ICOT Technical Memorandum: TM-0884

TM-0854
PIMOS 1.5 Introductory Manual

by
T. Chikayama & K. Suzaki

May, 1990

© 1989, ICOT

Mita Kokusai Bldg, 21F {03) 456-3191 -5

|D DT 4-28 Mita 1=Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

PIMOS 1.5
Introductory Manual

Contents

Introduction

Preparing To Run PIMOS

2.1 User Registralion oo
2.2 Customizallon o . o o o e e e

Booting Up, Logging Inte, and Shutting Down PIMOS

3.1 Booting CSP on (Pseudo) Multi-PSL - . 00 0 0.0 o000
3.1.1 Pseudo Multi-PST
302 Mulli-PSI . . o oo

3.2 Setting the Auto-Boot Switeh . . 0 oo 0oL o oL
3.3 Booting PIMOS from CSP"o oo
34 Logging In e
3.5 Shutting Downo
3.6 Heturning to CSP from PIMOS
3.7 T Booting Fails o o . o
Programuming in KL1
4.1 Features of L1 e e e e e e e
4.1.1 Selection and Execution of Clauses
4.1.2 Failureof Goalso

4.0 KU Pata Types . - . 0 o 0 o o o 0 Lo e e
4.1.4 Built-in Predicates - .. .o,

4.2 A Sample KL1 Program . .. - 0 0. .00
4.3 Stream Communication and Process Synchronization
4.4 Merging SITeams oo o e e e e e e e e
4.5 [/O Interface e
4.5.1 Standard I/O Devices oo
152 Window IJO . . o0 Lo oo
453 Files /O . . .0 0
4.54 A Sample Program Using the I/O Interface
4.6 Deadlock e e e

Load Distribution

5.1 Implementing Load Distribution
5.2 An Example of Load Distribution
5.3 Efficient Load Distribution00
Running KL1 Programs

6.1 Compiling KL1 Programs
6.2 How to Use the PIMOS Native-Compiler

=

-1 o ogm

10

11

6.21 Starting Tt Up . . 0 o 0 0 0 0 0o e e e e
6.22 Bateh Compilationo
6.3 Executing Programso L Lo
6.3.1 Starting up the Listenero oL
6.3.2 Executinga Goal e
6.4 Debugging Your Programs oL
6.4.1 The Tracer o . o e e e e e e
6.4.2 lThelnspector Lo e
6.5 Using the Re-Linker o e
6.6 Dealing with Deadlock oo o000 000
6.6.1 Invoking the Garbage Collector oo o000 0oL
6.7 Fvaluating Program Performance 0oL
Dealing with Problems
7.1 Problems with PIMOS 0 0 0 0 00000 e
7.2 Problems with SIMPOS . . 0 000000 o oo

1 Setting Up an Imitialization File © . 0 00 0000000000000
5.2 Basic Shell Comumands 0. 0L o e
5.3 The History Function e
84 Executing Tasks . 0 0 0 0000000000 0L

841 Task Job Contrel and 1/O 0 0 00 0 000000000000
842 Examplesof Tasks
=0 Job Conirol L 0 e e e e e e e
8.6 Programs as Shell Utilities
The Listener
9.1 Basic Listener Commands e
9.2 Suspending Executiono e e e
9.3 Changing Standard 1/0 Devices o L oL
CAL
10,1 Starting Up CAL . .. L o e e e e e
102 How to Use CAL L . L oL o e e e e e e
0.3 Choosing Between the Native Compiler and CAL on PIMOS © . 0 L 000 L L.
10.4 The Variable Checker o e
Other Utilities
F1LE Paals o 0 0 o o e e e e e e
11.1.1 Using Tools . . .0 0 0 o e e e
T12 The Tomer © o . o o o e e e e e e e e e e e e e e e e e e
11.2.1 Using the Timer i

Chapter 1

Introduction

T'his manual is intended to give the novice user an introduction to use the PIMOS operating
systemn version 1.5 on either a Pseudo Multi-PST or an actual Multi-PSI machine. When
refering to either one, Psendo-Multi or Multi-PSI, it is written as “(Pseudo} Multi-PSL" Most
operations described in this manual apply to either system, but when one doesn’L it is explicitly
stated. This text first explains how to set up the PIMOS cuvironment. Then it gives examples
showing how to develop, compile. execule, debug, and cvaluate KL1 programs. Finally it
describes some of the basic PIMOS utility programs.

Before reading this manual, vou should have finished installing the KL1 system (PIMOS,
CSP, and CAL) on the PS] machine’s SIMPOS operating system. The “{Psendo) Multi-PSI
Svstern Administration Manual™[1] gives detailed mstructions on how to do this. It is also
assumned that vou are familiar with the following SIMPOS operations as explained in the
“Basic PSI/SIMPOS Operating Manual (1),(2).7

Basic Cperations

Logging infoul.
Using the SYSTEM MENU, selecting items, and opening windows using the
mouse,

Shuttimg down the PSI-IL
s User Registration

Registering users, registering new ilems in the SYSTEM MENU, and defining
logical names of directories by editing the “login.com™ file.

s The PMACS Editor
Editing text files.
¢ The File Manipulator
Creating directories and copying files.
This manual is composed of the following three major sections.

1. Installing PIMOS on the PSI-TI, Booting the System, Login, and Shutdown (Chapters 2

and 3)
These chapters show how to install and boot PIMOS, and gives the steps for an individual

user to log on and shut down the machine.

2. Writing and Executing KL1 Programs under PIMOS. (Chapters 4 to T)
These chapters show how to write a KL1 program, how to distribute processes over
multiple processors, and how to execute and debug programs. They also show how to
deal with some common problems you may encounter.

3. PIMOS Utilities {Chapters 8 (o 11)
This section describes how to use the shell, the compiler, the Listener, and several other

basic PIMOS utilities
While reading this manual you should have a (Pseudo) Multi PSI machine available to
perform each of the operations illustrated. If you need a more detailed explanation of the

PIMOS facilities refer to the “PIMOS 1.5 Operating Manual”[3]. For information on developing
more elaborate KLI programs, consult the “KL1 Programming Manual”[3].

Now, onto the Multi- PSI world....

Chapter 2

Preparing To Run PIMOS

This chapter explaing how to register a PIMOS uscr and set up their environment before
booting PIMOS.

2.1 User Registration

Before vour personal user name 15 registered, vou can login in to the P51 using the following
temporary login names. The password for each account is the same as its login name.

pmpsi: A Psendo Multi-PS1 user
mpsi: A Master FEP user on Multi-PSI
slave: A Slave FEP user on Mult-P51

After vou have logged in, vou will notice the following two PIMOS related items in the 5Y5-
TEM MENL,

o Pseudo Multi-PST or Multi-PSI
Select this to boot PIMOS.

o CAL
Select this to use CAL, the Compiler, Assembler, Linker facility, to incorporate a KLI-
program into PIMOS as a utility by linking it with the PIMOS kernel object.

The above user names should only be used temporarily. Belore developing KL 1-programs
on P51, you should create a new username in the following way.

1. Register the new user name.
(On a Multi-PSI, this must be done on the Master FEP.)

If you have already logged in to STMPOS, log out. Log in as “superuser” with the
password “supernser”. Select the following sequence of menu items on the console,
starting with “others” from the SYSTEM MENT.

others — user — maintenance — register

Register the user name in the usual way by filling in the blanks presented in the window
that appears. Pay careful attention to Lhe rank and initial mode, being sure to use the -
following values.

For Pseudo Multi-'ST machine users :
rank= general, initial mode = general
For Multi-PSI machine users :

rank= general, initial mode = general

After completing registration of the new uscr name, login under that name. For a more
detailed guide to user maintenance, refer to the “Basic System Administration Manual

for PSI/SIMPOS Systems”[6].

. Sel up the new user’s environment.

The following example shows haw to set up the cnvironment for a new user name, “feld-
mark™, by copying the “login.com” file from a standard user’s directory and revising it
for the new environment.

{a) Copy the file “login.comn™ from user pmpsi to feldmark’s home directory using the
File Manipulator.

On a Pseudo Multi-PSI system:
copy file >sys>user>pmpsi>login.com
to rsysiuser>feldmark>*, *

On a Multi-PST system:
copy file >sys>user>mpsi>login.com
to >sysruser>feldmarks+.

{b) Edit this new copy of login.com using the PMACS cditor.
¢ Confirm the following SYSTEM MENU registration classes in the login.com
file.
menu :-
items_list(

Wh% On a Pseudo Multi-PSI Machine use this:
{"Pseudo Multi-pPsI", mpsicspi##pseudo_csp_main_program},

W% On a Multi-PSI Machine use this:
{"Multi-pSI", mpsicsp#csp_main_program},

WA% CAL Cross System (Use this on either machine)

{"caL", cal#f#cal manipulator},
o Change the definition of the logical name “me” to YOUr OWI User name.
define :=
LN S "me" := ["user:pmpsi"],

"me" := ["uger:feldmark"],

o Confirm the following logical name definitions :

On a Pseudo Multi-PSI machine

"root" := ["user:pmpsi"],

6

"psys" = ["»>sys>csp>SYSTEM.DIR"],
‘pmpsi" := ["»sys»csp>PMPSI.DIR"],
"pimos" := [">sys»csp>PIMOS.DIR"],

On a Multi-PSI machine :

"root" = ["»sys>csp"],
"mpsi" := ["root:MPSI.DIR"],
"mgys" := ["reot:SYSTEM.DIR"],

"pimos" := [">sys>csp>PIMOS.DIR"],

(¢) When vou have finished confirming the above information and making the necessary
changes, log out and log back in order to reset the parts of your environment that
vou have changed.

(d) Check that the item “Pseudo Multi-PSI" or “Multi-PSI" and the item “CAL"™ ap-
pear in your SYSTEM MENT.

(e} Do the following only on a real Multi-PST machine, (Never create this file on a Slave
FEP.) Edit the file:

meys: MI'SLCONFIG (i.e »sys>cep>SYSTEM. DIR>MPSI . CONFIG)

This sets up a new work address for each FEP according to the explanation in
Section 6.3.5 of the “Multi-PSI/V2 Console System (CSP) Operating Manual”|2].
Note that vou should change only the network addresses and should never change
the other parameters in this file.

