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Abstract

This paper concerns deductive pracedures for abductive reasoning and a variety
ol ATMSs. Retter & de Kleer ljl] view an A 1'MS as a kind of abduction in which
the best explanation of a formula 1s defined as a minimal conjunction of hypotheses
that explain the formula. However. they de not give any algorithim to compute
such minimal explanations of a formula in their CMS that 15 a generalization of
de Kleer's hasic ATMS [3]. 1o this paper. we use the notion of characteristic clanses
24] to explain clearly the computational aspects of the CMS and the ATMS and
to produce an efficient abductive procedure based on linear resolution. By means
of this abductive procedure, we give Lthe CMS algorithms for computing minimal
explanations in the interpreted approach and for updating them in the compiled
approach. We then present algorithis for generating and updating labels of nodes
tnan extended ATMS thal accepts any formula justifications and literal assumptions.

Keywords: ATMS, UMS, Abduction, Saturation., Lincar Resolution



1 Introduction

An assumption-based truth maintenance system (ATMS) [3] has been widely used when prob
lems require reasoning in multiple contexts. Recent investigations such as those of Reiter &
de Kleer [21] and Levesque [15] show that there are strong connections between the ATMS and
a logical account of abduction or hypothesis generation [19, 8, 18].

Definition 1.1 Let W be a set of formulas, A a set of ground literals (called the assumptions),
and & a closed formula (called observation). A formula f is an explanation of (7 wilh respect
lo W and A if:

(1) WU{H} EG,

(2) WU{H} is satisfiable, and

(3) H is a conjunction of literals in AL
An explanation H of (7 with respect to W and A is minimal if:

(4) No proper sub-conjunct of i is an explanation ol &,

From the viewpoint of abductive reasoning, condition (3) says that an explanation H is lim-
ited to consisting of a conjunction of literals that are expressed in terms of a prespecified subset
of the predicate symbols, assumable literals. Pople [19] does not allow for such a distinguished
set of literals. Poole (18] and Finger [8] do not require the minimality condition (4). Here we
claim that minimal explanations can reasonably he accepted becanse we do not need unneces-
sary hypotheses (the maxim of Occam’s Razor [19]). Mareover, the minimality is essential for
efficiency in some application domains such as diagnosis and design.

The ATMS is precisely intended to generate all and only minimal explanations. In the ATMS
terminology, the set of explanations of an observation & (called node) with respect to the zets
W (called justifications) and A that satisfy the above four conditions is called the label of (7,
which is consistent, sound, complete and minimal The basic ATMS [3] is restricted to accepting
only Horn clause justifications and atomic assumptions, and each observation to be explained
is only an atom. In the above four conditions for an ATMS, justifications and observations can
contain any formulas, and assumptions are allowed to be literals. We call this generalization an
extended ATMS, because it covers de Kleer’s various extended versions of the ATMS [4, 5, 6],
Dressler’s extended ATMS (7], and Reiter & de Kleer's clause management system (CMS) [21]
if every ground literal is regarded as an assumplion. Although the CMS is well defined, [21]
does not give any algorithm for computing such minimal explanations of a formula in it.

In the remaining sections, we describe abduction as the problem of finding the characteristic
clauses [1, 24] that are theorems of a given set of clauses and that belong to a distinguished
sub-vocabulary of the language. We will give a propositional linear resolution procedure with a
production field for abduction and saturation, then show ways in which to implement the CMS
and the extended ATMS described above {or both label generating (the interpreted approach)
and label updating (the compiled approach). Since our extended ATMS can accept literal
assumptions and general formulas, the methods described in this paper can also be applied to
better implementations of theorem provers for closed world assumptions [1] and circumseription
[20, 9], based on abductive procedures [11, 10]. Unless otherwise specified, proofs for theorems
and propositions are given in [12].



