ICOT Technical Memorandum: TM-0862

TM-0862

A Pipelined Microprocessor for
Logic Programming Languages

by
H. Nakashima, Y. Takeda, K. Nakajima,
H. Andou & K. Furutani (Fujitsu)

February, 1990

© 1990, ICOT

Mita Kokusai Blde. 21F (3 456-3191 ~3
I l : D I 4-¢% Mita 1-Chome Telex [COT J3Z2064
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Pipelined Microprocessor for Logic
Programming Languages™

Hiroshi Nakashima Yasutaka Takeda
[{atsuto Nakajima [lideki Andou
Kivohiro Furutani

Information Systems and Electronics Develop-
ment Laboratory,

Mitsubishi Electric Corporation,

5~1-1 Ofuna, Kamakura, 247, Japan,

Phone: +81-467-41-6136 (Oflice)
+81-466-23-0022 (Home)
e-mail: hiroshi@mjv8&70.isl.melco.co.jp

“Summary of the paper submitied to ICCD 81,

1 Introduction

In the Japanese Fifth Generation Compuler Project, a large scale parallel
inference machine, PIM/m, is being developed|l|. In PIM/m, up to 256
processor elements are connected to form a two-dimensional mesh network.

The processor element has a pipelined microprocessor specialized to the
execution of logic programming langnages. The microprocessor, called PU
(Processing Unit), 1s also used as a key component of Al workstations. Thus,
PU has capability to execute two different type logic programming languages,
KL1[2] for PIM/m and ESP[3] for the Al workstation. KL1 is a parallel
logic programming language based on flat-CHC/4], and is very powerful to
represent parallel processes communicating each other. ESP is the language
in which ['rolog and object oriented language features are combined, in order
to make it easy to consiruct large and practical Al programs.

Since the execution mechanisms of both languages stand on untfication,
data typing and dereference are very important aperations for efficient imple-
mentation. For these operations, PU has powerful mechanisms to manipulate
tagged data. Especially, the pipelined date typing and dereference are the
most unigue features of PU. Those mechanisms greally contribute to the
high performance, 833 KLIPS' for KL1 append, and 1282 KLIPS for ESP.

In this paper, the hardware architecture of PU is described, focusing on
its data typing and derelerence mechanisms,

2 Hardware Architecture

2.1 PIM/m and Its Processor Element

In PIM/m, up to 256 processor elements (PE) are connected to form a two-
dimensional mesh network, as shown in Figure 1. Up to 32 SCSI ports
are available to connect disks and front end processors (FEP). FEP is an
Al workstation which will provide a comfortable programming envirenment
for PIM/m users. It also acts as an intelligent controller of interactive /0

devices,

Hiln Lugical Inference Per Second.

2 @'”@

—PE = PE co. =1 PE [~
FEP 015 | 15 zls T asas FEP
Fl I |
| || I I
PE |—PE HPE i— ... —PE
0, 1 1.1 2.1 15, 1
|I | I H
— L PE |— ==
FEP — E.E_ FEP

L 15 o
é é = Netwaork
— SCSI

Figure 1: PIM/m System Configuration

Elli]-.st. Cache I Main Memory
{1Kw = 40b) —_—
i w Data Cache l:lﬁhl"lw b “'uh}

b (Addr Array)
e 610K Tr [1pm)

Data Cache —
| (4Kw x 40b) ” NCU E
— FPP
PU
« 5 Stage Pipeline
L] pprug. Control
= 3B4KTr (0.9um) | | wWCS
{32Kw = 64b}

Figure 2: Processing Element of PIM/m

Each PE has three VLSI chips, P'U (Processing Umt), CU (Cache Unit)
and NCU (Network Control Unit), as shown in Tigure 2. PU is a 40-bit
microprocessor, which executes KL1 and ESP under the control of a micro-
program stored in 32K-word WCS. The architecture of PU is described in
the following sections

CU contains a 1K-word instruction cache and a 4K-word data cachel.
Address translation bullers {or instructions and data are also installed on CU.
The size of each buffer is 64, and the confignration is 2-set set associative.