2.2 Customization

o CUreate the following PIMOS system directories in your home directory :

me:SYSTEM.DIR (Pseude Multi-PSI enly)
me :PIMOS.DIR

o In your “login.com™ file, redefine the logical name “pimos”. On a Pseudo Multj-PSI
machine, also redefine the logical name “psys”™. Both changes are shown below:

A% "pimes" := [“sys>csp>PIMOS.DIR"],

“pimos" := [“me:PIMOS.DIR"],
%A% “psys" = [">sys>csp>SYSTEM.DIR"],
“psys" := ["me:SYSTEM.DIR"], (Psendo Multi-PSI only)

s If you are using a Psendo Mnlti-PS] machine, and copy the following files from “psys:”
into your “SYSTEM.DIR" directory.

MPSI . CONFIG
MPSI.PARAM
boot.init
usercom.init

¢ Copy the following files from the user “pimos:” to your “PIMOS.DIR" directory. (Do
not copy the file “pimos.mac” which may also be in the “pimos” directory. }

pimos.conf
pimos .kbo
Pimos.1ldb
pimos.sym
pimos . users

o Copy the file “pimos.users” and wake the following modifications to the definitions in
this file.

Wit [system(#,*, ">sys>user>ShellUser",+*,
[system(*,+, ">sys>user>feldmark" ,=*,

Wk [system(* * ">eys>user>ListenerUser", =,
[system(#*,*, ">sys>user>feldmark",*,

This file is called the “User Environment File.,” and it defines system login names and
tasks to be run when you boot PIMOS.

You can register any names or tasks (including vour own programs) in this file. For
more details about the “User Environment File,” refer to Section 12.3 in the “PIM 08
1.5 Operating Manual”[3].

* On the Pseudo Multi-PSI, you can change things like the number of pseudo processing
elements, the system configuration. ete. via the configuration file ;

psys:MPSI.CONFIG

For more detail, refer to chapters 4 and 6 in the “Multi-PST/V2 Console System (CSP)
Operating Manual™[2],

¢ Once more, log out and log back in to reset the parts of your environment that you have
Just changed.

Chapter 3

Booting Up, Logging Into, and Shutting Down PIMOS

LT'his chapter explains how to boot up. login to, and shut down your (Pseudo) Multi-PSI
machine, along with what to do if booting fails.

3.1 Booting CSP on (Pseudo) Multi-PSI

3.1.1 Pseudo Multi-PSI

On a Pseudo Multi PSI machine, select the item “Pseudo Multi-PSI” in the system menu
that appears after logging in and clicking the mouse's left-button.

SYSTEM MENT

Peeudo Mulli-PS]

CAL
(Psewdo)Multi-PSI Installer

After the *Multi-PSI CSP” program starts up, vou will see the “Monitor Panel” in the
upper-left corner of your console and the “CSP Command Window” on the right-hand side of
the panel.

The first time this sequence is performed each time after booting SIMPOS, it may take a

long time since many CSP programs must be loaded.
The following messages appear in the “CSI" Command Window™.

Initiating all PEs from cenfiguratien file MPSI.CONFIG
Current PEs are
o, 1, 2, 3, 4, 5, 6,7
Current Default PEs are
0, 1, 2, 3, 4, 5, 6, 7
PE auto power on... All PEs power ready.
PEs initiation completed

$

The § thal appears is the CSP prompt symbol.

3.1.2 Mnulti-PSI

This sections explains how to boot a Multi-PSI machine in which all FEPs are connected
by a “PSl-net.” Details on how to boot with other configurations can be found in Chapters 4
and 6 of the “Multi-PSI/V2 Console System (CSP) Operating Manual™[2].

1.

[

Turn on the power switches for the master and all slave FEPs. Confirm that all FEPs
are functioning and SIMPOS is running.

. Login as “slave” on all slave FEPs, using “slave” as the password.

. The following message should appear (in both Japanese and English) on each slave

display 1o indicate that it is waiting for a response from the master FEP.

TeiwE= 2R CSP oM@t Ts. LHb E/FLETE v,
Now Waiting Orders from Master CSP. Please wait ...

. Login t¢ the master FEP with vonr own account.

Select the item “Multi-PSI” from the SYSTEM MENT,

SYSTEM MENU

Multi-1's1

CAL
(1"sendo)Multi-PST Installer

Confirm that CSP has started np on all FEPs.

- The following message appearing on a slave FEP indicates that the slave configration file

“sys:MSLCONIIG” is missing, but this message may be ignored.

Configuration Iile doesn’t exist. MPSL.CONFIG.
Slave FEP-CSP Program is Starting !!!

On the master FEP, you will see the “Monitor Panel” in the upper-left corner of your
console and the “CSP Command Window™ on the right -hand side of the panel.

The first time this sequence is performed each time after booting SIMPOS, it may take
a long time since many CSP programs must be loaded.

10

9, The following messages will appear in the “CSP Command Window™.

Initiating all PEs from configuration file MPSI.CONFIG
Current PEs are
¢, 1,2, 3, 4,5,6,7
Current [Default PEs are
o, 1, 2, 3, 4, 5, 6, 7
PE aute power cn... All pes powar ready. Memory Configuration...
PEs initiation completed

$

Il you have not set the Auto-Boot switch (explained in the next section) the CSP prompt
symbal, §. as shown above, also appears.

All €SP commands can be displayed by typing “7" to this prompt, and each command is
also described in detail in the “Multi-PSI/V2 Console System (CSP) Operating Manual™[2].

3.2 Setting the Auto-Boot Switch
Booting PIMOS can be done automatically by setting the auto-boot switch in the CSP
Command Window. From the CSP Command Window, type the following command.
5 panel

When you do this, the “CSP Console Panel” should appear. The CSP Control Panel is made
up of several sub-menus, which vou should set as shown below.

1. Auto-Boot switch definitions:

CLEAR OFF

INIT |ON| OFF
IMPL Ox! OFF
Patch oM OFF
[PL [ON] OFF
START

[PIMOS] ON OFF

2. Boot file name definitions:
o Psendo Multi-P5l:

CLEAR FILE {.mubnj}|(Don’t care on Pseudo)
INIT FILE (.mbn}|(Don’t care on Pseudo)
INLY FILE {.mbn) [{Don't care on Pseudo)
IMPL FILE (.mbn}|{Don’t care on Pseudo)
IMPL FILE (.kbn) pmpsizkllkp.kbn |
PATCH FILE {.com) | pmpsi:kl1pat.com|
L FILE (.kbn} |pimos:pimos.kbn
SYMBOL FILE {.sym) pimos:pimﬂs,sym]
START ADDRESS |[202

11

o Multi-PST :

CLEAR FILE (.mbn)[mpsi:MCLEAR.MBN|
INIT FILE (.mbn)!mpsi: MINIT.MBN
INIT FILE (.mbn)|mpsi:MIDAT.MBN|
IMPL FILE (.mbn) | mpsi:MPSL.MBN
IMPL FILE (.kbn) |(Don’t care on MPSI)
PATCH FILE (.com) mpsi:MPSIPAT .com |
IPL FILE (.kbn} |pimos:pimos.kbn |
SYMBOL FILE (.sym) pimos:pimnﬁ.s}-'m|
START ADDRESS | 2000]

3. Select the “AUTO” setting by clicking on it once with the left mouse button.

Power On Auto Boot |AUTO|CONSOLE

4. Next, select “SAVE" to save the settings you have choosen.

|SAVE| EXIT

3. Finally, cxit by selecting the “EXI1™ box.
SAVE [EXIT

3.3 Booting PIMOS from CSP

To bootstrap PIMOS from CSP, type the “boot” command into the “CSP Command
Window™. If you are using a real Multi-PSI machine, all processors will automatically turn
ar.

§ beot

3.4 Logging In

Alter booting PIMOS, the “Uscrs Window” appears as shown below via which yOu can use
the PIMOS utilities.

USERS

User Name>>

You can Lype any user name that is registered in the file.

pimos:pimos.users

12

For a detailed explanation of this User Enviromment File, refer to Section 12.3 of the “PIMOS
1.5 Operating Manual”[3].
The {ollowing three user names are initially available:

ShellUser, ListenerUser, shutdown

If you wani to use the Shell, explained in Chapter 8, log in as ShellUser.
User WName>»Shellliser

If you want to usc the Listener, explained in Chapter 9, log in as ListenerUscr.
User Name>>ListenerUser

Using only these two utilities, you can compile, execute, and debug KL1 prograins.

Note that PIMOS has no command to logont, and that vou may login simullaneously as
many times as you wish. For example, you can login twice as ShellUser in order Lo use two
Shell utilities.

The third nser name, “shutdown,” is explained in the next section.

3.5 Shutting Down
o shutdown PIMOS, type “shuidown” into the Users Window.

User Name>> shutdown

Answer “yes” when asked if you really want to shut down. (Or no if vou have made a mistake
and didn’t really intend to shut down PIMOS.)

Really(yes/no)? yes
You will also be asked to confirm that you want to leave CST. Tvpe “y7.
Do you want to exit from CSP 7 [Y/N] : y

You have now shut down (Pseudo} Multi-PSI. On Multi-PSI, the power to all processors
will autematically be iurned off. On both Pseudo Multi-PST and Multi-PSI, you should also
manually turn off the power to the PSI-11.

For more detaills about the shutdown process, refer to the *PIMOS 1.5 Operating Manual” [3].
For more information about CSP and Multi PSI's power supply, refer (o the “Multi-PST/V2
Console System (CSP) Operating Manual™[2].

3.6 Returning to CSP from PIMOS

Il for some reason you want interrupt PIMOS and return to CSP, vou can do so in either
of the following ways:

1. Select the CSP Command Window by clicking the left mouse button twice and type a
control-C to the CSI prompt.

$ Control-C

2. Alternatively, this sequence of commands is also available.

13

¢ Click the left mouse button while in the Monitor Panel.
¢ Push the “abort™ key.

¢ Select the following from the window that appears.

