ICOT Technical Memorandum: TM-0855

TM-0855

Extracting Answers in Circumscription

by
N. Helft, K. Inoue & D. Poole

February, 1990

©1990, ICOT

Mita Kokusai Bldg. 21F (030 456-3191 =5

" :D | 4-28 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokvo L08 Japan

Institute for New Generation Computer Technology



Extracting Answers in Circumscription

Nicolas Helft Katsumi Inoue
ICOT Research Center
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

David Poole
University of British Columbia
Vancouver, B.C., Canada V6T 1W35

December 18, 1989

Abstract

This paper gives a salution to two problems that arise in recent implementations of
theorem provers for circumscription. The first problem is that, when a query contains
variables, they only produce yes/no answers, rather than returning the actual values of
the variables for which the query holds. The problem can be attributed to these theorem
provers finding all explanations for a goal, rather than finding a minimal disjunct of these
explanations. As well as providing answer extraction, we show how this technique of finding
only minimal disjuncts of explanations can save much redundant computation.

1 Introduction

It has been observed in the literature that an important property of circumscription [7] that
other commonsense representation formalisms lack, is that it is based on first-order predicate
logic. This property has allowed the recent development of theorem proving procedures for
circumseriptive theories [10, 3] and membership in all extensions [9] .

However good these procedures might be, they suffer from a number of problems, to whick a
solution is proposed in this paper. We first show an important drawback of both the procedures
(10, 3]: the algorithins give only yes/no answers, that is, if the query contains variables, the
values for it are not returned. This is clearly a serious drawback if we wish to use circumscription
as part of a knowledge representation system. We propose a solution to this problem, and show
how this solution can help improve efliciency.

!'Etherington [1, Thecrem B.3] has shiown the equivalence of these for propositional theories.




2 Background

This section gives an very brief survey of theorem provers for circumscription.

These are based on the following definition and result.

Definition 2.1: Let T and F be formulae, and P a set of literals. Then F is an explanation
of F with respect to T and P if

L. TUEEF
2. T E is consistent

3. F is a conjunction of elements of 7

A formula is unerplained if there exist no explanation for it.

In circumscription, predicate symbols are divided in three disjoint sets: predicates in P are
minimized, those in  are fixed and those in Z are allowed to vary [7, 6]. CIRC(T; P; Z) denotes
the circumscription of the formula T with minimized predicates P and variable predicates Z.
We also assume Uniqueness of Names, as this is needed for the following to hold.

Theorem 2.2: 2| CIRC(T; P; Z) = F if and only if there is a disjunct of explanations E
for F with respect to T and P = P~ U @ ? such that —E is unexplained.

While it is not necessary E contains no two explanations one of which is a subset of the
other, this should be avoided to save redundant computation while checking unexplainability.

To compute the explanations and check for unexplainabilily, we observe that f TU E | F,
then TU~F | —~E. We thus need theorems of T'U ~F belonging to P* U Q ®. The negation
of conjunctions of the formulae obtained are the explanation we are looking for. If no formula
FE can consistently be added te T in such a way that F is derivable, then /' is unexplained.

For these computations to be done, the theorem provers use an algorithm which, given a
background theory T, a formula ¢ in clausal form, and a set of predicate symbols, computes

theorems of T'U {gq} that can be expressed using only the given predicate symbols. This set of
all theorems can be infinite in the first-order case and a suitable canonical form has to be found.

The algorithm can be seen as linear resolution with two modifications which are:

I. It should be complete in the sense that every relevant theorem can be produced, instead
of the most restrictive sense of completeness used in theorem proving, that is, producing
the formula false if the set is inconsistent.

1p+ {P~) denotes the set of positive (negative) literals whose predicate symbol belongs to F; @ denoctes all
literals, positive and negative, whose predicate symbol is in Q.
3The predicates of P have their sign changed because we look for the negation of E.



2. It should focus on producing only theorems that can be expressed within the given set of
predicate symbaols.

Algorithms having the first property were investigated by Slage & al. [12], and Minicozzi &
Reiter [8] which called them consequence finding algorithms. Siegel [11] has recently produced
a procedure which both improves efficiency and has the sccond property as well.

Helft & Inoue [5] expand on this comparison of the linear resolution algorithms. In this paper,
we are concerned with another, related problem. The theorem provers for circumscription use
a guery answering procedure that calls the linear resolution algorithms to produce the answer.
The problems we attempt to solve here arise from this query answering procedure rather than
from the linear resolution algorithm. In this paper, which complements [5], we assume this
algorithm exists and returns explanations, and concentrate on the query answering procedure.

The following example, although trivial, may be useful to understand how all this works.