NCU has a switching cireuit, which has four bidirectional channels con-
necling adjacent processor elements and two buflers for message packets
to/from the processor element. The packet transmission and buffering are
avtomatically performed without any interruption of the execution of PU

and Ol

2.2 Processing Unit (PU)

Figure 3 shows the configuration of PU. PU executes WAMS5.like instructions
for KL1 and ESP|2, 5, 6]. Argument and temporary registers (An/Xn) are
implemented as a register file. Another register file, WR, contains WAM's
control registers, except for a program counter and two structure pointers
which are hardware counters. Each register is 40 bit width, including 8 hit
tag to represent data types.

PU has five pipeline stages,), A, R, 5 and E.

The D (Necode) stage has a RAM table for instruction decode. Each
entry of the table contains the start address of the microprogram routine for
an instruction, and the nano-code to control the following stages. This RAM
decoder makes it easy to develop the microprogram.

The A (Address Calenlation) stage caleulates the operand address by
adding two of following resources, according to the nano-code.

s An operand field of the instruction.
¢ Program counter.

o An/Xau specified by an operand field.

YThe data array of the data cache is not included.
PWarren Abstract Machine,

D “_I;rst. Inst.

Decoda

Al st [

Inst.

Cache

Figure 3: Configuration of PU

Calc.
T e & SEEEFEAPEELFITE AL [] t
R | Inst,] Addr. -F-“-——] C:::m
i Ao
S st | Addr. | Date ||| =gy
_|Bn/%e WR | Sp.
asfsssfspprasssnsanaw ssssssnnsfannn [32'} {3:', REE
E ;]_"?1'__._]
i
| xn:rvﬁ | MaRr1/2 | MDR1/2 |
l 1 I pProgram
1 ! Control
NS f
1
LIwWCS

Two special address registiers, which are contained in WH.

In the KL execution, the special address registers contain the address of
the alternative, and the hase of a frame representing a goal, the execution of
which 1s postponed. In the ESP execution, they conlain the address of con-
tinuation, and the base of environment. The A stage also controls instruction
fetch, including conditiomal and uneonditional hranch operations.

The R (Read Data) stage fetches an operand from data cache using the
caleulated address, il necessary.

The S (Set Up) stage selects three operands from the following resources
and transiers them lo the E (Execution) stage, according to the nano-code.

¢ An operand held of ihe instruction,

¢ The operand fetched by the I stage and its address.
* An/Xr specified by an operand feld.

» WL

Two structure pointers.

In conventional pipelined processors, the operand set np operation is per-
formed by the stage like R. PU, however, has an additional special stage,
S, for the operation. The rcason for introducing the S stage is that it is
required for the pipelined data typing and dereference, as discussed latter.
Longer pipeline will have some drawbacks, because longer time will be taken
ter recover pipeline break. The drawbacks, however, will not be so serious,
because the Lreak is mainly caused by backtracking in logic programming
languages. That is, backiracking takes many cycles which are enough to
re-fill all the stages with instructions to be executed after the backiracking.

The E stage has two pipelined phases controlled by microinstructions.
The firsi phase contains An/Xn, WR, and special registers including the
program counter and struclurc pointers. This phase is shared by the 8 and E
stages for the operand set up. The second phase has two temporary registers
(XR/YI}), two memory address registers (MAR1/2), and two memory data
registers (MDR1/2). Two of those registers are input to ALU, and-the result
15 wrillen into regisiers in the first and /or second phase.

2.3 Data Typing and Dereference

Nata typing and derelerence are very important for efficient implementation
of logic programming languages. Hoth data typing and dereference are per-
formed by checking the tag of data and changing the control flow according
to the result. 1I'U has powerful mechanisms, including the pipelined data
typing and dereference, for these operalions.

The E stage has the {ollowing microprogram operations for tag checking.

(1) Two-way conditional jump. The jump condition is obtained by compar-
ing the tag of a register with an immediate value or the tag of another

regisler.

{2) Three-way jump. The tag of MDRI or MDR2 is compared with an
immediate value and reference tag.

(3) Multi-way jump. A RAM table, which contains jump offsets, is looked
up by the tag of MDIUI or MDR2.

Those operations requires two machine cycles. The first cycle makes the
jump condition or offset, and the second generates the jump address and
fetches the micromnstruction.

The pipelined data typing and dereference, which are most unique fea-
tures, mainly depends on the 8§ stage.

The 8 stage has the {ollowing three functions for data typing.

1} Modify the microprogram entry address comparing the tag of the operand
E E ag
fetched by the R stage with a immediate value.