“Return to csp top level”
To return to PIMOS, use the “go” commanid in response to the CSP prompt.
$go

3.7 If Booting Fails

In Pseudo Multi-PSI, PIMOS may fail to boot due to problems with the way the following
PIMOS kernel objects were linked by the CAL system,

pimos:pimos.kbn
pimes:pimes.ldb
Pimos:plmos.8ys

o “Copying GC Mewory Shortage™ message
[f & message of the form “Copying GC Memory Shortage” appears in the CSP Command
Window on a Pseudo Multi Machine, you should change the configuration of your pseudo
machine to one that has fewer processors. Refer to the last section of Chapter 2 for how
to do this. Then enter the command “exit™ in the CSP Command Window and reboot.

e User program bugs
Another possible reason for not being able to boot PIMOS is that a nser program linked to
a PIMOS kernel object has a bug. In this case vou should remove the three PTMOS kernel
object files mentioned above, and make new copies of the originals from the directory
"rsys>csp>PIMOS.DIR", Shutdown PIMOS and try to reboot. If successful, vou may
debug your program(s) and relink them using CAL.

e Too many programs linked to PIMOS
If the programs linked to the kernel objects have no bugs, it may be the case that you
have used CAL to link them into PIMOS Llov many thines, This will cause PIMOS to
fail because of too many patches to the kernel objects. In this case you should remove
the three PIMOS kernel object files mentioned above, make new copies of the originals
from the directory ">sys>csp>PIMOS .DIR", and use CAL to recompile and link your
programs. Shutdown PIMOS and try to reboot.

o If none of the above solutions work, once again, delete and recopy the above kernel abject.
files and reboot PIMOS. Then, compile your programs with the PIMOS Native-Compiler,
not with CAL. Confirm that your programs run correctly before trying to to compile and
link them to the kernel objects again with CAL.

If you still cannot boot PIMOS, you may have found a bug in either PIMOS or CAL.
Please submit & bug report along with copies of the programs you have linked to the kernel
objects as described in the “Multi-PSI/V2 Console Systemn (CSP) Operating Manual”[2].

14

Chapter 4

Programming in KL1

The parallel logic programming language KL1 has many features that can be used Lo efficiently
describe parallel algorithms and systems. IU is based on the parallel logic programuning lan-
guage, GHC, developed at the lnstitute for New Generation Computer Technology (ICOT) as
part of the Japanese I'ifth Generation Computer Project.

This chapter explains how to develop KL1 programs on a (Psendo) Multi-PS1 machine,
assuming that you know how to write simple programs in Prolog.

4.1 Features of KLL1

The following section outlines the main features of KL1,

4.1.1 Selection and Execution of Clauses

Each KLT clause is divided into two parts by an operator, |, called the “commit operator”.
The goals on the lefi-hand side of this commit operator forin the “guard” part, while those
on the right of the commit operator form the “body™ of the clause. Any type of goal may be
used in the body part of a clause, but only built-in predicates, described laler in this section.,
may be used in the guard part. The first goal of a clanse is called the “head” predicate, in the
cxample below, “a”.

a(X) := integer(X) | B1(X.Y), b2(Y). tio-1)
a(¥) :- x=3 | e1({X,¥Y), e2(¥.,2), c3(Z). % (0-2)
a(X) :- list(X) | di1(X,Y), d2(¥), d3(y). %(0-3)

All clauses with the same head are in an OR-relationship. That is, the predicate succeeds
if the first clause is true, OR the second clause is true, OR etc.) The guard part plays an
important role in selecting one clause to be executed from all those in this OR-relationship.
Suppose the goal “7 a{3)" is called from another clause. Each of the above definitions, (0-
1), (0-2), and {0-3) can be tested in parallel, but only the twe guards in (0-1) and (0-2)
(integer{3), 3=3} will succeed. The KL1 system selects and executes one clause at random
[rom those whose guard part succeeds, and discards the rest. All goals from the body of this
clause are then activated in a random order. In this case, cither the body part from clanse
{0-1) or from clause (0-2) will be activated.

Suppose that the clause (0-2) was selected. The goals cl, ¢2, and 3 will he called in an
order irrelevant Lo their order in clause (0-2). In fact, they may all be executed in parallel
on different processors. How to force goals to be executed parallel is explained in the next
chapter.

15

4.1.2 Failure of Goals

The commit operator, |, in KL1 programs works like the eut operator, !, in Prolog. The
failure of a goal in a guard part on the left-hand side of the commit operator can be thought
of as cansing the guard part of another (randomly selected) clause to be tried. But if a body
goal on the right hand side of a commit operator fails, it means thal the parent goal also fails.
The failure of the parent goal causes a failure of the grand-parent goal. This continues until
all the goals in the KL1 program have failed.

4.1.3 KI1 Data Types

The following data types are available in KI.1.
e Variable { Var, , eic, |

Integer | 138, 16'84A, cle.)

-

Floating point { 1.23, 1.0E10, etc,)
¢ Atom | a, "ABCY, etc.)

List ([1,2,3], [a,CA,b],clY), etc.)

-

Vector ({a,b,c}, {}, a(b), ete.)

String | "abe™, ", ete.)
¢ Module { module#foo, cte, |

Refer to Section 2.1.3 of the “PIMOS 1.5 Operating Manual” [3] for more details on these
data types.

4.1.4 Built-in Predicates

I'here arc three types of built-in predicates in KL1. The first type can only be used in
the guard part, the second can only be used in the body, and the third can be used in both
the guard part and the body. All PIMOS built-in predicates are listed in Section 2.2 of the
“PIMOS 1.5 Operating Manual”[3].

4.2 A Sample KL1 Program

Next is an actual KL1 program, which should be entered into a file named “samplel k117,
Note that any file containing a KL1 program must have the “.kI1™ extension at the end of its
name.

:= module samplel. wi1-1)
:= public sieve/3. %(1-2)
sieve([],Even,0dd) :- true | Ni1-3)
Even=[],
0dd=[].
sieve([N|List] ,Even,0dd):- %(1-4)

Wmoed 2 =:=0 |

16

Even=[N|Taill,
sieve(List ,Tail,0dd).
sieve([N|List] ,Even,0d4d):- L(1-5)
N med 2 =\= 0 |
Odd=[N|Taill,
sieva(List,Even,Tail). w(1-6)

Here vou can see the use of the “=:=" aperator. which performs a comparison of the two values
on either side of it. For an explanation of these kinds of operators in KL1, refer to Section
2.1.6 of the “PIMOS 1.5 Operating Manual™[3].

Line (1-1) declares the module name of this program to be “samplel”. Line (1-2) declares
Lthal the predicate named “sieve” may be called from external modules and that it has 3
arguments. Both of these two declarations mmst be placed at the top of anv file that contains

a KL1 program.
We can call any goal in a module from any other module or from the Listener prompt (see
Chapter 4) by using the following format,

module_name:goal _name
To call the goal “sieve” from the Listener type
7- samplel:sieve{[2,5,6,8,0,9] ,Even,0dd).

Lhis goal will be matched with the clawses {1-4) and (1-5), but only the guard part of (1 4)
will succeed. The Lody part of (1-4) will then be activated, resulting in the unification :

Even = [2]Tail]
and the recursive call of the goal :
sieve([5,6,8,0,9],Tail,0dd).

As i the above example, all instantiation of sutpul variables (such as Even=[N|Taill) must
be done in the body part of each clause. ‘I'his restriction comes from the synchronization
mechanism of KL1 processes, and will be explained in the next section.

The goal sieve([5,6,8,0,9],Tail,0dd} called recursively will be successfully matched
wilh clause (1-3), and the goals of its body part :

0dd=[51Taill, and sieve([6,8,0,9],0dd,Tail)

will be executed. Finally, the result of this program will be the instantiations 0dd=[5,9],
Even=[2,6,8,0].

Clause (1-3} in the above program could be replaced with the following one:

otherwise.

sieve([N|List]!,0dd,Even):= %i1-57)
true |
Odd=[N|Taill,
sieve(List,Tail,Even).

The otherwise statement is a simple expression indicating negation. If inserted among clauses
that are placed in OR-relationships, the KL1 system selects the clauses under the otherwise
stalement only when all clauses above it fail. So, by using the otherwise statement, it is not
necessary Lo describe the negative conditions of the guard parts of all the other clauses.

Here 15 another example of how to use the otherwise. statement.

17

= module samplel.
:-= public check/2.

check([], Out):= true | Dut = []

check([M|In],
Out =
check([M|In],
Out =
check([M|In],
Out =
check([M|In],
Out =
check([M|Ia],
Dut =
otharwise.
check([_|In],

Out):- atom(M) |
(atom|Out1), check(In, OQuti).
Out) :- integer(M) |

[integer|Outi], check(In, Outl).

Out):- string(M,_,_) |
[string|Outi], check(In, Outl).
Out) :- list(M) |

[list|Out1], chack(In, Outl).
Out) ;= vector{M,_) |
[vector|Out1], check{In, Outi).

Out):= true |

check(In, Out).

%(2-1)

Clause {2-1) is a definition for ignoring exceptional input data. The program executes as

follows

7- sampleZ:check([1,a,"ds",23.5,{a,b}].X).
X = [integer, atom, string, vector]

yes.
e

The goals defined under the otherwise statement were responsible for ignoring the data 23.5

in the input list.

4.3 Stream Communication and Process Synchronization

Consider the following example :

i~ module sampled.
1= public go/3, generate/2.

go(Max,Even,0dd) :- true |
generate(Max ,Numbers),
samplel:sieve(Numbers,Even,0dd) .

generate(0,Numbers):- true |
Numbers=[] .

ctharwise,

generate(N,Numbers):- true |
Numbers=[N|NewNumbers] ,
N1 := N-1,
generate(N1i,NewNumbers) .

18

#(3-1)
hi3-2)

When we call the goal “go™ with an appropriate number as the first argument, 1t activates the
two subgoals “generate” and “samplel:sieve.” The goal “generate” generates a list of integers
in the variable “Numbers.” The goal “sieve™ defined in the module “samplel™ divides the list
“Numbers” into two lists “Even” and “Odd.” Both predicates “generate™ and “sieve” continue
to run by calling themselves recursively. We call predicates that do this “processes™.

