching on tag values can be performed in parallel with an ALU

operation.

Network controller

A PE communicates with four adjacent nodes through bidirectional chan-
nels, each nine bits wide. Messages received are stored in the Read buffer for
the PE in the node, or forwarded to another node through the channel chosen
by lacking up the Path table with the destination address of the message.

A buffer of 45 bytes for each output channel is used for busy waiting syn-
chronization with the adjacent node.

When a complete message is stored in the Read buffer, the PE of the
node is notified of it (by a NWINT signal}, and the PE will process the message
as early as convenient for its internal processing.

Message sending from the PE is initiated automatically when a complete
message is stored in the Write buffer of the network controller.

Network controller

. Path controller
Ch.0 (in) Ch. 0 (out)
e e Y E PP —t | O-Buf. 0| ===========m==s
Ch.1 (in) Path Ch. 1 {out)
=============:========} — u—EuL 1 :============}
table
th. 2 {in} - Ch. 2 {out)
f2 e EZFESESE) = | (=Buf. 2| ssszssssz=ss=z=z)
Ch.3 (in) Ch. 3 {out)
= ] =t | (=Bijf, 3 | sszsssssssces=e)
{48byte x4} Ch.0=~3 : Chanel 0~3
L O-But. : Output buffer
(4Kbyte) | (4kbyte) W-Buf. : Write buffer
r l l R-Buf. : Read buffer
N INT _
N¥INT : Network interrupt
signal
PE
Figure. Network controller and Processing element (PE)
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Hardware implementation

A PE is implemented on three printed circuit boards (PCBs) with nine
8h-gate CMOS gate array LSIs. The network controller is implemented on
one PCB using two 20K-gate CMOS gate arrays.

One I'E can have up to 80M bytes of main memory on four PCBs, each of
which contains 20M bytes, using 1M bit dynamic RAMs.

One cabinet of the Multi-PSI contains eight nodes, and one system ean
have up to 64 nodes by connecting eight such cabinets. The entire svstem is
synchronized by a single clock distributed to all cabinets.

Up to four front-end processors (FEPs) can be connected to the network
ior 1/0. One of them, the master FEP, also performs console processor {C5P)
(unctions, such as system start-up and diagnosis, through a specially devised

maintenance path,

N B |

— NWe NG  |—
.| PB ;.| PE
Front-end processar (PSS 1 -1} ! :
Communication : :
PS 1 —1II | FEN¥C -1  NWC NWC —
network : b
KPC .. | FE .. | PE
Soihntenance paty T e een
FE : Processing ealement
NWC : Network controller
FEN¥C : Front-end network controller
MPC : Maintenance path controller

Figere., Multi-PS] and its front-end processor
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Title

Distributed KL1 Implementation

The distributed KLI implementation manages KL processes

/
_,r’Dif“O" O
O u

Purpose and data distribuled over the network-connected processors of the

Multi-PS1 and executes K11 programs efficiently.

IvL1 programs are compiled by an optimizing compiler into ab

stract machine instructions, which are executed by the microcode

(150 KLIPS (Kilo Logical Inferences Per Second) per processor).
Cutline . ) . . . )

The distributed KL1 implementation is designed to reduce the

& . . .

amount of inter-processor communication by utilizing the single-
Features

assignment property of KLI and by various other techuiques. In-

novative inira- and inter-processor garbage collection schenmes are

implemented.

Oy
processor
- i
| I data
O~ 70+ zb/_‘!j

System J process ’
Configu-
ration

Biitho ro+a
migrating process

I
\
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1 KL1

KL1 is a stream AND-paralle! logic programming language. In stream AND-
parallelism, concurrently executed processes that share data constitute the pro-
cess structure in Lthe form of cavse-consequence chains. Unlike OR-parallelism
and independent AND-parallelism, in which concurrently running processes do
not communicate with each other, programs originally written for sequential
machines cannot be readily executed in a stream AND-parallel manner, but

complex cooperative problem solving can be best modeled in stream AND-

parallelism.

2 Multi-PSI Architecture

There are two categories in parallel computer architectures: shared and non-
shared memory architectures. In the shared memory architecture, processors
communicate with each other by writing and reading shared memaory; in the
non-shared memory architecture; they communicate by sending and receiving
messages over the communication channels. The shared memory architecture
has the advantage of relatively low communication overhead, but the maxi-
mum number of processors is severely limited because of the memory access
hottieneck. The advantage of non-shared memory architecture is its scala-
bility. It was chosen for the Multi-PSI, since Lthe machine is to serve as an
experimental machine for the Parallel Inference Machine (PIM) project which
aims at building a parallel machine with up to 1,000 processors. Programs on
a non-shared memory machine, however, need to he designed with the problem

of high communication overhead in mind.
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3 Distributed KL1 Implementation

The task of KL1 implementation is to execute KL1 programs efficiently on
the Multi-PSI. Algorithms have been developed to keep the amount of inter-
processor communication as low as possible. Since the rate of memory con-
sumption in KI.] programs is high, new techniques are employed in garbage
collection (GC), reclamation of memory area that is no longer used. One is
the Multiple Reference Bit (MRB) techuique that uses one bit pointer tags lo
recognize reclaimable data in a local processor, and another is the Weighted
Export Counting (WEC) technique suited for inter-processor incremental GC.
The implementation provides mctaprogra.rnmiﬁg capabilities to support the
operating system. They include the “shoen” facility — core of resource and
task management, priority execution, and user-programmable load distribu-

tion mechanism.

A-3-3



Title

Parallel Inference Machine Operating System: PIMOS

Purpose

The PIMOS aims at providing operating system facilities through which
application programs can easily and fully wtihze the processing power of the
parallel inference machines.

Cutline
&

Features

System
Conf igu-

ration

Described in KL1: The PIMQOS is completely described in the concurrent
logic programming language KL1. Making use of the meta-programming
features of the KL1 language, the design of the PIMOS is independent of
various hardware parameters, such as the number of available processors

in the system.