2 Background

We begin with some definitions and notations that will be used throughout this paper. We shall
assume a propositional language with finitely many propositional symbols A and with logical
connectives, The set of literals is defined as: A* = A1 . A, where =-S5 means the set formed
by taking the negation of each element in S. A clause is a finite set of literals, understood
disjunctively: the empty clause is denoted by O. A conjunctive normal form (ONF) formula is
a conjunction of clauses. Let C and " be two clauses. € — ' denotes a clanse whose literals
are those in the difference of " and . (" 15 said to subsume (' if every literal in € occurs
in ' (" Z ('), Let £ be a sel of clauses. By pZ or p [E] we mean the set of clauses of ¥
not subsumed by any other clause of £. A clause (' is an implicate of ¥ if £ |= €. The set of
implicates of ¥ is denoted by Th{E). The prime implicates of X are: PI[Y) = u Th(X).

2.1 Characteristic Clauses

We use the notion of cheracteristic clauses, which helps to analvze the computational aspect of
ATMSs. While the idea of characteristic clauses was introduced by Bossu & Siegel [1] to evaluate
a form of closed-world reasoning and was later generalized by Siegel [24], neither research focused
on abductive reasoning or the ATMS. Informally speaking, characteristic clauses are intended
to represent “interesting” clauses to solve a certain problem, and are constructed over a sub-
vocabulary of the representation language called a production field.

Definition 2.1 (1) A production field P is a pair, ( Lp,Cond ), where Lp (called the charac-
teristic hiterals) is a subset of A%, and Cond iz some conditions to be satisfied. When Cond is
not specified, P is just denoted as { Ly ). A production field { A%} is denoted P,.

(2) A clause C belongs to a production field P = ( Lp,Cond ) if every literal in C belongs to
Ly and € satisfies Cond. The set of implicates of £ belonging to P is denoted by Thp(Z).

{3) A production field P is stable if P satisfies the condition: for two clauses C' and C” where
(" subsumes (", if ("' belongs to P, then ' also belongs to P.

Example 2.2 The following are examples of implicates belonging to stable production fields.
(1) P =P,: The(X) is equivalent to Th(L).
(2) P ={A): Thp(X) is the set of positive clauses implied by .
(3) P = {~-A, below size k) where A C A: Thyp(Z) is the set of negative clauses implied
by £ containing less than k literals all of which belong to —- A,

Definition 2.3 Let £ be a set of clauses.
{1} The characteristic clauses of L with respect to P are:

Carc(E,P) = p The(Z).

In other words, a characteristic clause of I is a prime implicate of ¥ belonging to P.
(2) Let F be a formula. The new characteristic clauses af I with respect to & and P are:

Neweare(E, F, P} = Carc( LU {F}, P) = Care(L, P),

that is, those characteristic clauses of £ U { F'} that are not characteristic clauses of L.
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(‘are|X, ) represents saturation: all the unsubsumed implicates of ¥ that belong to a
production field P must be contained in it. For example, Care(5, P} = PI{E). Nate that if
¥, 1= unsatisfiable, then Care(¥, P) onlv contains 0. On the contrary, the next theorem shows
that Neweare( ¥, P, F) represents abduction.

Theorem 2.4 lLet £ be a set of clauses, 4 C Ai_\ {7 a formula. The set of all minimal
explanations of & with respect to £ and A is = Neweare(E, G P, where P = {—- A}

2.2 About Abductive Procedures

In this section, we show that given a set of clauses ¥, a stable production field P and a formula
I, the characteristic clauses Carc{ ¥, P} and the new characteristic clauses Newcare(X, F,FP)
can be computed by using resolution. Before describing this matter in detail. it is worth noting
that, since we are dealing with abduction, the prool procedure has the following difficulties:

I. It should be complete for consequence-finding, that is, every relevant theorem can be
produced, instead of just refutation-complete (producing O if the theory is unsatisfiable).

2. It should focus on producing only those theoremns that belong to P,

3. It should be able to check produced elauses from ¥ U {#'} and P with the condition “not
belonging to The(E)", which corresponds to consistency checking in abduction.