Now assume that the two process are running in parallel on different processors. These
processes share the variable *Numbers” which is instantiated by the process “gencrate™ and is
read by the process “sieve”. We call this kind of communication between processes by shared
variables “stream communication.”

When the process “sieve” runs faster than the process “generate.” “sieve” waits for data
in the shared variabie “Numbers” to be instantiated by “generate.” This synchronization is
performed automatically by the KL1 svstem.

[the above program, consider the process “sieve” called with no data in the first argument

sieve(List ,Even,Tail) h(1-8)

T'his goal could be matched with clauses (1-3), (1-4), or (1-5) by one of the following unifications

List = [] or List = [N|List’]

Unifications that try to instantiate a variable in the calling goal are suspended until the variable
becomes instantiated by another process {in this case “generate”.} This mechanism controls
the process “sieve” and prevents it from running faster than the process “generate.” It provides
us with a natural facility for describing process synchronization.

4.4 Merging Streams

To merge the output from the streams of two or more subprocesses 1nlo one stream, we
can use a “merge” process that is easily defined by a kL1 program, but available as a built-in
predicate in KL1 since it is used so frequently.

The “merge” predicate takes an arbitrary number of sireams as input and merges them
into one output stream. If data is sent on any input stream, the process will immediately
forward the data on the output stream. Unlike the “append” program in Prolog, the sequence
of data on outputl stream of a “merge” process is unrclated to the order of data on the input
streams. The builtin predicate, “merge.” is called in the following way.

merge{TIn,lut)
The first argument must be instantiated to a vector of input streams such as:
In = { Ini,In2, ...}

The second argument 15 a single output stream.
The following example shows how Lo use the merge predicate.

1= module sampled.
:= public flatten/2.

flatten{[],Dut):- true | Yig-1)
Dut={[].
flatten([Topl|Tail] ,Out):- true | Wia-23

flatten(Top,X1),
flatten(Tail,X2),

19

merge({X1,X2},0ut).
flatten(A,Out) - atom(A),a\=[] | %i(4-3)
Out=[A] .

This program receives a list, possibly containing other lists, as the first argument. In the
second argument, it returns a list of all atoms that were anywhere in the input list. This
invocation,

?- sampled:flatten([a,[b,c],ld,le,f11],X).
returns the following list :
L=1[c¢c,a,fe,db]

Note that the order of the atoms a,b,e,... cannot be determined by looking at the program
because the order of exceution of the two goals “fatten”™ in clanse (4-2) cannot he determined.

The goal merge ({X1,X2},0ut) will immediately send data received from the input streams
“X1" and “X2" into the output stream *Out”™. When the goal “flatten” has consumed all data
in the first argument. the elause (4-1} will put [1 in the stream “Out.” This instantiation
unifies the “Cdr” part of the list with []. and the stream is “closed.” Thus. merge will close
its outpul stream when all of its input streams are closed.

Execution of the goal “flatten” in the program “sample3” will generate many instances of
merge. But generating too many instances of merge will degrade the efficiency of vour KL1
pragrams. We can modify the original “flaiten” example and come up with the following
program that avoids this problem.

:= module samplef.
;= public flatten/2.
flatten(In,0ut):- true |
flatten1(In,X),
merge (X,0ut) .
flatteni([],0ut):- true |
Out=[].
flattenl([Top|Taill,0ut):= true |
flatten1(Top,X1),
flatteni{Tail,lX2),
Out = {X1,X2}.
flattenl(4,0ut):- atem(a),a\=[] |
Out=[a].

4.5 I/0 Interface

This section shows how to use the window interface utilities and how to do file 1/O within
KL1 programs. Details can be found in Sections 3.5, 4. 5, and 8.3 of the “PTMOS 1.5 Operating
Manual”[3].

4.5.1 Standard I/O Devices

Any KL1 program can access a window of the Shell or the Listener by using the Stan-
dard 1/0 device represented by the streams Standard-Input, Standard-Output, Standard-
Input/Output, Message-Output, and Standard-Interaction.

20

Iu order to perform I/0, messages are sent to these streams requesting operations such as
“gete(C)" to read a character, “pute(C)” to output a character, ete. A complete list of these
messages can be found in Section 3.5 of the “PIMOS 1.5 Operating Manual” (3],

The loliowing module shows how to access the streams Standard-Input, Standard-Output,
and Message Output.

= module std_io.
:= public create/3.

create (Input,Output,Message) ;- truel
shoen : raisa{pimos_tag#shell,get_std_in ,Input},
shoen:raise(pimos_tag#shell ,get_std_out,Output),
shoen:raise(pimos_tag#shell ,get_std_mes,Message).

This module can be called as

7- std_io:create(Input,COutput,Message),
Input={ ...], Output=[...], Message=[... .

Which results in the following streams :

e Input : A Standard-Input device stream
Aceepts any message provided by a buffer:input filter.

o Output : A Standard Output device stream
Accepts any messages provided by a buffer:output filter.

o Message : A Message Ontput device stream
Accepls any messages provided by a buffer:output.filter.

An explanation of the buffer and the filter utilities can also be found in Section 3.5 of the
“PIMOS 1.5 Operating Manual”[3].

4.5.2 Window I/0

The following module creates a window for mput and output.

:- module window.
;- public create/1.

create(Window):- truel
shoen:raise(pimos_tag#task,
general request ,General Request_Device),
General Reguest_Device=
[window(normal{Window_Request_Device,_,_)})],
Window_Request_Devices=
[ereate(normal(Window_Device,_,_))]1,
Window_Device=[
Y set_size(mouse,_),
set_size(char(50,25),_),

21

set_position(mouse,_),
A set_positien(at(0,0),_),
set_title("Interactive Window",_),
activate(_)| Stream],
buffer:interaction_filter (Window,Stream). %i{E=1)

Thiz module can be called as

?- window:create(Window),
Window=[putl{"Hit return to exit."), getl(_)].

You will now see the frame of a window on vour display. Click the mouse-button to confirm
its position. If you hit the return key. the window will disappear immediately.

The variable “Window™ becomes a stream to which we can send messages prepared by an
[/O-filter to manipulate the window that just appeared. See Section 3.5.4 in the *PIMOS 1.5
Operating Manual”[3] for further details.

4.5.3 Files I/O

File 1/0 is performed in a similar manner to window I/0. A stream representing the file
is created, and messages requesting file operations like “pute(C)” and “gete(C)” are sent to
initiate 1/0. The following module allows input and output to be done on a file.

= module file.
;= public open/4.

open(FileName Mode,File,Status):- truel
shoen:raise(pimos_tag#task,

general request,Ceneral _Request_Device),

General _Request_Device=
[file{nermal (File_Request_Device,_,_))],
File_Request_Device=

[open(Filelame,Access)],

{ Mode=r -» $i6-1)
hAccess=read(Result),

(Result=nermal (Stream,_,_) ->
buffer:input_filter(File,Stream), w(6-2)
Status=success

; otherwise

; true -> Status=Result)

i Mode=w -3
Access=vrite{Result),
{ Result=normal{Stream,_,_) -»
buffer:cutput_filter(File,Stream), %iE=3)

Status=success
; otherwise
; true -» Status=Result)
; Mode=a -»
Access=append(Result),
{ Result=normal (Stream,_,_)} ->

22

buffer:output_filter(File,Strean), %(6-4)
atatus=succesas

; otherwise

true -» Status=Result)).

r

Here, the expression in (6-1) is a *“Macro symbol™ for conditional selection of execution. “Macro
symbols™ are explained in Section 2.1.6 of the “PIMOS 1.5 Operating Manual” 3].
The arguments in the above goal, open(FileName, Mode, File, Status) have the fol-

lowing meanings.

s [MleName : The name of the file to open, .‘-'uIl[-’T'iﬁPd as string data.
"sample. k11", "»sysruserdfeldmark>sample k11", atc.

o Mode : The mode for opening the file, (r, w, a)
r — read, w — write, a — append
s File : A stream to the file opened.
o Status @ Other information concerning the opening of this file. (success, failure, etc.)
This predicate returns a stream to the file which acepets any message provided by the
following hilter utilities -
e Mode — r
Messages lvomn buffer:input filter

e Mode = woa
Messages from buffer:output filter

4.5.4 A Sample Program Using the I/O Interface

Below is a sample program that uses the PIMOS I/O interface. Before compiling this
program, compile the three modules above, “std.io”, “window”, and “file”. This program
prints out the contents of the named files i a new window, and is executed as follows.

7- sampleb:demo.

laput the name of any file when the program asks you to. Next, confirm the position of the
window hy clicking the mouse button when the window frame appears. The contents of the

file are then displaved in the window.

- medule sampled.
:- public demo/D.

demo:- true|
std_ic:create{In,Out,Mes},
In=[prompt("File name ? "),getl(FName)],
Out=[putt(’Opening file : ’),putl(FName)],
Mes=[putt(Status),nl]},
type.file(FName,Status).

type_file(FName,St):- string(FName,_,_)|
23

file:open(FName,r,File,5t),

(St=success -»
window:create(Win),
File=[getl(Line) IRF],
type(Line,RF,Win)

; atherwise

¢ true -> true .

type(-1,File,Win) :- truel|
File=[],
Win=[prompt ("#** Hit Return key to exit.®*s"),
getl(_)].
otherwise.
type(L,File,Win):- truel
Win=[putl(L},flush(_) W],
File=[get1(N)IF],
type(N,F,W).

4.6 Deadlock

As mentioned in the section “Stream Communications and Process Synchironizations”,
instantiation of undefined variables in a guard part will be suspended by the KL1 system. If
the variable is not instantiated by any other processes, the suspended execution will never
resume. We call this situation “Deadlock”.

There are many situations where deadlock can occur. For example, if we modify clause
{4-1) in the module sampled like this:

flatten([],[]1):- trueltrue. hia-17)

The goal ?- flatten([],X1) which activates this clause will be suspended because of an
attempt to instantiate the variable X1 with [1. This will cause a deadlock to oceur becanse
X1 is never instantiated by another process.