Single OS on multiple processors: The PIMOS is not an aggregate of in-
dependent operating systems on each processor, but one single integrated
operaling system. However, not only the application programs but also
various parts of the PIMOS are executed on multiple processors in par-
allel. Computation and communication bottlenecks due to information
centralization are avoided by distributing management information close
to the application programn tasks.

Providing basic system functions: The PIMOS provides basic functions
required in operating systemns, such as management of execution, resource
allocation and inpul/outputl devices. Additional services are planned.

All the demonstration programs shown on the Multi-PSI systems are operated
under the supervision of the PIMOS.

Application PIMOS
Parallel program management

_______ tasks - ;:’:“l:,-h' pProcesses

To I/0 devices

inference
machine
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The functions of the PIMOS are demonstrated by operating the application
prograrms in their demonstrations.

Stream communication and filters

All communication between the PIMOS and application programs is made
through streams, which is one of the most advantageous features of the AND-
parallel logic programming languages. Filfers inserted to such streams handle
abnormal termination of application programs and protect the operating sys-

tem from failures in application programs.

Distributed processing by the resource tree

Fach application program task or input/output device used in such tasks
has a PIMOS management process associated with it. The processes in this
case are quite light-weight ones provided by the microcode of the KLI lan-
guage processor, which correspond ta ebjects in object-oriented programming
languages.

In the PIMOS, tasks can be created inside a task, which, as a whole, forms
a tree structure. Thus, the corresponding PIMOS management processes also
form a tree structure. This tree is called the resource tree. All the PIMOS
management information is disiributed to the management processes, which
are the nodes of this resource tree.

The management process is allocated on the processor where the corre-
sponding application program task is running (when the task uses multiple
processors, the processor on which the request was made to create a new task
or to open an 1/O device). This distribution of management processes also
distributes the management overhead to multiple processors. Also, by placing
management information near the application program tasks, communication
congestion to a single processor, as expected when all the information is cen-
tralized in a single table, is avoided and the total amount of inter-processor

communication is minimized.
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Shell

Fxecution of an application programs supervised by the PIMOS can be
initiated by invoking it from the command interpreter (shell). Based on the
functions equipped by the PIMOS, the shell provides the following features for

the user.

+ Starting, suspending, restarting and aborting the execution of jobs
¢ Controlling foreground and background jobs

Defining the standard input/output of johs

Inter-task communication via pipes

s Controlling resource allocation o jobs
» Handling exceptions in apphcation programs

Utility programs invoked from the shell provide monitoring of the status of
task execution and allocation of resources such as input/output devices.

Input and ecutput devices

The PIMOS currently provides functions to access high-level 1/O features
of the operating system (SIMPOS) on the front-end processor (PSI-I1), such as
files and display windows, from KL1 programs. Various display facilities used
in demonstration programs arc operating on the front-end processor, controlled
by KL1 programs on the Multi-PSI through the standard interface provided
by the PIMOS.

Further details of the design of the PIMOS are given in the following paper,
presented at the session ICOT-851 (3:30 p.m., Wednesday, Nov. 30th).

“Overview of the Parallel Inference Machine Operating System”
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Title

Paralle] Software Development Environment on PSI-IT: PIMOS-S

The PIMOS-5 provides a parallel sofiware development envizonment gual-

Purpose itatively cquivalent to the Multi-PSI system on much less costly PSI-1 work-
stations.

Compatibility: The language and operating svstem features provided are
fully compatible with the Multi-PS1 system. Parallel software developed
on PSI-11 workstations using PIMO5.5 can be executed on the Multi-PST
without any change.

tutline Pseudﬂ-purallelisun P:ut.'::::‘:iing elements of the Multi- P'SI rum:ing in pai-
allel are simulated by pseudo-parallel processes,
&
, High performance: The same microcode as vsed in the Multi PS1 system
Features . - s . . .
15 ulilized. Thus, Lthe provided performance s equivalent to its one pro-
cessing element.

Decent debugging environment: A debugging environment gualitatively
equivalent to the Multi-PSI system is provided. [4 1s even better in
some aspects; e.g., non-determinacy due to parallel execution can he
eliminated by applving pseudo-random scheduling.

Communication
buffer PIMOS-S
(Pseudo-parallel
execution

1 | L | I J

Conf igu- I I i i I 1

I i i I L t

ration : ! . | : !
| |

PE PE PE iRy

execution)

9, é 4 —

Communication network hardware
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Title

Parallel Software Research

Purpose

Tao develop novel software technology essential for making large scale network-
connected parallel machines work efficiently for various apphcation fields.

Cutline
&

Features

Almost every software technology in programming and execution of application
programs must be reconstructed for parallel processing to aclieve a satisfactory
execution efficiency of large scale parallel machines. Especially those listed

below are essential.

o To develop algorithms with much parallelismm without increasing the
amount of required computation

e To accumulate programming styles or paradigms which give guidelines
to parallel programming for various types of large scale problems

e To develop load distribution methods for balanced work load and high
communication locality

The research has just started by implementing parallel programs for several
types of applications (e.g. the programs demonstrated). The results of the
research will be fed back to improve the functions of the operating system and

the language processor.

System
Configu-

ration

EFv 7oz TOESRE

Important issues in parallel software

[C R R
Applications

~

((#F 7=y Xa
< Parallel algorithms
’ EFFOT LR
Programming paradigms
CAMSNAR EEEOBR{EAR

Laod distribution method and
| communication locality control

1

FFEE 7O S 4L
Parallel application programs

EREHEA R L —F4 2P AF 4
Parallel operating system
IEAE R 1

Language processor NIRRT 4 — Feiz 2
Technology feed back

TN FPII—= T
Multi-PSI hardware
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Featuras
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— Performance MNeter

o evaluate load distribution of user programs through real time visual display
v

Ol Processor wWork Wads.

Work rate of each proc

time. Display interval is Lwo

The measurciient program is

System
Configu-

retion

The program is constructed of neasuring processes allocated to all processars
and a management process which gathers the measurement results. The results
are packed and sent to a display device on the front-end processor via the
operating system, PIMOS.

work rale

<

processor
number

m =
B
=

s

'E'r;éé:r :

= =l =R

Display example of the Performance meter
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Parallel Application Program (1):

Title
Natural Langnage Parser

The natural language processing system originally used in IJL’-ALS =

implemented in paralle] using layered stream niethod. A load dmmhm.mn

pose method is studied and evaluated for it in order to realize a very fas!
natural language parser.