The completeness for consequence-finding was investigated by Slagle, Chang & Lee [25] and
Minicozzi & Reiter [17!. The second property requires that such consequences belong to P. A
promising approach to overcome these difficulties is to use an inecremental resolution procedure,
which should first deduce all the Carc{X, P) prior to giving Carc{ZU {F},P). Bossu & Siegel’s
[1] saturation procedure is an example of incremental resolution methods.

A better approach to compute Neweare(Z, C,P) does not construct the whole of each sat-
urated set. It is possible by using a linear resolution procedure, given ¥, P, and a newly added
single clause ' as the top clause of a deduction. Siegel [24] proposes such a resolution methad
by extending SL-resolution [14]. In this paper, we use the basic idea of [24] but introduce a
more simplified procedure which is enough to explain our goals. The resolution method, which
we call m.c.ls. resolution, is based on m.c.l. (merge, C-ordered, linear) resolution [I17] !, and
is augmented by the skipping operation ?. The following procedure is based on the description
of OL-deduction in [2], but the result is not restricted to it. An ordered clause is a sequence
of literals possibly containing framed liferals which represents literals that have been resolved
upon: from a clause ' an ordered_clause C is obtained just by ordering the elements of
conversely, from an ordered clause €' a clause (' is obtained by removing the [ramed literals and
converting the remainder to the set. A structured clause { P, () is a pair of a clause P and an
ordered clause l’.j, whose clausal meaning is P U ().

"By the term m.c.l. resolution, we mean the family of linear resolution using ordered clauses and the informa
.tion of literals resolved upon. Examples of m.c.l. resolution are QOL-resolution [2}, SL-resolution [14], the model
elimination procedure [lﬁ], and the E‘I‘le‘l construckion plt]l":!*.{lll"’: [23].

?Roughly speaking, the skipping operation corresponds to Pople’s [19] synthesis operation.



Definition 2.5 Given a set of clauses E, a clause (', and a production field P = (Lp, Cond),
an m.c.ls. deduction of a clause § from £+ C and P consists of a sequence of structured clauses

Dy, Dy, ..., Dy, such that:
1. Do= {0, C.
2D, ={5 0).
3. Foreach D, = {P.. Q:}, P, U@, is not a tautology.

4. For each I); = ( F, Q-; ). P U Qs not subsumed by any P; U @, where b, =1{F, CEJ}
15 a previous structured clause, 7 < 1.

5. Disy = (Pig1, Qup1 ) is generated from D; = (P, Q: ) according to the following steps:

(a} Let [ be the first literal of ;. P.iy and Ry, are ohtained by applying either of the
rl.l.]fr.'-.".'i:
1. (Skip) If I € Lp and P, U {{} satisties Cond, then Figr = P U {1} and R,-:_, Is
the ordered clause obtained by removing { from (.
ii. (Resolve) Py = P. and R,,, is an ordered resolvent of (j.- with a clause B, in
%, where the literal resolved upon in @; is [.

(b @': x1 15 the reduced ordered clause of the ordered factor of R‘-_H.

Remarks. (1) Rules I, 3, 5(a)ii and 5b form an OL-deduction for the non-production part
(the right side) of structured clauses. By the ordered factor of H,, it implies the ordered clause
obtained by merging right for any identical literals in K, and by deleting every framed literal
not followed by an unframed literal in the remainder (truncation). The reduction (or ancestry)
of R; deletes any unframed literal k in B; for which there exists a framed literal in H..
{2) Rule 4 is included for efficiency. It does not affect the completeness described below ».
(3} Rules 5{a)i and 5{a}ii are not exclusive; for { € Lp either rule can be applied.

The Skip rule (5(z)i) reflects the following operational interpretation of a stable production
field P: by Definition 2.1 (3), if a clause C' does not belong to P and a clause " is subsumed by
' then € does not belong to P either. Thus we can prune a deduction sequence if no rule can
be applied for a structured clause D;; if Skip was applied nevertheless, any resultant sequence
would not succeed, thus making unnecessary computation.

Theorem 2.6 (1) Soundness: If a clause 5 is derived using an m.c.Ls. deduction from T + ¢
and P, then S belongs to The(E U {C}).