(2} Set up the offset of a multi-way jump, which can be performed by the
first micromnstruction, looking up the RAM table by the tag of the
operand fetched by the R stage

{3) Set up the two-way jump condition, which can be examined by the first
microinstruction, comparing the tag of an operand transferred to the
E stage with a immediate value.

The first two functions requires the special stage between the R and E stages.
The § stage also performs dereference. When the dereference from An/Xa

is ordered, the R stage fetches the operand if the An/Xn contains reference

T

pointer, while it always fetches the operand in the case of the dereference
from memory. In bolh cases, the S stage examines the tag of fetched dala,
and repeatedly reads memory until a non-reference data is obtained.

In the KLI execution, the state of the reference path is examined using
MRB (Multiple Reference Dit)[7], during the dereference. MRB is a part of
the tag, and indicates that there are (or may be) other pointers to same data
object, as shown in Figure 4. Thus, if the MRBs of all the pointers en a
reference path are off, the pointers and the terminal data can be reclaimed
as garbage, when the unification of the terminal is completed.

In order to support this incremental garbage eollection, the S stage passes
the following information 1o the E stage.

SRP (Single Reference Path): MRBs of all the pointers and terminal are
ofl.

COL (Collectable): MRBs of the first two pointers are off.

Moreover, these information can be used for the modification of the micro-
program entry address, combining the data typing result. Thus, the E stage
can easily decide whether the reclamation of the pointers and terminal is

necessary, as shown in Figure 4.

3 Performance Evaluation

As described in the previous section, the most unique features of PU are the
pipelined data typing and dereference. To evaluate the efficiency of these
features, the performance of append in KL1 and ESP is estimated by simula-
tion. Moreover, the performance of alternative architectures is also evaluated.
Figure 5 shows the performance of the following architectures.

(1) PSI-II: The performance of PSI-11[6], which is the predecessor of PU.
Its CPU is also used as the element processor for a middle scale parallel
inference machine, Multi-PSI/v2[l, 8]. The data typing and derefer-
ence are performed by the following tag comparison and microprogram
conditional jump operations.

(a) Output the content of a register to a data bus.

B

__foot SRP/COL

(a) {rff . —vi' F:ff | . - yes/yes
-_"1_4"' - — i:_; |
list B
(b} QJ *— yes/no
[T B] e

° ol *TT7T1el® "
=
@ -—T{‘O‘ . | nofo

|| : collectable o MRB=off ref: reference pointer
o: MRB—on list: pointer to list cell

Figure 4: MRB and Realtime Garbage Collection

(1) PSIII

(2) Device Speed Up

(3) Two Phase Execution

{4) Two Stage Pipeline

{5) PU (5 Stage Pipeline

wilh Dereference)

1250 (KLIPS)

0 250 500 750 1000
1 1 L 1 [
179 -

430 | ESP

i 278 |
667 |
450 |
725 |
574 |
877 |
833 |

1282 |

Figure 5: Performance Improvement by Pipeline Architecture

10

(4)

(5)

(L) Compare the tag of the data bus wilth a immediate value,

(c) Generate the next micrvinstruction address examining the com-

parison result.

(d} Fetch the next microinstruction from WCS.

These operations are performed in one cycle, 155 ns, and the path for
them is one of the critical paths. The recursive clause of append is
execuled 1n 36 cveles for KLI, and 15 cveles for ESP.

Device Speed Up: The performance assuming that the logic gates
of PSI-II 15 as fast as those of PU. The cycle time will be 100 ns or

more.

Two Phase Execution: The performance assuming that the eritical
patl is split into two pipeline phases, one of which consists of (a) and
{(h), and the olher consists of (¢) and (d). This configuration is the
same as the I stage of PU, the cycle time of which is 60 ns. The
recursive clause will be executed in 37 cycles for KL1, and 23 cycles for

ESP.

Two Stage Pipeline: The performance assuming that (a) and (b) are
performed by a pipeline stage preceding the E stage. This configuration
is similar to the combination of the S and E stages of PU, but the
dereference is not pipelined. The recursive clause will be executed in
20 cycles for KL1, and 19 cycles for ESP.

PU: The performance of I'U, which has the pipelined dereference
mechanism. The pipelined data lyping 15 more efficient than that of
{4), because any conditional jumps are not required in the E stage if the
data typing is performed on derelerenced data. The recursive clause is
executed in 20 eveles for KL1, and 13 eycles in ESP.