Outline The PAX analyzes natural language sentences, makes parse
trees, and displays them. Parsing is performed by bottom-up, pars-
ing messages between processes which correspond to each node of
parse tree,

FParsing program The parsing program is generated from definite clause

Outline grammar by a translatar, which adds load distribution code auto-

& matically.

Features Problem characteristics All solutions are searched in the parsing al-
gonthm. However, the result is not always unique because of the
ambiguity of grammar, particularly in natural language.

Programming paradigm The layered stream mefhod, a broadly appli-
cable paradigm for all solution search problems, is used.

Load distribution A load allocation which mininizes inter-PE com-
munication is examined.

prep

System

Configu=-

ration

[failing] [student]

(ae ) (p) :7mE —) A=

BiFALBR{LEnzA ) —ABE
Parse tree and layered stream ecommunication
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Configuration

The PAX is a natural language processing system. It analyzes natural language
sentences, makes parse trees, and displays them in the window. This system is
divided into three parts, the input part of sentences, the analysis part (parser), and
the output part of results (parse trees).

The parser is the main part of this system and only this part runs on the Multi-
PSIin parallel. The parsing program is generated [rom definite clause grammar by
a translator.

Both the input program and the output program are wrilten in ESP and run on

the front end processor PSI-11 machine.

Problem characteristics

For parsing, a bottom-up breadth-first algorithm called left-corner parsing is used.
Generally, all solutions are searched in the parsing algorithm. However, the result
1s not always unique because of the ambiguity of grammar, particularly in natural
language.

In general, we use the following way to write all solution search programs in
languages that do not support the backtracking mechanism, such as KL1. First, we
gather all solutions as a set, then the set is sieved gradually to select the adequate
ones. For the PAX, the layered stream method, a broadly applicable paradigm for
all solution search problems, is used. .

Algorithm

The PAX analyzes the input sentence by using the bottom-up parsing method with
generaling processes which correspond to each node of the parse tree, based on each
word. The analysis progresses by messages passing between two adjacent processes
through the stream. Each message contains partial results (partial parse trees).
We explain it by using an example shown in the figure of first page. This example
analyzes the sentence “failing student looked hard” with the following grammar.

s -=> np, Vp. adj --> [failing].
np --> adj, noun. adj --» [hard].
np --> prep, noun. prep ==> [failing].
vp  --> verb, adj. adv =--> [hard].
vp  --> verb, adv. verb --> [looked].

noun --* [student].

A -8-2
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First, the input words generate processes with streams which connect two adja-

cent words.
This picture is a snapshot of parsing. The noun phrase (np) and verb phrase

(vp) processes have already been made, and each np process (there are iwo)} sends
partial parse trees that it made to vp processes through the stream. The partial

parse trees are as follows:

np np

prep noun adj noun

|

Hailing| [student] [failing] [student]

There are two np and vp processes, because there are two canditates for failing :
adjective (adj) and preposition {prep). hard also has two candidates, adjective (adj)

and adverb (adv).
Communication between an np process and a vp process uses the layered stream

that was connected when processes were generated from the words.

1. Each np process sends its partial parse trees through the stream between
student and locked.

2. Both the adj process and adv process are adjacent to the verb process and are
connected with the stream between looked and hard, When they communicate
with each other, the verb process puts the stream connecting student and looked

into the message.

3. On receiving messages from the verb process, the adj process and adv process
generate the vp process above them. The stream between student and looked
are got from the message and given Lo the up processes,

4. Each vp process receives the stream between student and looked, and can re-
ceive the message from the np process through it.

In this way, the np process communicates with the vp process. Facli vp process
receives two partial trees fromn the np processes, and constructs ils trees and gen-
erales the last node senfence. (This completes parsing.) It means thal four parse

trees are made.
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Load Balancing
Two kinds of parallel execution are applicable to the PAX:

1. Making adjacent nodes can be done in parallel. In the above example, the
processes 1o make an np process and a wp process can be executed in parallel.

2. When there are two or more node candidates, each process corresponding
to node can be executed in parallel. In the above example, there are two
candidates for failing (prep and adj), and they can be executed in parallel,

If all the processes meationed above are distributed to different processors, too
much inter-processor communication occurs.Because the messages from some can-
didates are merged into one stream, which is sent some candidates again. That is

N to one to M communication occurs.
In order to minimize inter-processor communication, we use following load bal-
ancing method. Processes that receive a message from the same stream are executed

on the same processor.
First, processes that correspond to each word are allocated to different proces-

sors. A process corresponding to a word puts its processor number into the head
of a stream which connects the process and a process of next word. The process
of next word reads this stream and moves to the processor Lhat is designated by
the processor number. In this way, inter-processor communicalion decreases to N

Lo one.

Demonstration

To demonstrate the PAX, we analyze some sentences as follows. The PAX analyzes
the sentences according to the grammar that appears in “Oxford Advanced Learner's

Dictionary of Current English”.

¢ Display the resuit of analysis (parse trees).

Show the load balancing during analysis by using the performance meter.

* Show the change of processing time and load balancing by analyzing sentences
of different length.

* Analyze two or more sentences in parallel.

Show.the speed up ratio by parallel execution. Processing time for a sentence
is measured twice, changing the number of processors used.