(2) Completeness: If a clause T' does not belong to Thp(¥), but belongs to The(EZU{C}), then
there is an m.c.l.s. deduction of a clause § from £ + ' and P such that § subsumes T.

®ln fact, in Chang & Lee's version of OL-deduction [2] this rule is overlooked. The deletion rule is clearly
present in the model elimination procedure [16). These two observations were pointed out by Mark Stickel.



The proof for the completeness in T'heorem 2.6 can be seen as an extension of the result for
linear resolution by Minicozzi & Reiter [17]. Note that m.c.l. resolution is refutation complete
[16, 14, 2], but is incomplete for consequence-linding [17]. The procedure of m.c.ls. resolution is
complete for characteristic-clause-finding, because it includes the additional skipping operation.

Example 2.7 Suppose that & = {aV b, =eV =b, =eV =a }. There is no m.c.l. deduction of
=e¢ from Y, but —c is derived using an m.ec.ls. deduction from & and P, as:

(0, aVb), (O, acV[@Vb), {~e [FVE), (~e v (b]), (e [B]).

Definition 2.8 Given a set of clauses X, a clause ', and a stable production field P, the
production from ¥4+ O and T is deflined as:
Prod(E2,C,P) = u{ 5|5 is a clause derived using an m.cls, deduction from ¥ + € and P}

In [24], there is no precise statement about computing Newecarc(E, (7, P) and Carce{E, P) by
using FProd(Z,C,P). Here we show the connections between them. Firstly, the next theorem
shows that we can compute Newecarc(E, C,P) for a single clanse (', without a naive implemen-
tation of Definition 2.3 (2) that computes the saturated sets, Care(5,.P) and Care(E U {C}, P).
and that we need check for each clause 5 € Prod(E, (", P), only whether £ = 5 or not.

Theorem 2.8 Let ' be a clause. Neweare(¥, U, P) = FProd(X,C.P) — Thp(X).
For a CNF formula &, Newcarc{Z, ¢, P) can be computed incrementally as follows:

Theorem 2.10 Let G = (3 A --- A O, be a CNF formula, Then

I E:I Newcare(E;,C,,P) |

=1

~ (U Prod(E,,C.,P) | - Thy(T).

where ¥, = X, and X, =E,uU{Ci}, fori=1,....m—1.

Neweare(E, G, P}

Finally, the characteristic clauses Clarc(E, P) can be generated by the following incremental
method. This will be used for the compiled approaches to the CMS and an ATMS in sections 3.1
and 4.2. Notice that for some propositional symbol p, if ¥ & p, ¥ ¥ —p, and pV —p belongs to
P, then p v —p belongs to Care{E,P).

Theorem 2.11 The characteristic clauses with respect to P can be generated incrementally *:

Care(¢,P) = {pv-p|pe€ A and pV ~p belongs to P}, and
Carc(BU{C},P) = p[Card(E,P)U Prod(%,C,P)].

“In practice, no tautology will take part in any deduction; tautologies decrease monotonically.




3 The Clause Management System

Reiter & de Kleer [21] propose a generalization of the basic ATMS [3] called the clause man-
agement systerm (CMS) and show its applications to abductive reasoning. A CMS is intended
to work together with a reasoner, which issues querics that take the form of ¢lanses. The CMS
is then responsible for finding minimal supports for 1he queries:

Definition 3.1 [21] Let ¥ be a set of clauses and €' a clause. A clanse S is a support for (
with respect to ¥ if: ¥ = SUC, and T E S,

A support for ' with respect to ¥ is minimal if there is no other support S for ¢ which
subsumes 5. The set of minimal supports for €' with respect to ¥ is written MS(Z, ).

Comparing minimal supports with minimal explanations described in Definition 1.1, a min-
imal support 5 for ' with respect to © is exactly a minimal explanation -5 of € with respect
to ¥ and A= Therefore, the above definition can be easily extended to handle any formula
mstead of & clause as a query. Setting the production ficld to P, = { A%}, we see that:

Proposition 3.2 Let F be any formula. MS(Z, F) = Neweare( S, <F, P, ).