Or when we rewrite the same clause as :

flatten([],0ut):- trueltrue. wig-1")

a deadlock will occur because the variable “Out” that is read from a merge will never be
instantiated to anything.
Chapter 6 shows how to detect deadlock in a KL1 program.

Chapter 5

Load Distribution

This chapter shows bricfly how to do load distribution in KL1. In the current version of
PIMQOS, a processor number must be explicity assigned to a goal in order to make it execute
on a different processor.

5.1 Implementing Load Distribution

Any KLI1 body goal may be assigned to a specific processor by attaching an experssion
containing the PE number in the fbllowing manner, where PE is an integer greater than or
equal to zero.

goal@process (PE)

The following sample program illustrates this concept.

:— module sample7?.
:= public fee/0.

foo:- true |
alprocessor(0),
alprocessor(1),
a@processor(2).
a :- true | true.

Processor numbers may also be variables. Execution of the corresponding goal is suspended
until the variable is instantiated to a number.

:- module sampleB.
:= public foo/3.

foo(P1,P2, P3):- true |
alprocessor(P1),
alprocessor(P2),

alprocessor(P3).
a :- true | true.

5.2 An Example of Load Distribution

The following is a more complex example of load distribution.

25

:- module sampleS.
:- public distribute/1.

distribute(N) :- true |

current_processor(_,X,Y), wi1)
PEs := XY, w(2)
fork(N, PEs, O)®@pricrity(*,4096). %(3)

fork(0, PEs, PE):- true | true.
othervise.
fork(N, PEs, PE):- true |

Felle := PE mod PEs,

job_ext@processor(PelNa) , rACY,

NextPE := PE+1,

N1 := N-1,

fork(N1, PEs, NextPE).
Job_ext :- true | job@priority(#,2000). A(s)
Job := true | true.

lu line (1), “current_processor” is a built-in predicate that returns the number of the processor
on which it was executed along with the number of processors available in the horizontal(X)
and vertical(Y) directions. In line (2), PEs becomes the total number of processors in the
machine. In line (3], the goal fork that distributes the goal job.ext to vther processors is
called with the highest priority. (An explaination of priority can be found in Section 2.1.4 of
the “PIMOS 1.5 Operating Manual”[3].) In line (4), the goal job_ext represents an actual job
that is distributed to the processor numbered PeNo. Finally, in line (5). the goal job is called
with lower priority than that of the goal fork.

If this program is executed in the following way,
7- sample%®:distribute(8).

the job will be executed & times. 1f only 4 processors are available, the goals will be distributed
to processors number 0 throngh 3. in the order 0,1,2,3,0,1,2,3 .

5.3 Efficient Load Distribution

In order to do load distribution in your programs efficiently, vou should keep in mind the
following fact. Since each processor in the Multi-PSI machine has its own private memory,
communication between two processors is necessary whenever a goal on one processor reads
data from & goal on another processor. If you distribute goals that need to conununicate large
amounts of data, the resulting communications overhead may degrade the parallel performance
of your program.

The following suggestions may help.

® Never distribute goals that ouly have a small amount of work to do.

e If one goal must read data from another goal, it is desireable for them to be on the same
Processor.

26

® Databases that must be accessed by many goals should probably be distributed to each
processor.

o Make any data that will be read by goals on other processors as compact as possible.
e Cive high priority to any goal that will distribute other goals. Give low priority to goals
that will themselves he distributed.

For more details about load distribution, see Section 11.5 of “KL1 Programming Mauual” [3].

27

Chapter 6

Running KL1 Programs

This chapter explains the vperations necessary to compile, execute, and debug KL1 programs
along with how to evaluate their performance.
6.1 Compiling KL1 Programs

You can compile KL1 programs contained in files with a .k11 suffix using either of the
fellowing two utilitics.

e The PIMOS resident Native-Compiler

® The CAL Cross-Compiler
When debugging, you should use the Native-Compiler. The CAL Cross-Compiler will be
explained in the Chapter 10.

6.2 How to Use the PIMOS Native-Compiler

6.2.1 Starting It Up

To start up the Native-Compiler from a Shell, login to PIMOS as “ShellUser™ in the Users
Window.

LSERS Shell for ShellUser
User Name>>Shellllzar Shell>

|-

You can find out what the current directory is by typing the “cd” command in the Shell
Window.

Shell> cd
Illegal filename for take . : Ignore this line.

28

The value of the task:directory is "sys>user>feldmark".
Shell>

To change current directory type :

Shell> cd "Directory Name"

Next, start up the Native-Compiler with the “compile” command.
Shell> compile

The following prompt appears in the window.

#* KL1 Compiler ##
COMPILE>

Type the name(s) of vour KL1 program(s), omitting the “kl1" extension. Two or more
names can be input on the same line separated by commas. For example, you can compile
the programs in the files “samplel k117, “sample2 k11", and “sample3.kI11" with the following
cormmand,

COMPILE> samplel, samplel, sampled

To compile files in the other directories, type their names along with their path-names, in
string data form, like :

"rgys>userr>your-name>directory-name>file-name"

Tf vou need 1o change the current directory, exit the compiler by typing 'exit at the prompt,
change the current directory with the “ed” command, and start up the Native-Compiler again.

On a Psendo Multi-PSI machine, compiling too many files al the same time may causc a
memory shortage error. If this happens, divide the files into two or more groups that can be
compiled at the same time, observing the following rules.

e Group together files {modules) that call each other.

e Compile lower groups before compiling upper groups. In other words, first compile
groups that do nol call vther groups. Next, compile groups that call other groups that
have already been compiled.

For example :

Compile File : ##psi::>sys>#*>samplel.kll.1

Compile Module : samplel
sieve/3
Compile Succeeded : samplel

Compile File : ##psi*#+::>sys>**s>sample2.kll.1

Compile Mcdule : samplel
check/2

29

Compile Succeeded : samplel
Compile File : ®*psi®#*::>gysr**s>sample3.kil.1

Compile Module : sampleld
go/3

generate/2

Compile Succeeded : sampled

"samplel"” Loaded
"sample?" Loaded
“"sample3" Loaded

Compilation(s) Succeedad
COMFILE>

To exit from the compiler and return to the shell prompt, type :
COMPILE>!exit

6.2.2 Batch Compilation

You can also compile your programs directly from the Shell Prompt.

Shell> compile(|"samplel","sample2","sample3"])

Thiz command is useful in a “Command File™. (Sce Chapter 8.)

6.3 Executing Programs
KLI programs can be executed with either of the following two utilities.
¢ The Listener (see Chapter 9)

e Shell (see Chapter 3.)

Listener utilities are very useful for debugging vour programs.

6.3.1 Starting up the Listener

T'wo methods are available to start up the Listener.

» Login to PIMOS az “ListenerUser” from a Users Window.

USERS

User Name>> ListenerUser

30

e Type the “listener” command at the Shell Prompt, and set the position and size of the
window that appears after clicking the mouse button.

USERS Shell for Shelllser

Uger Hama>> Shell> listener &

Il & program called [romn a Listener runs into trouble, you can Kill both it and the Listener
together if the Listener was called from a Shell, since any jobs called from a Shell can be
managed by Shell commands. (See Chapter 8.} It is adviseable to start the Listener from a
Shell.

6.3.2 Executing a Goal

A Listener plays a role similar to that of a Prolog interpreter. We can call any goal in any
KL1 program by typing its name in the following form to a Listener prompt. Note that it
must be followed by a period.

7- module-name:goal.

For example:

7= samplel:sieve([1,2,3],E,0).

E = [2]
0= 11,3]
yas

Values instantiated to any variables are stored in something called a “Variable Pool” (sce
Chapter 9} that corresponds to and is created at the same time as each individual Listener.
In this case, the variables “E” and “O" retain the values that were set above. To show this
fact, try the following unification.

= X = ['E,D],
¥ = [[2],[1,3]]

yes.

If you call another goal with a variable currently in the Variable Pool by mistake, the goal
may fail. This is any easy mistake to make. For example, the following goal called with the
variahles “I7 and *07 from the Variable Pool will certainly fail.

31

?- samplei:sieve([5,2,3],E,0).
Unification failure>> 5
With > 1
Pe >0
no.

It fails because the program tried to unify the variable “07 that had already been bound to
[1,3] with [51Tail]. You can free all bindings kept in the Variable Pool by typing a period
at the Listener prompt.

T .

If you do not need a Variable Pool at all, type the forget command at the Listener prompt.
{The inverse command is remember)

- forget .

6.4 Debugging Your Programs

Two tools, the Iracer and the Inspector are available to help debug your KL1 programs.

6.4.1 The Tracer

Unlike Prolog, KL1 goals are not executed in a sequential order. At any particular moment,
it 1s not possible to determine which goal will be executed next. But by using the Listener's
Tracer tool, it is possible Lo select specific goals to be traced, even while many goals are
executing in parallel, thus allowing vou to debug without worrying about the order of execution.

To use the Tracer, enter the following command.

7- trace.
yes.
{trace}

-

This puls you into trace mode where a variety of information regarding the execution of a goal
can be displayed. For example, execution of the predicate “go” in the module “sample3” can
be traced like this:

7- sampled:go(3,E,D).

004096 0 sample3:go(3,A,B) (a)
1 * (1} generate(3,C) (b)
2 * (2) samplel:sieve(C,A,B)7 (c)

In line (a), there are three numbers: 004096 0. The first number “0” is the number of the
processor on which the goal is execuled. The second number “4096” is the priority given to
the goal. The last number “07 is a goal number to identify the goal in this trace.

On lines (b) and (c), we see subgoals that are called from the goal “go”. The numbers,
“1" and “2", at the front are goal numbers. The mark, *, indicates that trace-mode is active
for the goal. The parenthesized numbers, (1) and (2}, are used in some trace commands to
indicate the subgoal to which the trace command is applied. (A detailed explanation of all

32

the information displayed by the Tracer may be found in Section 10.6.2 of the “PIMOS 1.5
Operating Manual”[3].)

In the above example, both subgoals (1) and (2) are now in trace-mode. We can reverse
the mode of any subgoals that do not need to be traced by typing the t commmand followed by
their number, as in:

t N1,N2,...