The results show that the pipelining rednces both the machine eycle and
execution steps. Especially, the advantage of the pipelined data typing and

dereference will be clear by comparing (5) with (4).
Table 1 shows the append performance of PU, and other machines for

parallel and sequential logic programming languages. It will be clear that
I'U is one of the fastest machines for both languages.

11

Table 1. Performance in Append

KLIPS

PLPL/SLPL

| PIM/m(PU) | 833/ 1282 |

PSI-11[6] 179/ 430 |
Pegasus|9] — /=350
PLM[10] — =400
| CHI-ITIL] —/ 490
KCM[12] —/ B33
IPP[13] —/ 1035
IP1704[14] —/ 1100

PIM/p[15] | ~600/—

PLPL: Paraliel L-:-:gl; ‘P.m.gr;rnming Language
SLI'L : Sequential Logic Programming Langnuage

4 Conclusions

The architecture of a pipelined microprocessor for logic programming lan-
guages is presented. 11 has very high performance, 833 KLIFPS in KL1 append
and 1282 KLIPS in ESP, owing to the pipclined data typing and dereference,

The first chips of PU and CU have been fabricated, and now are being
evaluated in single processor environment. NCU and other components to
construct a multiprocessor system are being developed. The first PIM/m
system will be completed on the first quarter of 1991,

References

(1] 8. Uchida, K. Taki, K. Nakajima, A. Goto and T. Chikayama, Research
and Devclopment of the Parallel Inference System in the Intermediate
Stage of the FGCS Project. Proc. Intl. Conf on Fifth Generation Com-
puter Systems 19588 | 1988,

(2] Y. Kimura and T. Chikayama, An Abstract KI.I Machine and its In-

12

3

M|

9]

il

1]

12

struction Set. 'roc. 4th IECE Svmp. on Logic I'rogramming, 1987.

T. Chikayama, Unigue Features of ESF. Proc. Intl. Conf on Fifth
Generation Computer Svstems 1984 |, 1984,

K. Ueda, Guarded Horn Clauses: A Paraliel Logic Programming Lan-
guages with the Concept of a Guard. TR 208, ICOT, 1986.

.M. D, Warren, An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Cenier, SRI International, 1983.

I Nakashima and K Nakajima, Hardware Architecture of the Sequential
[nference Machine: I'S81-11. roc. 4th IEEE Symp. on Logic Program-

ming, 1987,

T. Clukayama and Y. Kimura, Multiple Reference Management in Flat
GHC. Proc. dih Intl. Conf, on Logic Programming, 1987,

| Y. Takeda, . Nakashima, K. Masuda, T. Chikayama and K. Taki, A

l.oad Balancing Mechanism for Large Scale Multiprocessor Systems and
Itz Implementation. Proc. Intl. Conf on Fifth Generation Computer
Svstemns 1988 | 1988

K. Sec and T. Yokota, Design and Fabrication of Pegasus Prolog Pro-
cessor. Froc Intl, Conf on Very Large Scale Integration, 1989,

T. P. Dobry, A. M. Despain and Y. N. Patt, Performance Studies of
a I'rolog Machine Architecture. Proc. 12th Intl. Symp. on Computer
Architeciure, 1085,

5. Habata, 1. Nakazaki, A. Konagaya, A, Atarashi and M. Uemura, Co
Operative High Performance Scquential Inference Machine: CHL. Proc.
1987 [ntl. Conf. on Computer Design, 1987.

H. Benker, J. M. Beacco, M. Dorochevsky, Th. Jefirée, A. Pohlmann,
N.Noyé and B. Poterie, KCM : A Knowledge Crunching Machine, Proe.
16th Inil. Symp. on Compuier Architecture, 1989,

13

{13] S. Abe, T. Bandoh, §. Yamaguchi, K. Kurosawa, and K. Kiriyama, iligh
Performance Integrated ['rolog Processor IPP. Proc. 14th Intl Symp.
on Computer Architecture, 1987,

[14] K. Maeda, «t al., Mechanmisms for Achieving Paralle]l Operations in a
Sequential VI.SI Al Processor. Proc. 3rd Annual Parallel Processing
Svrmp., 198G

[158] T. Shinogi, K. Kumon, A. Hattori, A. CGote, Y. Kimura and
T. Chikayama, Macro-Call Instruction for the Efficient KL1 Implemen-

tution on I'IM. Proc. Intl Conf. on Fifth Generation Computer Systems
1988 |, 1988,

14