Let the theory he
T = { bird(tweety), ¥X bird(X) A =ab(X]) 2 flics(X)}.

In this well-known example, P = {ab}, @ = {bird}) and Z = {[flies}, so that P =
{ab™, bird*, bird~}. Now, let the query be flies(tweely).

Then E = =ab(tweely), is an explanation of flies(tweety). Its negalion ab(tweely) is
uncxplaincd. Thus flies(tweety) is in the circumseribed theory.

If the query is = flics(tweety), the answer is “No": there is simply no explanation for this
formula.

3 Extracting answers

Consider the following example. T contains the formulae
VX p(X) A =ab(X) D g(X)
pla) V p(b)
ple)
p(d) V ple)
ab{a) v able)
The query is g{X ), that is, we want to know for which values of X' does ¢(X') hold. abis the

predicate whose exlension is minimized, and both p and ¢ are allowed o vary 4. X 1s a variable
and a, b, ¢, d and e are couslants.

4We let p and g vary because the algorithm in [3) works only in the case all non-minirmized predicated can
vary, but we could fix p as it is allowed in [10] without affecting the example.

3



Let's see what the answers to the query are. All the P, Z-minimal models of the above set
contain —ab(d) and —ab(e), and thus

q(d) V g¢(e)

is one of such answers. Moreover, these minimal models can be divided in two sets, those
containing —ab{a) and those containing —ab(e). In the first of these sets of models g(a) V q(b)
holds, and so does ¢(¢) ir. the second. Thus

q(a) V q(b) v g(c)
hold in all the minimal models, and is another answer to the query.

However, none of the algorithms [10, 3] gives these answers. The reason is that they implicitly
use the property that, if a certain disjunct of explanations whese negation is unexplained exist,
then the maximal disjunct will also have its negation unexplained. This maximal disjunct is
then tested for unexplainability.

These algorithms would thus find the three possible explanations for ¢(X') which are
E1 = —ab(a) A —~ab(b)

E2 = -ab(c)

E3 = —ab{d) A —ab(e).

Now they would consider the disjunct E1V E2v E3, and compute its negation, which is the
conjunction of the following clauses.

—ab{e) V —~able) vV ~ab{d)
=ab(a) vV mabc) v —ab(e)
—ab{b) v —ab(c) V —ab(d)
—ab(b) vV —ab{c) vV —able).

Each of these formulae is unexplained, and thus the answer is “YES”, that is, 3.X p(X).
This answer is of course logically correct, but it doesn’t give us information about the values for
which the query holds. The algorithmn of [10] only gives yes/no answers; in [3] some examples are
given in which a value is returned, which turns out to be the value for the current substitution
computed by the answering algorithm. The above example shows thal this would not work in
general. The reason is that when the negation of the explanations are computed, the algorithm
loses the substitution values for the correct answers. Intuitively, this is because both -ab(d)
and —ab(e) are unexplained, and all four of the above clauses rontain either one or the other.

We will now show how to correct this. We will not he concerned with knowing if the
negation of all the explanations is unexplained, but rather with knowing which explanation or

which combination of explanations has its negation unexplained. In other words, we look for

minimal disjuncts of the explanations *.

By minimal here we mean a disjunct that contains as less explanations as possible. We require this in



We first note that each of the explanations can be associated with an answer. This can
be done easily. For example, using Green’s [4] technique of associating with a query ¢(X) the
formula g{ X))V answer(X]. We would thus get the formulae

ab(a} V ab(b) V answer(a) V answer(b),

ablec) V answer(c), and

ab(d) v able) v answer(d) V answer(e).

In other words,

—ab{a) A —ab(b) is an explanation for g(a) V q(b),
—able) i3 an explanation for g(¢), and

=ah{d) / —ab(e} is an explanation for ¢(d) V g(e}.

At this point, instead of testing if the disjunction of these is unexplained, we can test each
of these separately. This gives the following results.

abla) W ab(b) is not unexplained, as —ab(c) is an explanation for it.

ab(c) is not unf!xp]a-jnﬁi as —ab{a) is an explanation for it.

ab{d) v able) is unexplained.

From this information we can now éxtreu:t the desired answers.

The first one is easy. ¢(d) V g(e) is such an answer because it has an explanation whose
negation is unexplained. Neither g{a) Vv ¢(b) nor ¢{c) are answers, but we can see that their dis-

junction is, as the disjunction of the negation of their corresponding explanations is unexplained.
Thus g{a) v g(b) v q(c) is the second answer looked for.

Thus the general answering procedure modifies the ones of (10, 3] in the following way.