For example, typing the following command at the prompt in the line (c),

2 * (2) samplel:sieve(C,A,B)7 t 1 (c)
Q0R4096 ¢ sample3:go(3,A,E)

1 (1) generate(3,C) (d)
2 * (2) samplei:sieve(C,A,B)? {e)

removes the * from subgoal (1) in line (d). This means that subgoal (1) is now in notrace-
mode. Typing the same command again will return the goal to trace-mode. To continue to
trace, hit the “return” key at the prompt in line (e},

Q004026 2 samplel:sieve([3,2,1],A,R)
B= [3|D]
3 = (1) sieve([2,1],A,D)7

We can finish tracing a scquence of goals by typing the x command if all subgoals are in
trace mode. This has the effect of reversing the modes and continuing execution.

3 * (1) gieve([2,1],A,D)7 x
E = [2]

0= [1,3]

yes.

?_

In this case, all execution has finished, but in other cases, some goals in trace-mode may remain
o he exeented, and the tracer will show what goal is to be executed next.

Display of trace information can be stopped with the “notrace” command. and a help menu
can be displaved with the “help” conmnand. For more information on the trace command, see
Section 10.6.3 of the “PIMOS 1.5 Operating Manual”|[3].

The Lracer has two facilities for spying on goals and tracing specific types ol goals selected
by the user.

e Reduction Spy
Report the reduction of selected goals.

o Fork Spy
RReport the reduction of a parent goal with a selected goal as a child.

To select spy mode for a goal, type :

7- spy module-name:predicate-name/number-of-arguments,

33

Next, to select which spy mode to use, type one of the following :

7= spy-reduction. (or just sr.)

?- spyfork. (or just sf.)

The next example illustrates tracing using the spy facilities.

- spy samplel:sieve/3.
Spypeint set on samplel:sieve/3
yes.

- =8T.
yes.

{SpyReduction}
7~ sample3:go(3,E,0).
<0> sample3:go(3,A,B) —->

Qoe4096 + samplel:sieve([3,2,1],A,B)
B=[3[C]
1+ % (1) sievel([2,1],4,0)7

Trace commands are also available in spy mode.
We can continue until the exccution of the next spied goal with the following command.

s sr command : Trace until the next goal with Reduction Spy mode.
o sf command : Irace until the next goal with Fork Spy mode.
To reset a goal's spy I'ttudt'., type :
7= mnospy module name:predicate-name/number-ol-arguments.
To reset the spy mode of all goals, type :

P nospy .

The “nospy”™ command resets the spy mode of a goal(s), but does not actually take you
out of spy mode. To exit spy mode completely, i.e. to return to the Listener top level, use the
“notrace” comrand.

7- notrace. [or just ntr.}

6.4.2 The Inspector

The Inspector is a tool for displaying any piece of KL1 data or registering it in the Variable
Pool. The Inspector can be called from the top level of the Listener or from the prompt of the
Tracer. A more detailed explanation of the Inspector appears in Chapter 11 of the “PIMOS

1.5 Operating Manual”[3].
e Invoking the Inspector from the Listener.

You can see the data bound to any variable in the Variable Pool. To display the names
of variables kept in the pool, simply type :

34

7 1

Next, if you want to see the data bound to the variable “X", invoke the Inspector by
typing :

7= inspect(X)
If “X™ is bound to {1.23.a(b}}. then the following will appear.
{1.2,3,a(b}}>

The Inspector can be applied to any command. For example, in order to show the fourth
element of this data item, we can use the me command. (Note that data elements are
numbered starting at zero.}

{1,2,3,a(b}}> me 3
3 alb)

e [nvoking the Inspector [rom the Tracer.
lo invoke the Inspector [rom the Tracer, Lype,

ins goal number

although the goal number may be omitted. For example:

?- sampled:go(3,E,0).

€0@4096 0 sample3:go(3,A,B)

1 * (1) generate(3,C)

2 * (2) samplel:sieve(C,A,B)7 ins 1
generate(3,A)>

The commands that can be used from the Inspector are displayed by typing the help command
on the Inspector prompt. To exit the Inspector, type the exit command.

6.5 Using the Re-Linker

After debugging a program, you must re-compile any modules you modified. Unmodified
modules do not need to be recompiled. If modules that have not been recompiled call modules
that have heen recompiled, you must call the Re Linker to link these modules again, The
Re-Linker can be executed in the Shell as shown here.

Shell>relinker([samplel, sample2,...])

The elements of the argument list are names (as atoms) of modules.

The information for executing a KL1 program generated hy compiling it is normally lost
when you shutdown PIMOS. In order to not have to recompile every program you use every
time you reboot PIMOS, you can save this information into a file using the Unloader utility.
The Unloader can also be executed in a Shell as follows.

Shell> unload([samplel sample2,...],”module.unl”)

35

This will save the information needed to execute the modules samplel, sample2. ... in the file
“module.unl”. The name of the file must be string type data. The next time vou boot PIMOS,
you can load the information inte PIMOS using the Loader, which can also be executed in the

Shell. For example :

Shell>load("module.unl")

Now vou can call any of the modules samplel, sample2, ... from the Shell or from the Listener.

6.6 Dealing with Deadlock

When a running program does not show any response, deadlock may have occurred hetween
goals. You can check for deadlock in vour program by trving cither of the following.

e Check if the color of the Monitor Panel is black when “Silent Mode” in the CSP Console
Panel is OF}F. {See Section 7.2 of the “Multi-PSI/V2 Console System (CSP) Operating
Manual”[2].)

e Suspend the exccution of your program several times by typing Control=C. Use the “™
command to check whether or not the number of reductions are increasing. (See Chapter
9.

6.6.1 Invoking the Garbage Collector

In the current version of PIMOS, deadlock can also be detected by the Garbage Collector.
The Carbage Collector is antomatically invoked when available merory space becomes short,
but if you suspect that your program is deadlocked, you can invoke it voursell by either of the
the following two methods.

s Type Contrel-C in the Listener, and use the “¢” command.
¢ Use the “ge” command in Shell.

You can call the Garbage Collector from anywhere. If deadlock is detected, it will be
reported in the window which the program was started from. If this was the Shell, vou must
hit the return key once in order to see the message.

6.7 Evaluating Program Performance

The following facilities can be used to evaluate the performance of your programs.
¢ lleporting resource consumplion (the number of reductions) and total execution time of
a goal called from the Listener,
To get this information, give the following command to the Listener after executing a
goal. '
?- gtatistics. (or just st.)

For example:

36

?- sample3:po(3,E,0).
E= [2]

0=1[1,3]

24 reductions

118 msec

yes.

To reset this display mode, type nostatistics. or just nst.

¢ Performance-Meter {Only on Multi-PSL)
The Performance-Meter is a tool for showing the average work load of cach processor on

& Multi PSI machine. To invoke it, type the following command in the Shell window.

Shell> pmeter
An explanation of the Performance-Meter can be seen in Appendix B of the *PIMOS
1.5 Operating Manual”[3].

a7

Chapter 7

Dealing with Problems

This chapter explains briefly how to deal with PIMOS or SIMIPOS problems that could be
caused by KL1 programs. Greater detail on this subject can be seen in Chapter 12 of the
“Multi-PSI/V2 Consele System (USP) Operating Manual™[2].

7.1 Problems with PIMOS

o If PIMOS doesn't appear to be running correctly (because of bugs in your program or
tor other reasons) vou can stop PIMOS exccution by typing Contrel-C in the “CSP
Command Window”. You will then see a C5P prompt, $, in the window. I lyping
Contrel-C has no effect, click a mouse button on the “Monitor Panel” in the upper-left
corner of vour display and push the ABORT kev. Next, select the menu item *Return to
CSP Toplevel” in the window that pops up. You will then get a prompt in the “CSP
Command Window.” Input the exit command at this prompt.

% exit
Lo terminate CSP. You can reboot PIMOS hy selecting “(Pseuda) Multi-PPS1” from the
SYSTEM MENU,

¢ If a KL1 program consumes all the PIMOS memory or causes a PIMOS error, PIMOS
will abort execution and a § prompt will appear in the “CSP Command Window". You
should then shutdown PIMOS with the exit command and reboot from the SYSTEM
MENTI,

¢ When the cause of a problem is a shortage of memory, the following error message will
he displayed in the “C5P Command Window™:

Copying GC Memory Shortage : xxx words

Sometimes this type of error can be avoided in Pseudo Multi-PSI by changing the infor-
mation that specifies the number of processors in your configuration file. See Chapters 4
and 6 in the “Multi-PSI/V2 Console System (CSP) Operating Manual”[2] for directions
on how to do this.

7.2 Problems with SIMPOS

SIMPOS execution may halt because of problems with one of your programs. In this case,
the CONSOLE Window {which first appears on the display when SIMPOS is booted) will
appear with messages and a prompt something like the following :

38

You

#F-SRGHLT, CPU HALT BY STOP REGISTER

MPC = PMPC =
CIRO = ...
CIR1 =

can recover from this situation with the following operations.
T'vpe the deb command to the prompt to enter the PSICSP debugging mode.
$deb
lnput go to the > prompt that appears on the CONSOLE.
>Eo

Next, push the CTRL key and the BREAK key al the same time. The CONSOLE Window
will disappear. Return to the C5P Command Window by clicking the mouse bution on
it af necessary,

If there s not a $ prompt in the CSP Command Window, type Control-C to make the
prompt appear.

[uput the exat command at the $ prompt to terminate CSP.

. Reboot PTMOS by selecting “(Pseudo} Multi-PSI" from the SYSTEM MENT.

[f SIMI'OS does not respond correctly after operation 3 above, push the BREAK key to
return to the > prompt. Next, perform the following operations to shutdown SIMPOS
and reboot it.