This formulation can solve one of the limitations of the CMS. In {21], the CMS is defined to
handle only the observations of the clause form, so that it cannot compute minimal explanations
of a conjunctive observation. For example. p{ ¢ | ¥ = e 3 g, A gy and & B e} can
be computed straightforwardly in our formmlation as Newcare(E,-g, V =g2,P-). And for a
disjunctive normal form observation F, we can compute MS(Y, - F) by using Theorem 2.10.

We thus see that our algorithm can compmte minimal supports. However, Reiter & de Kleer
[21] consider the two ways the CMS manages the knowledge base: keeping the set of clauses
Y. transmitted by the reasoner as it is (the inferpreted approach), or computing PI{X) (the
compiled approach). Theorem 2.9 shows that we can generate the new characteristic clauses
Neweare(X,C, P, ) without knowing the saturated sets, PIHE) and PI{E U {C}). Therefore,
computation using Theorem 2.9 and Proposition 3.2 represents the interpreted approach ®.

3.1 Compiling the Knowledge Base

When we are faced with a situation in abduction where we want to know explanations for many
different queries, we must run the algorithm each time a query is issued. Instead of keeping the
initial theory ¥ as it is and doing the same deductions over and over for different top clauses,
some of these infercnces can be made once and for all. That is the motivation for the compiled
approach: the set ¥ is compiled into the saturated set, P/(X) = Care(E, P, ).

Given PI(X), to find MS(E, G} for each query (& in the compiled approach, again we do not
need to compute the saturated set PI(ZU{—~G}), as Reiter & de Kleer show some relationships
between prime implicates and minimal supports.

Proposition 3.3 [21] Let C be a clause, MS(X,C)=u{ P—C | P € PI(E) and PNC # ¢}.

*Note that in [21] there is no description of an algorithm for the interpreted approach.
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Corollary 3.4 (21| Let n € A* be a literal. MS(X, {n}) = { P={n} | P& PI{E) and n € P}.

One of the disadvantages of the compiled approach is the high cost of updating the knowledge
hase. When the reasoner adds a clause 7 to ¥, we must compute all the P/{¥0U{C'}). However,
for both purposes, that is, constructing the prime implicates and updating them. Theorem 2.11
can be used by setting the production field to P,.

Proposition 3.5 Given PI{E) and a clavse O, PI{E U {(C}) can be found incrementally:

rIi¢) {pv-plpeAd}, and

By Proposition 3.5, the prime implicates can be incrementally constructed using every clause
as a top clause. Thus the transmitted clauses X can be substituted for PI{X). When a clause C
is newly added, we just need to add the theorems deduced from PI{E) with top clause €' and to
remove the subsumed clauses. The computation of all prime implicates of & by Proposition 3.5 is
much more efficient than the brute-force way of resolution proposed briefly by Reiter & de Kleer,
which makes every possible resolution until no more unsubsumed clauses are produced ©.

4 An Extended ATMS

In de Kleer’s versions of ATMSs [3, 4, 5, 6], there is a distinguished set of assumptions A € A%,
One of the most generalized versions of the ATMS can be considered as a CMS with assumptions
as described in Definition 1.1. Therefore, based on Theorem 2.4, an ATMS can be defined as a
responsible system for finding all the mininal explanations (called the label) for the queries:

Definition 4.1 An ATMS is a triple { N, A, £), where N € A% is a set of literals, nodes,
AC N is a set of literals, assumptions, and ¥ iz a set of clauses all of whose literals belong to
NU=-N, justifications. The label of n € N with respect to (N, A, ¥) is defined as:

Lin,A,¥) = = - Newcarc(E, -n,P), where P =(--4).

The following properties {3, 5] hold for the label of each node n € N with respect to an
ATMS (N, A, ) given by Definition 4.1:

Proposition 4.2 Let (N, A, ) be an ATMS, n € N a literal, P = (- A).

(1} Label consistency: for each E; € L{n, A.X), ¥ U{E;} is satisfiable.