-

Compare the processing time with that of a sequential processing system.
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Title

Parallel Application Program (2): Tsumego Solver

4 parallel algorithm, programming paradigm and load distribution

Purpose nethad for the game tree search problem are studied and
evaluated implementing a tsumego solver.
The sclution (life, death or "ko') is ecalculated for a given
tsumego problem and the first move is made.
Characteristics of the problem: Game tree searech {(to leaf nodes)
Content Algorithm: The alpha-beta pruning method is modified for parallel
execution. The search tree is expanded in parallel
& Priority is attached to each sub-tree controlling the
Feature execution order.
Load distribution: Large grain processes are allecated at random
in one method and allocated to idle processors in
the other.
S M polor—-Lsk
«Tumego problam « (ame tres in the
& Peoplin 0 ik
Parallel alpha-beta
Pruning
Systen
Configu-
e L R AELHREBLCRES
ration black's burn s e
EaME § € RIT
+LYoeiR
Each process executes
sequential alpha-bats
B pruaing.
Sob-problem
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1 Overview

A parallel algorithm, scheduling and load distribution method for the game tree
search problem are studied. The alpha-beta pruning method is modified for parallel
execution. Priority is attached to all the node processes to realize an efficient pruning
for the search tree. Processes are allocated dynamically in order to balance work

laads of all processors.

2 Tsumego problem and solver

Tsumego problem is to determine life, death or tie of the surrounded stones given
the Go board state (placement of white and black stones) and whose turn is next.
The program shows the first move according to the result.

The program is essentially a game tree search. In the search, the alpha-beta
pruning method is used with some modification for parallel execution.

Exhaustive search down to leaf nodes is made in this solver.

3 Alpha-beta pruning for parallel execution

In the conventional alpha-beta search, the game tree search is done in depth first
manner. Since the result of a subtree search is used for pruning searches of other
part of the game tree, the alpha-beta search has a sequential bottleneck. Therefore,

the alpha-beta pruning method should be modified for parallel execution.
If the game tree search were done in purely parallel breadth first manner, there
would be no pruning of search space. A priority control is used to realize an efficient

pruning for the search tree.

4 Algorithm

The game tree is expanded in one master processor to a certain depth using the
parallel alpha-beta pruning method. Blow the depth, the conventional sequential
alpha-beta search is executed. Each sequential alpha-beta search is performed by a
large grain process, which is the unit of distributing computational load to proces-
sors. The parallel alpha-beta search is as follows.

1. Make a move for the given Go board situation. Pick up stones to be cap-
tured if any; Trace of adjacent same colored stones and if they are completely

surrounded by enemy stones, they are captured.

9. Make judgment whether the game tree is expanded to a certain depth. When
the game tree is expanded to a certain depth, sequential alpha-beta search is

executed.

3. When not expanded, the search is continued spawning children node processes.
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Each node process tests conditions for branch pruning or termination, exchanging
information through streams. The information for renewal of alpha and beta values
flows downwards, values of terminating nodes upwards, and termination commands

caused by pruning downwards.

5 Scheduling using priority
In the parallel alpha-beta search, following three kinds of scheduling are tried.

(a) The moves of the first player are sequentially searched.

(b) The searches of the first player’s moves are given priorities so that
left-hand tree searches always prior than right-hand cnes. The
moves of the second player are given the same priorities.

(¢) Each search of the first player's moves is given individual priority
according the individual game tree. The moves of the second player
are given the same priorities.

Scheduling (a) is closer to the sequential alpha-beta search than (b) and (c), and

has less parallelism.
It is expected that for a problem instance where the pruning effect in the se-

quential alpha-beta search is large, scheduling (a) will do well, while (b) and (c) will
have good speedup for a problem instance in which the pruning effect of sequential
search is small.

6 Load distribution

Oon-demand dynamic load distribution is used in order to balance work loads of all

processors.
When a processor becomes idle, it sends a message requesting a new process to

the master processor in which the game tree is expanded in parallel. On receiving the
message, the master processor distributes a process as the response to the message.

7 Outline of the demonstration
1. Sequential alpha-beta search is tried to the problem where the best move is
searched first.

2. Parallel alpha-beta search using 16 PEs is tried to the same problem above.
Both scheduling (a) and (b) are used.

3. Parallel alpha-beta search using 16 PEs is tried to the problem where the best
move is searched after many moves.

4. Using scheduling (c), parallel alpha-beta search is tried to the same problem
above.
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Title

Parallel Application Program (3): Packing Piece Puzzle

Parallel algorithms, programming paradigms and load distribution methods

Purpose for two different problems are studied and evaluated by implementing solvers
for packing piece puzzles in two different ways.
The following two different selvers are demonstrated.
1 Exhaustive search
Program structure: An OR-Parallel exhaustive search by lorking processes
at each alternative choice, forming a tree structure.
Outline Load distribution: Semi-siatic load allocation suitable for OR-parallel prob-
lems.
&
Features | 2 Applying neural network simulation
Program structure: Simulation of a neural network by exchanging messages
bﬁt'\'p'ﬁﬂﬂ Processas rcmrrﬂspnm[ing Lo meurons.
Load distribution: Experiments on load allocation methods suitable for
communication oriented problems.
tBased on the Gaussian Machines neuron model (in cooperation with Anzai Labe.
ratory, Keio University).
Packing piece puzzle
[Applying neural network
Simulation]
-
System 9 IT\—‘ ]:\—I
Conf igu- 48ways 16ways 16ways 36ways Jbways
ration o, o o o o
o o 0 . o
o . e -0 o
0% o el et O 0
D\--l'.EJ ,." _ﬂ":.dl___— -" _F_ - - o= .
B R ToR b o L .
ﬁ.{i';- E o .
DI.:

O and e are neurons which stand for possible allocations for each piece,
Inhibitory links of neuron A. All other neurons also have inhibitory links.
® represents fired neurons having converged in a solution.
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1 Overview

In the demonstration, packing piece puzzle of 10 pieces{Fig.1) is solved with different num-
ber of processing elements (PEs), and speedup by parallel execution and effectiveness of

load balancing are shown.
The demonstration is carried out as follows.

¢ Program is executed on 1 processor, and execution time is displayed.
¢ Program is executed on 16 processors, and execution time is displayed.
¢ Load balancing can be observed by the performance meter.

Near-linear speedup is oblained.