>goftr

@q simpos

B o

DC> 0K to SHUT DOWN 7?7 [Y/N] -» [1/0]
RC> 1

*q
tho

If operations 1 or 5 above fail and you cannot terminate CSP, select the item “pro-
cess” from the SYSTEM MENU to start up the “Process Manipulator.” ({See the “Basic
PSI/SIMPOS Operating Manual (1).(2)7[7].) In the “Process Manipulator” window, se-
lect (Pseudo_) multi psi main program and execute the axterminate command. You
may then shut down SIMPOS,

s If all the above operations fail, push the RESET button on the PSI-II and cross your

fingers.

39

Chapter 8

The Shell

This chapter illustrates the essential functions of the Shell.

8.1 Setting Up an Initialization File

As explained in Chapter 2, the Shell wakes up with its default directory set to the user's
home directory specified in the “Uscr Environment File.,” In this directory, vou can create a file
shell.com with commands to do things like set environment variables or executes programs.
The commands in this file are executed aulvmatically when the shell starts up.

Following is a small sample shell.com [ile.

set history = 20

set rgcinc = infinite

set prompt = "} "
listener(mouse,char(50,20),"font:test_11") &

8.2 Basic Shell Commands

The following examples show how to use some of the mast common shell commnands.

o Terminale the Shell
Shell>» exit

¢ Change the current directory
Shell> cd "»sysrcsp>SYSTEM.DIR"

¢ Execute a command file (which may contain any Shell command{s))
Shell> take "test.com"

¢ Display a list of Shell commands

Shell> help

8.3 The History Function

‘I'he history function is available after setting the length of the history stack.
Shell> set history=20

You should put this command in your shell.con file.
You can sec contents of the history stack hy typing:

Shell> history
40

If you want to use one of the commands that is displayed in the history stack, type its nurmber
at the prompt. Typing “0" executes the last comunand you entered. The following executes
the third command on the history slack.

8.4

Shell> 3

Executing Tasks

You can enter any Shell command or call any goal of a KL1 program from the Shell prompt.
But vou cannot nse any variables when you call a KL goal from Shell, so vou caunot call goals
that return values through variables.

8.4.1 Task Job Control and I/0

L]

A task can be executed either in the foreground or in the background of the Shell.

Fvery task has a “Standard Input,” “Standard Output,” and “Standard Message Out-
put,” all of which are set by default to the Shell’s window. You can redirect any of them

to or from another file if necessary.

You can combine two or more tasks by means of pipes | Tasks connected by pipes are
called a “job.”

8.4.2 Examples of Tasks

Executing a Listener in the foreground
Shell> listenar

Executing a Listener in the background
Shell> listener &

Executing multiple tasks
Shell> listener & listener & compiler

Executing a user’'s KI.1 program
Shell> samplef:demo

Executing a task with Standard Input redirected from a file

Shell> cat <= file("me:samplel.kl1")

This task displays the contents of a file. (The cat command recognizes a blank line as
end of impnt.]

Execuling a task with Standard Output redirected to a file

Shell> cat =» file("“"file.new")

Keyboard input is written to the file. (Hitting the return key will terminate this com-
mand.)

‘I'he character = placed in front of the file name is a command to set the output mode
to “write mode”. If vou omit the character, the default mode is “append mode.”

Executing a task with Standard Input redirected from a window and Standard Qutput
redirected to a file
Shell> cat <= window("window name") => file(""file.new")

41

s Executing a task with Standard Message Output redirected to file
Shell> compile(["samplel","sample2","sample3"]) -> file("compile.log")
This task docs a batch compile. (See Section 7.2.4 of the “PIMOS 1.5 Operating
Manual"[3].)

¢ Combining two tasks with a pipe

Shell> grep(":-") <= file("samplel.k11") | 1c
This job will count the numhber of lines in the file that contains the string 7:-".

8.5 Job Control

The following commands are available for controlling jobs in the Shell,

e The “Control-€"" command moves a job running in foreground to the background.

Shell> compile
COMPILE» ~C
Shell>

o The “status” command displays information on all jobs.

Shell> status
1 ==» running compile

e The “stop JobNo™ command stops the job numbered “JobNo™.
Shell> =stop 1

e The “fore JobNe” command brings the job numhbered “JohNo" inta the foreground and
resumes 1t if it was stopped.
Shell> fore 1

e The “back JobNo" command puts the jub numbered “JobNo™ inte background and
resumes it if 1t was stopped.
Shell> back 1

o The “kill JobNo™ command terminates the job numbered “JobNa™.
Shell>» kill 1

o The “kill all” command terminates all jobs.

8.6 Programs as Shell Utilities

You can turn any K11 program into a Shell utility by giving it a module name to be used
as a Shell command name, and giving it a single public predicate named go. (See Section 8.3
in the “PIMOS5 L5 Operating Manual”[3]. } The “echo” utility can be implemented by the
followmg KL1 program.

:= with_macro pimos.
:= module echo.
;= public gofi.

go(Arg) :- truel
shoen:raise(pimos_tag#shell ,get_std_out,Out),
Out = [putt(Arg),nl,flush(_)].

42

This progran can be used just like any other Shell utility, in the following manner.

Shell> echo([a,b,c])
[a,b,c]
Shell> echo("a b c")
"a b c"

43

Chapter 9

The Listener

Chapter 6 introduced Listener functions to aid debugging, for detecting deadlocks, and to
manipulate the Variable Pool. This chapter describes several more functions of the Listener.

9.1

Basic Listener Commands

The following are examples of how to nse some of the most common Listener commands.

[’l'-:'.t‘min‘r:r.ing the Lislener

7- exit.
Calling a Public Predicate
7= module_name : goal.

Calling a Local Predicate
We can call local predicates that arc not declared as public predicates in the following

way :

7= module.name :: goal.
For example :

7~ sampled::fork(100,32,0).

Calling Buill-in Predicates
We can also call built-in predicates which are available in the body part of clauses. For
example :

?- current processor (PE,X,Y), PEs := X#Y,
Using the Help Menu

7- help.

7- help all.
7- help basic.
etc

Viewing statistics

The “statistics” command (or just “st”) turns ON the mode that displays the amount
of resources consumed (number of reductions) and the elapsed execution time of a goal
called from the Listener. (The inverse command is “nostatistics” or just "nst”.)

44

s Setting the Defanli Module Name
7- default module "module name".

Thiz allows you to omit the module naine when calling predicates from thiz module. For
example :

7- default module sampleS.
Calling a public predicate :

7- distribute(10).
Clalling a local predicate :

?- :fork(10,8,0).

» Other Commands
Explanations of other commands are given in Section 10.5 of the “PIMOS 1.5 Operating

Manual”[3].
9.2 Suspending Execution

All programs called from the Listener can be suspended by hitting the attention key,
Control-C. While the execution of a program is suspended, the following commands are avail-
able for displaying information aboul thal program.

o < cr > : Resume execution

o g : Call the Garbage Collector and resume execution.

o r : Display the amount of resources consumed (number of reductions.)
e = : Display the the execution state of the program (task.)

o @ Display the state of the program (task) resources.

s t : Display the names of goals for which execution is being traced.

o k : Display the names of goals whose execution is suspended.

& a : Aborl execution.

e b : Ureak (interrupt) execntion. (exit. returns from a break.)

e h : Display the help menu.

9.3 Changing Standard I/0 Devices

The default device for Standard 1/0 is the Listener window. You can change it to a file or
new window in the following manner.

Set Standard QOutput to the file demo.out
7- sample6:demo => file("demo.out).

45

Set Standard Input to a new window
7- sample6:demo <= window("any name").
Set Standard Message Output to the file demo.mes

?- gampleG:demo -> file("demo.mes").

46

Chapter 10

CAL

CAL is a system for compiling. assembling, and linking KL1 programs to make the binary
objects {denoted by files with the .kbn suffix) that can be loaded into Multi-PSI C5P. All
programs for PIMOS are implemented in KL1 and compiled with the CAL system. I[you
compile a KL1 program and link it to PIMOS using the CAL system, it can be loaded into
CSP when vou boot PIMOS.

10.1 Starting Up CAL

1. Select the item *CAL" from the 8YSTEM MENL

SYSTEM MENU

Multi-P5I
CAL
{PseudojMulti-PS1 Installer

2. After about a minute, the mouse arrow will change into the form for delermining the
position of a window. Click the mouse button Lo selecl a window and its size.

47

CAL manipulator varsion 1.54 10-Jul-89% 18:24:45
message window
__f%lefDirectory Menu Command
PINMOS.DIR Auto
SYSTEM.DIR Cohs
samplel k11 Comp
sample2.kl1 Asam
sample3 k11 Link
LMac
Do
Attr
VarChk
<other>
<parent>
<refresh>
[shell]
I *Exite

The three windows shown here have the following functions.

Message Window
This is the window used to display information from executing CAL commands and
for inputing commands.

File/Directory Menu Window

This is the window for displaying KL1 source files (#.k11), code files (*. rkp) created
by compiling and assembling, and subdircctorics under the current directory. You
use the mouse to select a source file(s) to be compiled and assembled by the “CoAs”
command in the “Command” window.

Command Window
This window contains the command menu. Any command can be executed by
clicking a mouse button on it.

10.2 How to Use CAL

Programs are usually compiled and assembled at the same time, producing a code file
(#.tkp) for each file. Next, they are linked to the PIMOS object file pimos:pimos.kbn using
a CATL function for partial linking.

1. If you want te change the directory, select the item "<ether>" in the File/Directory
Menu, and tvpe in the name of the directory in the message window. For example:

other*me :

2. Select the names of all files to be compiled and assembled by clicking on them. You can
move the File/Directory menu with the same mouse operations as the “File Manipu-
lator.”

3. Select the item Cohs in the Command window to perform the compilation and assembly.

4. Status information is displaved in the Message Window. The following illustrates what
might appear during a successful execution of the “*(CoAs” command.

mkpglkks dEysduser>eessamplel (k11,1
*Compile Start

furui/3,END

efzssemble Start

End.

#Jutput File Name

wEpEslsEr: reysruserrwex>gamplel rkp

*CoAs end !!
5. Next, select Link from the Command window,

6. Type the following command in the Message Window to link the compiled program to
the PIMOS object code.

>> plink pimos:pimos.kbn

ol
F>>

I-J

Load all the (*.rkp) code files produced above one by one.