(2) Label soundness: for each F, € Lin, A,X), EU{E} F n.

(3) Label completeness: for every conjunct E of assumptions in A, if EU {E} |= n, then
there exists E; € L(n, A, E) such that F; is a sub-conjunct of E.

(4) Label minimality: every I € L{n, A, L) is not a super-conjunct of any other element.

YReiter & de Kieer [21] also briefly alluded to more disciplined ways for computing prime implicates and
announced that they wounld be considered in the [ull paper, which has not been published yet,



In the same way as the CMS, we will consider the following two problems, that is, abduction
and saturation, concerning the computation of the labels of the nodes with respect to an ATMS:

I. Generating labels. Given au ATMS (N, A, £, compute Lin, A, T) for some node n &€ N
from the original set £. This corresponds to the interpreted approach of the CMS.

2. Updating labels. Given an ATMS (N, A, ©) and the current label L(n, A, %) of each n €
N, compute the new label L(n, A, EU{(}) of every n € N with respect to ( N, A, BU{C} ).
This corresponds to the compiled approach of the CMS.

4.1 Label Generation

Generating the label L(n, A, ¥) of a node # is straightforward by Theorem 2.9 and Definition 4.1,
Moreover, a query is not restricted to being a literal of N in this case: for a general formula,
Theorem 2.10 can be applied by converting it to CNF.

Example 4.3 Let an ATMS be {{a,b,c,z, ), {2.-y}, { ~aV-bVe, ~zV-bva, yvbvel).
Then the following deduction finds ¢'s label {z A —y}:

(8, ze}, (B, cav-bv[ael), (O, 2z v Ab V[Ealv -bv[Se)), (e, [F4) v =b v [=¢]),
(~ax, y v v blvEe), (sevy, [F V).

The question is how cffectively consistency can be checked, that is, by testing whether a clause
S produced from ¥+ -nand P = (- A) belongs to Thp(X) or not. A direct implementation
is to use a theorem prover, as we already know that § belongs to P, but theorem proving is
also possible in m.c.ls. resolution: there is an m.c.l. refutation from ¥ U {=S} iff there is an
m.c.ls. deduction from ¥ + -5 and (¢ )

However, there is an another way for consistency checking. Unlike with the CMS, the
computation of Care(E,P) can be performed better as the search focuses on the restricted
vocabulary P if it is small compared with the whole literals A%, Having Care(E, P), consistency
checking is much easier; S € Thp(X) iff there is a clause T € Care(X, P) such that T subsumes
8. The characteristic clauses Care(X, (—- A)) are called unsubsumed nogoods in the ATMS
terminology. This checking can be embedded into an m.c.ls. deduction: Prod(X,C,P) =
Newcare(E, C,P) if Skip (Rule 5(a)i) of Definition 2.5 is replaced with the following rule:

5(a)i’. (Skip & Check) If F;U{I} belongs to P and is not subsumed by any clause
of Clare(X, P}, then the same as Skip.

4.2 Label Updating

In the compiled approach to an ATMS, the following result corresponding to Corollary 3.4 for
the CMS and to a generalization of [21, Theorem 7] holds:

Theorem 4.4 Let { N, A, &) be an ATMS, n € N a literal, and P = (—-A).
Newearc(Z, —-n,P) = { P - {n} | P € PI(£), n € P and P~ {n) belongs to P}.



Theorem 4.4 shows that we can compute the lahel of a node from the prime implicates
of ¥.. Therefore an approach mav keep PI{Y) and when a new clause (7 is added we compute
PIEU{CY) by Proposition 4.5 for updating labels of nodes. Ilowever, compared with the CMS
many of the prime implicates are not significant for the task of an ATMS when the assumptions A
are relatively small, although their computation is extremely high. Fortunately, we can compute
a subset of PI{X) enough to give labels by using the following stable production ficld:

Definition 4.5 Given an ATMS { N, 4, ¥} and a production field P = {—- 4}, a production
field P~ is defined as:

P* = (~-AUN, the number of literals in N=-1-A is at most one ).
Since P* is stable, Clare(Z, P*) can be constructed incrementally by using Theorem 2.11:
Care(BU{C}HPT) = u[Care(E,P*)U Prod(E,C,P7) .
Here we only need to keep ¥ and Care{ ¥, P*). Looking [urther al Delinition 4.5, we can show:

Care(X,P") = Care(E,P)U{SU{n} |neN——-4 and S€ Newrare(®, -n, P) 1.