3 8

niine
—2‘—‘5‘—17 10

Figure 1: Packing Piece Puzzle

2 Description of the program

To solve this puzzle, the program starts with the empty box, and finds all possible place-
ments of a piece to cover the square at the top left corner, then, for each of those placement,
finds all possible placements of a piece (out of the remaining pieces) to cover the uncovered
square which is the topmost leftmost, and so on until the box is completely filled. Each
partly filled box defines an OR-node, where the possible placements of a piece to cover the
uncovered topmost leftmost square define child nodes.

The program does a top-down exhaustive search of this OR-tree. Here, deepening the
tree depth corresponds to pack one piece. Number of OR-nodes increases as the search level
deepens, but since some OR-nodes are pruned when there are no more possible placements,
number of OR-nodes decreases below a certain tree depth.

3 Load balancing scheme

Load balancing is done on master PE by partitioning a program into mutually independent
subtasks (Subtask Generation), and by distributing subtasks to idle PEs so as to balance
work loads (Subtask Allocation). To detect idle PEs, on-demand distribution method is
utilized. When a PE becomes idle, it sends a message to the master PE, requesting a new
subtask. Subtask generation is done until the search reaches the certain depth in the tree.

- A=l0=-2




Details (2/3)

Hewever, as the number of processors increases, the rate of subtask execution eventually
becomes larger than the rate of subtask supply. In other words, subtask generation hecomes

a bottleneck.
To overcome this bottleneck, we have introduced multi-level load balancing scheme.

Each subtask generator is in charge of a certain fixed pumber of processors, which form
processor groups (PG). V processors are grouped into M processor groups, therefore, each
PG is composed with % PEs and a certain PE in a PG is called group master PE.

In Fig.2, two-level load balancing scheme is shown. At the first level distribution, super-
subtasks are distributed to idle PEs to balance the loads of PGs. At the second level,
subtasks are distributed to idle PEs to balance the loads of PEs which belong to a PG.

This scheme is scalable to any number of processors because of this multi-level structure.

Super-Subtask

lﬂj—'ﬁ Generator
ﬂ [EH] |]]]}]I]ﬂ] “]]] % Super-Subtasks

Aﬁ%; Distribntion

i [I ‘ [l]ﬂ] ' m ] N ‘ First Level
TG PG, Fowos Fom Distribution

O O O Subtasks

O 00O

Diistribution
(\db[ ] Second Level
Distribution
PE, PB; PEg., FEy

' PE,

Figure 2: Structure of Multi-Level Load Balancing
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Details (3/3)

4 Speedup Measurement

Execution times are measured for one-level load balancing and two-level load balancing.
Speedup (Sy) is defined as the ratio of execution time on 1 PE (1}) to N PEs (Ty), and
calculated by %, and it is described in Figure 3.

Speedup of one-level load balancing is getiing saturated because of the subtask gen-
eration bottleneck. However, it is improved by two-level load balancing, and near-linear
speedups are obtained: 7.7 with 8 PEs, 15 with 16 PEs, 28.4 with 32 PEs, 50 with 64 PEs.

I

-2 _,-"'J

/'/ e Two=level lond balancing
e
~
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e / )
d r o= Cine-level load balancing
E -

14 Iy
P 7

o
S
Jfl—l’
r
B
1 T T T T *
1 8 16 32 [

Number of Processors

Figure 3: Speadups

5 Conclusion and Future Works

This scheme is efficient not only for OR-parallel search problems, but also applicable to
some types of search problems such as alpha-beta pruning problems, which does not invelve
frequent inter-processor comununication. Applying the multi-level load balancing scheme
to such programs is our future works.
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Title

Parallel Application Program (4):
Shortest Path Problem Solver

Purposs

A parallel algorithm, programming paradigm and load distribution method
for the best solution search problem are studied and evaluated by imple-

menting a shortest path problem solver.

Outline

Features

The single-source shortest path problem is to search for the minimum cost
paths between a given start node and all other nodes of a network in which
each network branch has a non-negative cost. Large networks with tens of
thousands of nodes are generated using random numbers as the test data.

Type of the problem : Best solution search.

Algorithm : Processes corresponding to each network node exchange mes-
sages with each other. Each message contains path and cost from the
start node. Priority is attached to each message so that a message
with lower cost is sent earlier than a message with higher cost. Each
node remembers the shortest path notified by the messages arrived so

far and its cost.

Programming technique : A message is represented by a process so that
a message has a priority.

Load distribution : Making more processors work for the part of the net-
work where communication is dense.

System
Configu-

ration
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Best path

* Algorithm
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QOutline

The single-source shortest path problem is to find the minimum cost paths between
a given start node and all other nodes of a network in which each network branch
has a non-negative cost. In the demonstration, the network consists of about ten
thousand nodes and is generated using random numbers.

In the demonstrated program, processes are generated for each network node
and computation is performed by exchanging messages between them. The order of
required computation with this algorithm is smaller than that with the algorithm in
which processes are forked for each candidate path. Using priority control, efficient
pruning for the search branches is done. As a result of that, the program works in
the same order of computational complexity as well-known Dijkstra’s algorithm.

Algorithm

A message contains the path from the start node to the receiver node and its cost.
The computation is initiated by sending a message with an empty path and zero
cost to the start node. All the nodes remember the minimum cost to reach the node
notified by the messages received so far. Initially, the cost remembered by all the
nodes is infinite(Figure 1).

When 2 message arrives at a node and the cost notified by the message is smaller
than the minimum cost remembered in the node, the new cost is saved and messages
with better paths and costs are sent further to the adjacent nodes (Figure 2). If the
message has a larger cost value than the known minimum, it is simply discarded.

Since a message is represented by a process, sending message means a creation of
a message process, while receiving message means an execution of a message process.
Each message process has a priority decided by the cost. Thus, a message with a
lower cost is received earlier than a message with a higher cost.

When all the messages on the network are discarded, each node has the shortest

path from the start node and its cost.

Load Balancing

The heaviest part of the processing is communication, and the communication is
initiated at the start node and propagates gradually to the whole network in waves.
The program tries to balance the load based on the following two ideas.

* Divide the network into sub-networks and distribute processes for sub-networks
to distinct processors. .

+ Make more processors work for the part of the network where communication
is dense.
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Mapping Strategies

The following three mapping strategies are tried. In each mapping, p = ¢® processors

are emploved.