1. We associate with each explanation £; the corresponding answer (J;.

2. For each explanation E;, we test if its negation is unexplained. If it is, the corresponding
answer (J, follows. If it is not, there exists an explanation for it. Call the negation of one
such cxplanations E]. We then explore the lattice of disjuncts of these E!. When a certain
dizjunct foilows from the theory, the corresponding disjunction of answers follows from the
circumscribed theory, The lattice should obviously be explored fram smaller disjuncts to
higger ones, in order to prune branches as soon as one disjunct follows from the theory.

In the above example, £3 is unexplained and thus we can output the corresponding answer
gld)vgle). To E1is associaled the new explanation F1' = ab(c), and to E2 the new explanation
E?2' = abla). As the disjunction of E1' and E?2' follows from the original theory, we can output

addition of the minimality in the sense that ecch explanation should be as short as possible; the linear resclution
algorithms that find explanations are responsible for this latter type of minimality, which is taken into account

by [3, 10].



the disjunction of the corresponding answers. If a fourth explanation F4 existed and was
explained by £4', we would need to test for the disjunctions E1'v £4’ and F2'v E4'. However,

El"v E?2'v B4 would not need to be considered.

4 Improving Efficiency

This section presents some examples to show that the idea of testing for the minimal disjuncts
of explanations can save much computation, as in the dialectical implementation of membership

in all extensions [9].
Example 4.1
p(0)
p(X) D p(s(X))
p(X)A-ab(X) D g

In this example, there is an infinite number of explanations of g: —ab(0), ~ab(s(0}), ... But
any of these is enough to determine that ¢ holds in all extensions. Take for example the first
one, =ab(0). It is very easy to verify that its negation ab(0) is unexplained, and the computation
can stop. An attempt to compute all explanations would give no answer. '

Example 4.2

looks_ like_emu A —abl D emu
looks_like_ostrich A ~ab2 D estrich
=emu ¥V —ostrich

emu 2 bird

oslrich O bird

looks like_emnu

lvoks_ like_ostrich

looks_like_bird A —abd > bird
long_computation D looks like bird

Here both —abl and —ab2 are explanations for bird. Their negations are unexplained, and
so bird follows from the circumscription. At this point, there is no need to look for other
explanations for dard; we can thus avoid the long_computation that would result from examining

the remaining choice.



5 Conclusion

We have uncovered an important probiem in theorem provers for circumnscription, that of not
being able to return the substitution values for a query. The reason is that these theorem provers
are direct implementations of a Theorem that states the need for the existence of a certain
explanation of the query, ignoring that many of such explanations may exist. We showed that
a minimal, rather than a maximal digjunct of these explanations needed to be produced.

Examples were shown in which the proposed modification of the query answering procedure

saves much unnecessary computation.

References

[1] Etherington, D. W., Reasoning with Incomplete Information. Pitman, 1988

[2] Gelfond, M., Przymusinska, H. and Preymusiuski, T., “On ihe Relationship between Cir-
cumscription and Negation as Fatlure”, Ariificial Intelligence 38 (1989), pp.75-94.

r3} Ginsberg M., “A Circumseriptive Theorem DProver”, Artificial Intelligence 39 {1939],
pp.209-230.

[4] Green, C., “Theorem-Proving by Resolution as a Basis for Question-Answering Systems”,
in: B, Meltzer and D. Michie (Eds.), Machine Intelligence 4 (Edinburgh University Press,
Ldioburgh, 1969), pp.183-205.

[5] Helft, N. and Inoue, K., A Note On Umllputing Cirenmseriplion. JCOT TR 527}'"39, 1988,
[6] Lifschitz, V., “Computing Circumscription”, Proe. {JCAI-85 (1983), pp.121-127.

7) MecCarthy, J., “Applications of Circumscription to Formalizing Common-sense Knowledge”,

Artificial Intelligence 28 (1086}, pp.89-116.

[5] Minicozzi, E., and Reiter, ., A Note On Linear Resolution Strategies in Consequence-
Finding, in: Artificial Intelligence 3 1972,

[9] Puole, D., “Explanation and Prediction: An Architecture for Default and abductive Rea-
soning”, Computational Intelligence 5 (1989), pp.97-110.

[L0] Praymusinski, T., An Algorithm to Compute Circumscription. Artifictal Intelligence 38:49~
73, 1989,

[L1] Siegel, P., Représentation et Utilisation de la Connaissance en Calcul Propositionnel. ‘I'hése
d’Fiat. Université d’Aix-Marseille 11 1987,

[12] Slagle, J., Chang, C. L., and Lee, R., Compleleness Theorems for Semantic Resolution in
Consequence Finding. International Joint Conference on Arlificial Intelligence, Washing-
ton, D.C., 1969,