P»> load samplel.rkp
*xpsi***; i doysiuserr***>samplel.rkp.1
StartPC: XXXXXXXX
EndPC: YYYYYYYY

ok.
P>> load sample2.rkp

49

You can also use the “load =" command to load all *.rkp code files in the current

directory.

K. Save the new configuration of vour programs using the “psave” command,
B b prog E p

P>> psave
Saving ...
##>pimos _kbn
#*>pimos. 1db
¥E>pIlmos . 2ym

ok,
a3

9. Exit from Lthe linker.
>3 axit

L0, If you compile your program again after debugging it, select the following command in
the Command window to refresh the "File/Directory Menu."

<refresh>

You can terminate CAT with the >Exit< command from the Command window.

Note: Each time vou link your program to the PIMOS object code, the object code is patched.
Linking youwr program to PIMOS too many times may canse PIMOS to fail to load into CSP
because the patch has become too large. Loading may also fail when your program has a bug.
You can deal with this Kind of problem by referring to the last section in Chapter 3 of this
mianital.

10.3 Choosing Between the Native-Compiler and CAL on PIMOS

o When you are developing and debugging KL1 programs, vou should always use the
Native-Compiler on PTMOS.

o If a program is bug-free and you will use it frequently, you may want to link it into
FIMOS by using CAL.

¢ In the current version of PIMOS, programs compiled by CAL run faster than those

compiled with the Native-Compiler.

10.4 The Variable Checker

CAL has a feature that will report in the “message window." any variable that is only used
once in a KL1 clause. This can be very useful since a variable referenced only once can easily

be the cause of deadlock.
In order to use the Variable Checker, after selecting a file in the “I'ile/ Directory™ menu,

select “VarChk” from the *Command” menu.

For more details about CAL, see “Using the Multi-PSI/V2 Cross-System (V2/CAL)”[4].

50

Chapter 11

Other Utilities

This chapter explains how to use two other PIMOS resources, Pools and the Timer device.

11.1 Pools

A Pool is & database [or storing and retrieving KL1 data. Tt is controlled just like an I/O
device, by first creating a stream representing the Pool, and then sending messages to that
strearl.

There are two types of Pools, those that use keys to index data, and those that do not.
The [ollowing tyvpes of Poals are available in PIMOS.

¢ Pools without a key : bag, stack, queune, sorted.bag
¢ Pools with a key @ keyed bag, keyed set, keved sorted _bag, keyed sorted set

The coutrol messages available to each type are described in Section 3.3 of the “PIMOS 1.5
Operating Manual”[3].

The following example illustrates the basic functions of the frequently used bag, keyd bag,
and keved.set types of Pools. More details may be found in Section 3.3 of the “PIMOS 1.5
Operating Manual”[3].

e Bag : This is the most basic kind of pool, and can only store and retrieve data. A bag
is created by :

pool:bag(s)

Data is stored and retrieved from this bag by sending messages to the stream variable S
as in :

7- pool:bag(S),
S=[enpty(A), put("str"), put(atom), put{{vect}),
get{B), get_all(C), get_if_any(D)].
= FEE
= {vect}
[atom,"str"]
= {}
[...]

[T e B e R = = -
1

yes.

This examples first asks whether the Pool is empty or not and gets the answer yes in the
variable A. Next, it stores three data pieces of data "str" (a string), atom (an atom), and

51

{vect} (a vector) into the Pool. Next, the message get(B) is sent in order to extract
one piece of data. The itemn {vect] is returned in the variable B. The next message
get_all{C) retricves all data still in the Pool. The last message get_if_any(D) can be
senl al any time, even if the Pool is empty. This message retrieves data in the same way
as messages like get(), but if the pool is empty, it returns { } whereas get () and
other goals will simply fail.

Keved Bag : This is a pool that indexes data via a key, using a hash table to store the
keys.

pool :keyed bag(S)

Fﬂ'l' eXamp I:'I-1 :

7- pool:keyed_bag(S),
S=[empty(A), put("atom", atom), put(str,"stri"),
put(str,"str2"), put({vect},v(1)),
enpty(str,B), get(str,C), get_1f_any(“"atom",D},
get_and_put{{vect},E,v(100)), get_all(F)]

= yes

= no

= YeLr"”

{atom}

= {v(1)}

= {{{vect} v{100}} st ("stri1"}}

r... 1

W mg o m s
1}

1]

yes.

Again the first message asks whether the Pool is empty or not and gets the answer yes.
But this time, the first three pieces of data are each associated and stored with a key.
The string "atom” is the kev for atom, str is the key for both "str1" and "str2", and
v(1) is the key for {vect}. Next the Pool is queried again as to whether or not it is
empty, with respect to items with the key str, Lo which the answer is no. Nexl, data
with the key "atom" is retrieved via the get.if_any message withoul asking whether
or not the ool is empty. The get_and_put message retrieves a piece of data with the
key {vect} replacing it with v(100) and returning it and the key to the Pool. The last
message get_all retrieves all data remaining in the Pool.

keyed Set @ A Pool that can store only one piece of data with each key.
pocl:keyed_set(S)

For example :

7- pool:keyed_set(S),
S=[put(key,"str",A), put(key,atom,B), get(key,C)].

A={}

B = {"str"}
C = atom
s=01...1]
yas.

02

i a keyed.set, the message put stores an item with a key and returns the old data that
used to be associated with the key onto the optional third argument. In this case, the
first message put returns {} to the variable A because there was no data with the key
key. The second message returns the old data "=tr" in the varahle B.

11.1.1 Using Pools

The following program puts each line of a text file into a “Keyed Bag™ and allows the user
to retrieve any line accoring to its line number. Before compiling this program, yvou must have
finished compiling the module file from Chapter 4.

:- module samplelQ.
:- public go/1l.
:= with_macro pimos.

go(Name) :- truel

file:open(Name,r, [getl1(L) |F],success),

std_inter(I0)@priority(¥,-100),

10=[putt('Number of Lines = '),putt(NL),nl,
prompt ("> ") ,gett(T)[I01],

pool :keyed_bag(Pool),

read_file{(L,F,P1,1,NL},

display(T,101,P2),

merge({P1,P2},Pool).

std_inter(I0):- truel
shoen:raise(pimos_tag#shell ,get _std_inter,ID).

read_file{-1,F,F,N,NL):- truel
F=[],P=[] ,NL:=N-1.

ctherwise.

read_file(L,F,P,N,NL):- truel
p=[put(N,L) IP1],
F=[getl(L1)}IF1],
N1 := N+1,
read_file(L1,F1,P1,N1,NL).

display(exit,J0,P):=- truel
Io=[],pP=[].
display(N,I0,P):- integer(N)|
P=[get_if_any(N,L) IPO],
{ L={35t} ->
PO=[put(N,3t) |P1],
I0=[putt{N),putt(’ : ’),putl(5St),
prompt ("> "), gett(T) |I01]
; otherwize
; true -> I0=[prompt("> ") ,gett(T)|I01],
P1=P0),
display(T,I01,P1).
otherwvise.
display(_,I0,P):- truel

53

I0=[prompt ("> "}, ,gett(T)I1I01],
display(T,I01,P).

The program can be used like this.

7- samplelf:go("samplel0.k11").
Number of Lines = 42

5.

: go(Name) : - truel

T.

. std_inter{I0)@priority($,-100),
1.

i~ module samplell.

axit.

R L " 1Y

yes.

11.2 The Timer

The Timer is another PIMOS resource just like files, windows, ete. Creating the following
modile will illustrate how it can be used.

= module timer.
:- public create/1.

create (Timer) :- truel
shoen:raise(pimos_tag#task,
general_request,General Request_Device),
General Request_Devices
[timer{normal(Timer_Request_Device,_,_))],
Timer_Request_Device=
[create(normal (Timer,_,_))].

Calling this module as,
7- timer:create(Timer), Timer = [...].

will return a stream to the Timer in the variable Timer. You can then use Timer functions by
sending the following messages to this stream.

e gat_count ("Result)
This returns the elapsed time since 0:00 AM (midnight) in milliseconds. The variable
Rasult is instantiated to normal (Count) where Lthe variable Count is the actual time.

e on_at(Count, "Result)
When given a time in milliseconds since 0:00 AM (midnight) in the variable Count, the
variable Result will be instantiated to the value normal (Now), and the variable Now will
be instantiated to the atom wake_up at the actual time specified by Count.

54

» on.after(Count, Result)
When given an amount of timne in milliseconds in the variable Count, the variable Result
will be instantiated to the value normal (Now), and the variable Now will be instantialed
to the atom wake_up after the amount of time specified by Count elapses.

11.2.1 Using the Timer

The following alarm program shows how to use the Timer. In this program, sending the
message on_at {Count, "Result), returns the value normal (Now) to the variable Result. The
variable Now will be instantiated to vake_up when the specified time arrives. The alarm process

detects the instantiation and sends a message to Message-Output.,

- module alarm.
:- public go/3.

go(H,M, Mes) : -
integer(H) ,integer(M), string(Mes,_,_)|
Time := (H#=3600 + M*60)=1000,
timer:create([on_at(Time,St)] J,
alarm{ St, Mes }.
alarm(normal(wake_up), Mes):- true|
shoen:raise({ pimos_tag#shell, get_std_mes, Stream),
Stream=[putl(Mes) J.

Befare compiling this program, you must compile the module timer above. This program can
be used as a Shell utility, {see Chapter 8) and 15 exccuted as follows.

Shell> alarm(17,30,"### Time is up. #88")L
Shell>

Shell> (Shell Command or <cr»)
Time 1s up.

In this example, the message ### Time is up. ### will be appear following the first carriage
return pressed after 17:30.

Reference

1] (Pseudo) Multi-PSI System Administration Manual

[2] Multi-PSI1/V2 Console System (CSP) Operating Manual

[3] PIMOS 1.5 Operating Manual

f4] Using the Multi-PSI/V2 Cross-System (V2/CAL)

[5] K1 Programming Manual: Introduction, Beginning Level, and Intermediate Level
6] Basic System Administration Manual for PST/SIMPOS Systerms

[7] Basic PSI/SIMPOS Operating Mannal (1),(2)

56