Therefore, the knowledge base can consist of the justifications ¥, unsubsumed nogoods
Care(¥, P), and prime implicates mentioning one node with the negation of an clement of
its label. No other prime implicates are necessary. Having Care(X, P*), we can find the label
of each node n € N easily as follows:

Theorem 4.6 Let (N, A, £) be an ATMS, n e N, P = (=-A), and P* the same as Defini-
tiwon 4.5.
[{S—{n}|S€Care(S,P*), andneS) if ne N=-4

Newcare(Z, ~n, P) = { {§—n}|ScCare(E,P),andne S} HneNN--A

For updating the knowledge base when a new clause (' is added, again we jusl compute
Care(E U {C},P") from the previous Care(¥, P*) incrementally by using Theorem 2.11. Since
thiz computation guarantees the completeness of characteristic-clause-finding, the four prop-
erties of the ATMS labels in Proposition 4.2 are also satisfied in this case. Note that the p
operation removes all the previous prime implicates that are subsumed by some newly added
prime implicates. This operation is also crucial to guarantee the label consistency because
implicates subsumed by some nogood must be removed.

Example 4.7 Suppose that an ATMS is ({a,b,z,y}, {z,y}, £) where ¥ = {a Vb, -y Val}.
Now suppose that a new clause —z V —a is added to £. Then the updating algorithm will find
b's new label z, as well as a new unsubsumed nogood -z V -y:

(O, 22V -a), (nz ma), (~a, bv[Eal), (~zV, [FF). .
o (o gy VA, (e Vo, F4)).

We thus see that Clarc(E, P*) can be used for giving labels for nodes. To maximize efficiency,
however, it can be used also for caching the result of the production to be utilized later as the
bypass of resolution. In [12], we describe how the updating algorithm can be modified for
this purpose and still establish the label completeness for varions ATMSs [3, 4, 5, 7], and the
correspondence of the modified algorithm with de Kleer's label updating algorithms [3, 5].
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5 Related Works

In this section, we compare our characteristic-clause-finding procedure to proof procedures of
various abductive and nonmonotonic reasoning systems. The notions of production fields and
(new} characleristic clauses are very helpful in understanding the relationships between them
and in reconstructing them in our simple and general formalism.

5.1 Saturation

Bossu & Siegel [1] define a closed-world reasoning called sub-implication, in which all ground
atoms are to be minimized. Their saturation procedurce linds Carc{Z, P) where the characteristic
literals Lp are fixed to positive ground literals. However, it does not use C-ordering.

Kean & Tsiknis [13] extend Tison’s [26] consensus method of producing prime implicates
lo generate them incrementally. In our framework, the corresponding result is illustrated in
Proposition 3.5. The difference is that their method is based on a set-of-support strategy, while
ours uses linear resolution and thus naturally has more restriction strategies.

De Kleer [f] introduces hyperresolution rules Lo pre-compile a set of clauses ¥, all of which
are either positive or negative. L'he negative clauses of the resulting set closed under these rules
and subsumption are the characteristic clauses Care(E, P) where P = (~A, below size k) (see
Example 2.2 (3)}. In our formulation, instead of using hyperresolution, lincar resolution can be
used to produce such characteristic clauses for any clause set © and any characteristic literals
Ly C A* In practice, this size-restriction is very useful for minimizing the computational effort,
]ref'alqu' it causes earlier pruning in m.c.l.s. deduction sequences,

3.2 Abduction via Deduction

There are many systems for logic-based abductive reasoning. However, many systems (18, 8, 20]
ather than [19] do not require minimality of explanation. Pople [19] proposed the mechanization
of abduction via deduction based on SL-resolution [14]. However. his system does not distin-
guish literals. that is, the production field is fixed to P,, and “hypolhesizes whatever cannot
be proven”. This criterion can he implemented if Skip (Rule 5(a)i) is preceded by Resolve
(Rule 5{a)ii) and is applied only if Resolve cannot be applied in Step 5a of an m.c.Ls. deduction
(Definition 2.5). Finger [8] gives residue procedures for abductive reasoning where assumptions
are restricted to only atoms, bnt his “resolution residue” uses set-ol-support resolution.