Two-Dimensional Simple Mapping
Divide the network into ¢ % g sub-networks and map each sub-network onto

the corresponding processor.

Two-Dimensional Multiple Mapping
Divide the network into k super-sub-networks, each of which is again divided

into p sub-networks just as in the two-dimensional simple mapping. Each
processor is responsible for & sub-networks, each one from each super-sub-

network.

One-Dimensional Simple Mapping
Divide the network simply as p narrow rectangular strips and map them onto

the processors.

® ]
message(8,north)

Each node saves f E

. (o0,-)

Remembering

(9,south)

Start node
S

e b . Pz2F12P2 message(9, west)
Initial message( 0, (]) | BU¢! ‘ @priority(P1)
E
Remembering message(10,north)
(&north) @priority(P2)
Figure 2
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Figure 3: The decomposition of a graph for the two-dimensional simple mapping
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THE FGCS COMPUTING ARCHITECTURE

Kazuo Taki

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

ABSTRACT

In the fifth generation computer systems [FGCS)
project of Japan, logie programming and parellel pro-
cessing are adopted as the principles of both software
and hardware system development. Their amalgama.
tion, porallel inference systems, is being investigated at
ICOT.

Hoth hardware and software development have been
carried out based on the kernel language (KL1) as the
software-hardware interface. KL] is a concurrent logic
programmiug language extended from flat GHC. The
hardware developrment target is a parallel inference ma-
chine (PIM) with about 10° clement processors. A
smaller scale prototype machine, PIM/p, with about
10? processors is under development. The processors
are dedicated for efficient execution of KL] programs en
a distributed implementation of the KL1 language pro-
CEEEDT.

One major software project is the development of a
common operating system for al] the parallel inference
ma.chiuﬁ, pamed PIMOS []:ia.l.'a.utl inference machine op-
erating system), which protolype has been working. Sev-
eral program development environments have also been
prepared. The Multi-PSI, another inference machine
prototype, is one such powerful environment, which con-
pects up to 64 personal sequestial inference machines
(PSI-TT) relatively locsely. Further improvements of the
PIMOS, and research on various concurrent algorithms
and load distribution schemes are in progress on the
Multi-PSI.

1 INTRODUCTION

The Japanesc fifth generation computer systems {FGCS)
project aime at building & prototype of a high per
formance knowledge information processing system
(KIPS). The project spans ten years, from April 1982
to 1992. One of the principal functions of KIPS i= jts
highly parallel inference feature. The target of the hard-
ware system is a highly parallel inference machine {PIM}
with about 107 processing elements and with an infer-
ence speed of more than 10® LIPS (logical inferences per
second).

All RED arcund the PIM (Uchida et al. 1982) has
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been based on a coneurrent logic programming language
called KL1 (Chikayama et al. 1988), which is an exten-
sion of Flat GHC [Ueda 1986). Machine hardware and
the language processor have heen carefully designed for
efficient parallel execution of KL1. The parallel infer-
ence machine operating system (PIMOS) {Chikayama
et al. 1988) and application programs {mainly knowl-
edge processing systems) are and will be also written in
KL1I or in its extensions. Various software technologies
for highly parallel processing, such as highly concurrent
alporithms, programming paradigms for practical con-
current programs, and experiments on load balancing
schemes, will be studied and developed based on the
EL] language.

Everything, from language to the hardware system,
operating system, concurrent algorithms, and program.
ming style iz completely new in our R&:D) approach.
They are designed for highly parailel processing on large-
scale network-connected MIMD-type multiprocessor sys-
tems. The program development environment is very
important to cultivate these new computing technolo-
gies. Bootstrapping of the R&D, from a simple and
small prototype to a large and complex target, is also
important. The Multi-PS] was developed as an R&ED
tool for concurrent software technologies, and also as an
early prototype of the parallel inference machines (Takd
1986, Taki 1987).

This paper reports the outline of our FGCS comput-
ing architecture by looking at the hardware system, Jan-
guage, operating system and program development, and
also reports their progress,

2 LANGUAGES

KL1 is the commen kernel language for parallel inference
systems in the FGCS project, based on Flat GHC (Ueda
1986). GHC is a concurrent logic programming language
similar to Concurrent Prolog (Shapirc 1983) and Par-
log (Clark and Gregory 1984).

The advantage of using a concurrent logic program-
ming language i3 in its implicit eoncurrency and syn-
chrenization feature. Without being explicitly specified
in the program, concurrency of the program is exploited
and data-flow synchronization is made automatically at



and under the language implementation level. The im-
plicit data-flow synchronization mechanism has a greate
advantage in eliminating synchronization errars. The
language is powerful enough to describe everything as
long as it can be modeled as communicating processes.
Any processes with small grain size or short lifetime can
be implemented without large overhead.

Flat GHC is a subset of GHC. Only unification and
calls to certain built-in predicates are allowed in the
guard part of a clause. This makes efficient implementa-
tion easier without losing the cssential descriplive power
of the lavguage.

The KL1 language has several extensions from ihe
original Flat GHC (Chikayama et al. 1888). Omne of
the most sssential extensions iz the notion of sho-en.
Sho-en, or manor in Enghsh, is similar to the meta-call
mechanism seen in other concurrent logic programming
languages, Like the meta-call, the she-en mechanism
can be used to protect the oulside of the sho-en from
failure inside the sho-em. In addition, limits on com-
putational resources {e.g., execution time and memory)
consumed in a sho-en can be controlled and monitored
from outside. This fealure is essential in writing an op-
erating system in KL1,