5.3 Query Answering for Circumscription

Preymusinski [20] defines MILO-resolution, a variant of QL-resolution [2], which is used in his
circumnscriptive theorem prover. MILO-resolution can be seen as m.c.ls. resolution where the
characteristic literals Lp are fixed to the positive occurrence of minimized predicates and any
occurrence of fixed predicates in circumscription policies (see Inoue & Helft [11]).

Proposition 5.1 [20, 9, 11} Suppose that Lp is the same as in the above description and that
P = (Lp). Every circumscriptive minimal model satisfies a formula F if and only if there is a
conjunct G of clauses of [Thp(EU{~F})—Thp(L)] such that [Thp(SU{-~G})=Ths(L)] = ¢
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There is a big difference between MILO-resolution and the ATMS. In Proposition 5.1, to get
theorems in [Thp(E U {C}) — The(E) ] for some clause ', MILO-resolution does not actually
compule Newcare(X, O, P}, while the ATMS does. Let us divide the praduced clauses from
£ 4 " and P possibly containing subsumed clauses into two sets. say St and 52, such that
YU ST E 52, Then adding S2 to S1 does not change the models of the production. Thus
only S1 needs to be computed model-theoretically”. We call a set S1 verifying this condition a
precursor of the production. MILO-resolution computes such a precursor, because when the first
literal belongs to Ly in Step 5a of an m.c.ls. deduction {Definition 2.5). only Skip (Rule Slali)
is applied. On the contrary, since the CMS and the ALMS are used for computing all end only
minimal supports for a query, if the literal resolved upon belongs tu Ly, they apply either Skip
or Resolve® 'I'hus a precursor-finding algorithin can be written by ordering two rules as:

Slajii’. (Resolve') Otherwise, the same as Resolve (Rule 5(a)ii).

Theorem 5.2 1f a clause T is derived by an m.c.ls. deduction from ¥ + (" and P, then there is
a deduction with the Skip & Cut rule of a clause S from £ + " and P such thal TU{S} = T.

In [12], based on the above modification of m.c.l.s. resolution, we show a prool procedure for
skeptical inference in an extended ATMS (N, A, U=-Ay, £ where A; € A and A, € A, which
answers whether or not a formula is satisfied by every preferred model [22] of T,

6 Conclusion

We have shown a logical basis of procedural interpretation of abduction, the CMS and the AT MS
based on linear resolution. The Skip rule can be safely embedded in linear resolution strategies
making characteristic-clause-finding complete, due to the stability of production fields. While we
used the description of OL-resolution as the definition of our linear resolution procedure, Skip
can be applied to other, superior versions of propositional linear resolution, such as Shostak’s
graph construction procedure [23], and further improvements on these methods can be used to
improve efficiency still more. We should also note that the control of inference can be made to
the production in various ways as breadth-first or best-first search [2], integration of top-down
and bottom-up strategies [8], reordering subgoal trees [24], and others.

Using the methods described in this paper, many Al techniques such as preferential models
approaches to nonmonotonic reasoning and constraint satisfaction problems, as well as direct
applications of abduction or the ATMS, may be helped on the way to better implementation.
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"However, not. all of S1 are still the relevant parts needed to determine that F is in the cireumseribed theory.
The detailed discussion is given by Helft, Incue & Paole [10].

®Since Ginsberg's circumscriptive theorem prover [9] is based on a backward-chaining “plain ATMS”, it may
produce more clauses than MILO-resolution. For more detailed discussion, see Inoue & Helft [11).
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