The KL1 language also supports the functions of pri-
ority contral and Joad allocation. Execution priority can
be specified for a sho-en or goal. A goal can be allocated
to & certain processing node specified by a node oum-
ber. ‘I'he annotation, which specifies the priority or node
number for a goal (e.g., goal@priority(X) or goal@nade(Y)
), iz called the pragma. The pragma only affects execu-
tion efficiency of & program but is independent of the
Program semantics. This feature is useful for tuning the
execution effidency and the load balance of & program.
Current experimental implementation on the Multi-P5I
supports 4096 priority levels which will be used in user

programs.
3 PIM PILOT MACHINE: PIM/p

3.1 Target Performance

PIM/p is the first pilot machine for our target PIM sys-
tem. Several other models are also being developed. The
performance of a PIM/p processing element is 200K to
500K LIPS. A PIM/p system will contain 128 processing
elements and will achieve 10M to 20M LIPS of effective

performance.
3.2 Owerall Structure

PIM/p has the hierarchical structure shown in Figure 1.
Eight processing elements (PEs) form & cluster with
shared memory and bus. The PIM{p consista of 16 clus-
ters connected by the inter-cluster network, Progess-
ing elements in a cluster share the same address space,
wheress address spaces for each cluster are separated.
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A cluster forms a substructure with low communication
cost and response time which is utilized in the load allo
caticn, The hierarchical structure allows an casier and
better implementation of the dynamic memory ranage-
ment than the structure sharing all the memory. It is
also more effective to reduce the physical memory size
per & processing element thar the size of the completely
non-shared memory structure.

3.5 Processing Elements

The PIM/p processing element is designed for the ef-
fictent execution of KL1-B (Kimura apd Chikayama
1957), which is the commen abstract instruciion set
for the KLI used in our inference machines. KL1 pro-
grams are compiled te HL1-B instructions and then
translated to target machine instructions. PIM/p bas
a RISC-like instruction set which is executed in a four-
stage pipeline [Goto et al. 1988). To reduce the static
code gize, PIM/p supports the conditional maero-call
feature {Shimogi et al. 1988), which is a sort of subrou-
tine call to the internal instruction memory (1IM) with
a gpecialized argument passing mechanlem. It is used
to implement complicated KL1-B functions by common
modules 1o the IIM with low invocation overhead. The
tag architecture has been adopled for the PIM/p proces-
gor with &n 8-bit tag and 32-bit data. Each data word is
aligned with the 64-bit memory boundary in the current
implementation.

The role of KL1-B is similar to that of WAM {Warren
1983). The major differences are the eynchronizatica
feature and functions for ineremental garbage collection,
called MRB (Chikayama and Kimura 1987).

A PIM/p processing element is implemented on & sin-
gle board with several custom CMOS LS1s and about 20
static HAMs, as shown in Figure 2. The pipsline cycle
is expected to be 50 panoseconds. There are two cache
memories, instruction cache and data cache with 64K
bytes each. They are write-back caches with the cache
coberency protocol (Matsumoto et al. 1987). They
also support the word locking mechaniem and software
cache functions optimized for KL1 execution (Goto et
al. 1988). The common bus cycle is the same with the
proceasor pipeline cycle, The bus data width is 64 bits.
The network interface unit (WIU) and the floating point
umik {FP‘U} are the co-processors of the CPU. The pr.al‘.
performance {or the append program will be over 600K
LIPS iccluding MRE garhage collection.

3.4 Inter-cluster Network

A message exchanging network with hyper-cube topol-
ogy has been introduced to connect PIM/p clusters,
placing each eluster on a hyper-cube node. Inter-cluster
communication is invoked by a unification or & goal fork-
ing across the cluster boundary in KL1 program exe
cution. Two sets of hyper-cube networks are used to
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increase the network bandwidth as shewn in Figure 1.
Every processing element has & connection to one net-
work. A message is ronled to the destination cluster
automatically, as preset. Each communication path has
a throughput of 20M bytes/second in both directions.

3.5 KL1-B Implementation Issues

KL1-B is the abstract instruction set which defines the
basic hehavier of the KLl language processor. Each
KL1-B instruction is normally expanded inte a RISC in-
struction sequence. However, several complicated fune-
tions such as resource management in the sho-en, inter-
cluster processing mechanisms, and garbage collection,
are not open-coded as are other more primitive features.
They are implemented as common modules in the [IM,
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and inveked when cerlam conditions occur,

There were many difficulties in the KL1-B implemen-
tation, especially in the inter-cluster processing mecha-
mismns, such as the distributed resource management for
the sho-en (Ichiyeshi et al. 1987), the efficient goal Ler-
mination detecting mechanism ameng clusters {Roku-
sawa et al, 1988}, export and import mechanisms of
reference pointers between clusters, and the distributed
unificetion mechanism (Ichiyosh et al. 1958). These
problems were basically solved in the KL1-B implemen-
tation om the Multi-PST system.

3.8 (Garbage Collection

Efficient garbage collection is essential for the KL1 im-
plementation because it had to be implemented in heap-
based style rather than stack-based and consumes much
memory at rup time. Intra-cluster and inter-luster
garbage collection will be implemented separately for
gase of implementation and efficiency.

Both incremental and stop-and-collect GC will be im-
plemented for the intra-cluster GC. An incremental GC,
MRB GC (Chikayama and Kimura 1987}, is being ex-
perimented on the Multi-PSL. It is a simple subset of
reference counting, only distinguishing between single
and multiple references by one bit. Structures with sin-
gle reference often appear in KL1 programs. MRB GC
is effective in such cases, making the working set size
smaller and the interval of stop-and-collect GC longer.

Inter-cluster reference pointers are implemented with
export and import tables which are a sort of address
translation table. The role of inter-cluster GC is to
maintain these table entries and to remove garbage inter-
cluster pointers. The weighted export counting (WEC)
scheme (Ichiyoshi et al. 1988) has been introduced Lo
realize the incremental GO for these pointers. WEC is
an application of weighted reference counting (Watson
and Watson 1987, Bevan 1987).



3.7 Goal Scheduling

A goal is a unit of paralle]l execution and scheduling. A
goal is replaced or expanded iulo the body goals of a
clause in the invoked predicate when the clause is com-
mitted. The leltmost body goal is executed immediately
while others are pushed into the ready-goal stack. That
is, the depth-first scheduling is adopted for body goals
and also for the ready-goal stack. Since each goal is
associated with its execution priority, ready-goal stacks
are managed corresponding Lo each prierity level. When
all the guard unifications are suspeaded, the goal is sus-
pended, hooking itself to the variables that caused the
suspensions (Ichiyoshi et al. 19587). The goal is resumed
when one of those variables is instamtiated. Thal is, the
non-busy waiting method has been adopted.

How to keep the processing load well-balanced is a
key issue in makiog the best wse of parallel processing
resources. An automatic load balancing is adopted io 2
cluster. Each processing element has & goal stack for the
highest-priority ready goals to avoid conflicts of access
to the common ready-goal stack, The highesi-priority
goals are distributed to keep the processor loads in good
balanre, We found on-demand distribution to be an ef-
fective wav of realizing 2 good balance within a cluster
while reducing the amount of wasteful communication
AMONE Processors (Sato and Goto T988). In this scheme,
an idle processor sends a request for load allozation to a
busy processor,

Load distribution among clusters should be done care-
fully because the comtnunication cost is more expensive
than within a cluster. Several distribution schemes have
been tested on the Mulii-PSIin which the load distribu-
tion algerithms are buried in the KL1 programs specify-
iug goal allocation h}* the pragma {goalﬂnude[x]}_ Sev-
eral standard schemes will be supported by the operating
ayatem in the future.

4 OPERATING SYSTEM

FIMOS is the common operating system for our infer-
ence machines. It has been developed on the Multi-PSL
The primary functions of the PIMOS are 1/0 resource
managernent, execution control of wser tasks, and man-
agement of programs (Chikayama et al. 1988). The
programming system has not been implemented in the
current version. PIMOS has the following characteris-

tics.

Logic-based: PIMOS is described entirely in KLI,
without using extra-logical features at all. Even [/O
devices connected to the inference machine have log-
ical interfaces. Bach I/0 device looks like a perpet-
ual process from the user program, communicating
through a stream interfacs,
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Integrated: Although PIMOY is an operating system
for paraliel machines, it is an integrated operating
system working as one umit, rather than consisting
of many operating systems distributed on processing
elements.

Born parailel: Various functions of the PIMOS, which
exploit the power of parallel inference machines,
have been implemented to wotk in parallel te pre
vent the PIMOS 'iJ-r.r.mning a hotileneck in highly
paralle]l systems.

Practical: Although PIMOS has many experimental
features, its purpose is to provide a practical pro-
gramming environment for paralle] algorithm devel-
opment, keeping robustoess.

5 PROGRAM DEVELOPMENT

Three systems prm’idjng the Progranm de'ﬂ-.lnpment. en-
vironment have been developed. The primary system is
called the PIMOS development suppaort systemn (PDISS),
written in C, and an operating system called Micro-
PIMOS, All the KL1 features except for real parallel
execution are provided with several debugging facilities.
The system was mainly used for the development of the
PIMOS and in the early stage of the application program
developmeant.

The second system, Multi-PSI, and the third sys-
tem, Pseudo Multi-PSI, have been developed in pasal-
lel. The Multi-PSI (Taki 1926, Taki 1987) iz a collection
of PSI-I processors (Nakashima and Nakajima 1987)
connected by a two-dimensional mesh network (Takeda
et al. 1988). The full system contains 64 processing
elements. KLI-B has been implemented in micropro-
gram. The processing element speed is approximately
150K LIPS for the append program with MRE GC. The
KLl compiler and debugging support system were im-
plemented on the front-end processor (FEF), PSI-11. The
FEFP also supports 1/0 functions controlled by the PIL
MOS. The Multi-P5I is used with the PIMOS a5 a main
tool for the development and evaluation of varicus con-
current algorithms and load balancing schemes. Three
full systems have been working since 1988,

The Pseudo Multi- P51 is & simulator of the Multi-PSI
implemented on a PSI-II machine. The behavior of the
Multi-PS1 with any oumber of processing elements can
be simulated. KL programs are executed by the same
microprogram as that of the Multi-PSI, overlaid on the
PSL-II micro code area. The KL1 execution speed for
simulating one processing element is equivalent Lo that
of the Multi-PSI, which is unusuwal for simulation sys-
tems. The system performs the same as the real Multi-
P3&I except for the round robin scheduling of the pseudo
processors and smaller memory size. The Pseudo Multi-
P51 is mainly used for general KL program debugging,
both for intra-PE errors and inter-PE esrors.



Four KLI sample programs were developed for the
demonstration al the FGCS'8E conference. They are
the natural language parser, PAX; a board game, tsume
go; the packing piece puzzle (Furoichi et al. 1580); and
the shortest path finding problem. There is a total of
14.5K source program lines in HL1, and the develop-
ment period is around three months, with eight program-
mers. Several concurrent algorithms and load balancing
schemes are being experimented in the program devel-

opment.

6 CONCLUDING REMARKS

Iz the past, research on parallel computer hardware has
been relatively independent from parallel software re-
search. Basically, the hardware or system implementa-
tion research was for implementing more efficdent envi-
ronments for executing afready exisfing software,

The principle of the parallel inference systems develap-
ment in ICOT is rather different in this point; software
and hardware regearch should be combined more closely.
Software or even algorithms optimized for sequential ma
chines may not be optimal for paralle]l machines. Thus,
software should change when the hardware changes.

However, there is a chicken-and-egg problem: without
parallel hardware, practical parallel software cannot be
developed; without parallel software, it is hard to konow
what kind of parallel hardware is appropriale. ICOT"s
approach to sclve this problem is stepwise bootstrap-
ping. The first step was to settle on a software-hardware
interface, namely, the KL1 language, and implement it
(as the multi-PEI system). The next step is to develop
various software systems on it (including PIMOS). By
running the resultant seftware, many unknown parame-
ters of the behavior of parallel software will be revealed.
The next generation (the PIM/p system) will be based
on these experiences, and software will be developed on
this machine.

Development of the PIM/p hardware system will be
completed in 1990, and then the nnproved KL1 language
processor will be implemented on it, inheriting various
research results from the software development on the
Multi-P5I system.

Our challenge to develop the paralle] processing tech-
nelogies for large-scale MIMD multiprocessors from both
software and hardware sides must be the creation of 2
new computing culiure,
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