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Abstract

This paper proposes the new technique, named Dynamic Clause Compilation
i order to accelerate the execution of Prolog's dynamic predicates.

Using this method, dynamic predicates are compiled into the machine
instructions like the ordinary static predicates, when they are assert’ed. They
are then executled [ast, when called from other predicates.

The measurement resull using practical applicalions proves that dynamic
clause compilation accelerates the execution speed of each dynamic predicate
over 10 times, and sherten total execution time of those applications from

1/3 to 1/5 than conventional Prolog implementation



1 Introduction

The compiling technique based on WAM[11] has increased the cxecution
speed of Prolog program remarkably. However some application programs
can not take advantage of this compiling technique because of dynamnic pred-
icates.

In practical Prolog application programs, assert and retract are indis-
pensable functions to alter the database or rules dynamically.

Since such modifiable predicates, called dynamic predicates, change their
definition during program execution, they can not he campiled into concrete
machine instructions. Further, predicates can be manipulated as data(functors)
any time. 'L'his requires restoring source image and makes compiling dynamic
predicates difficult. Because of reasons listed above, conventional Prolog
system treats dynamic predicates as structured data and executes them by
inlerpreter.

According to vur analysis of application programs, however, some appli-
cation programs spend more than the half of total execntion time in manipu-
lating dynamic predicates. I'his means that their execution speed dominates
the perfurmance of such practical Prolog applications, such as knowledge
base systemn and rule based system.

To solve this problem, we introduced incremental compiling approach and
named Dynamic Clause Compilation. Using this method, as soon as dynamic
predicates are asserted, they are compiled into machine instructions.

Obvivusly, this approach makes slow down the execution speed of assert.
Therefore, trade-ofl between assertion and execution of dynamic predicates
is much important for effectiveness of dynamic clause compilation. We have

implemented this dynamic clause compilation system on the sequential in-



ference machine CHI[8, 4]. And this research was done as a part of Japan’s
Fifth Generation Computer Project.

Our measurcment using practical application program shows that the fre-
qguency of execution is much higher than those of assertion and total execution
specd of thal application increased 3 to 5 times compared to conventional
Prolog implementation.

The organization of this paper is as follows: In section 2, we show how
to solve restoring source image in dynamic clause compilation method. Sec-
tion 3 is devoted to the implementation mechanism, especially internal data
structure of dynamic predicates and special instructions to execute them.
Finally, in section 4, we will show the measurement results and performance

analysis using actual Prolog applications.

2 Source Image Restoration Problem

Since cach clause has simple structure and has only local variables, it seems
easier to introduce incremental compiling approach in Prolog than other pro-
graming languages. However, source image restoration problem must be
solved in case of Prolog.

In general, the source image disappears at object level after compiling.
However, source image of clauses is required in case of Prolog. For example,
Prolog predicate clause can extract the source image of a clause. Or, using
retract, we can delete clauses, whose source image maltch with the given

Argurment.



7- assert ((£(X,Y):-g(X),h{(¥))). % add a clause

yes

7- clause(f(X,Y), Bedy, ). % restore source image

Body = g(X),h(Y) % Body is unified with g(X),h(Y)
yes

7- retract ((£(X,Y):-g(X),h(¥)}). ' delete a clause
yes

As for source image restoration, three methods are known.

Hold source image

The object code always holds source image as text or as structured
data (functor). This approach is simple, but restoring process is slow.

Object code size also becomes large.

De-compile from exccution code [1]

In this method, the object for exceution also performs source image
restoration. This is somewhat tricky approach and satisfies fast restor-
g and less object code size. However, it is impossible to generate
well optimized and fastest object code, since the chject code can not

discard the information required to restore the source image.

Generate a code to restore source image [2]

When a clausc is asserted, generate a code o restore source image, as
well a code for execution. Using this method, source image restoration
iz the very fast, and code can be optimized freely. However, compilation

takes longer and the size for the entire code becomes big.

Since we [ind the execution speed the most important, we decided to

adopt an tmprovement of the third method, with regards to code manage-



ment, The improvement we made is that we manage the code for execu-
tion and the code for source image restoration together, whereas Clocksin’s
method manages them separately and requires such predicate as eraselast.

As for the compilation time increase, we find that the frequency of clause
addition i1s much less frequent than the frequency of dynamic clause exccu-
tion, and that the increase of dynamic compilation time does not affect the
total performance of application programs so much. As for the code size in-
crease, the memory consumption problem of global stack area is much more

important, and such increase of code size is not a serious problem.

3 Dynamic Predicate Implementation on CHI

Tn this section, we describe the details of dynamic predicate implementation

on CHL

3.1 Mechanism of Dynamic Predicate Execution

Figure 1 shows internal representation of a dynamic predicate. A functor
manages a predicate, and holds code for the predicate. In thig figure, predi-

cate £/1 has four clauses.

£([al).
).
fla).
fFb(_)).

To allow addition/deletion of clauses at arbitrary time, clauses are man-
ages separately, aud are bi-directionary chained.
The major difference of codes for dynamic predicates and codes for static

predicates, from the viewpoinls of execution, is briefly summarized as follows:



functer £/1

]
fi{[al) £(.0 fial £(b(.0)
. —I_-!
| —— i
[
list variablea atem: =a str: b/fi
|__ iretry iretry iretry iretry
itry = ditry itry itry
axecution exacution execution execution
code coda code code
sre ima.%g! src i o Erc image Brc image
restoration restoration restoration restorafion
code code coda code

Figure 1:

Management of Dynamic Predicates
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indexing
In case of static predicates, which is a technique to avoid redundant ex-
ecution of clauses, does indexing using hash tables. In case of dynamic
predicates, indexing is done sequentially, checking indexing information

of chained clauses,

Choice point frame allocation

Static predicates allocate choice point frames only if necessary,  Dhy-

namic predicate always allocates a choice point frame.
The execution of a dynamic predicate is bricfly shown below:

1. A predicate call sets the current execution mode flag. This flag indi-
cates, which of execution code or source image restoration code should

be executed.

2. When a dynamic predicate is called, the entry instruction itry of the

first clause is executed.

J. The itry instruction searches a candidate. It traces chained clauses,
checking if the indexing information of the clause matches with the first

argurnent.

4. If a candidate is found, execute its execution code or source image

restoration code, according to the execution mode flag. Else, fail.

5. If the candidate fails, the retry instruction iretry is executed. It
searches the next alternative, just like itry instruction does, and go to

step 3.



codal ptr to previcus cls

code| ptr to next cls

7?77 indexing info

inst| itry: entry inst

inst| iretry: retry insg

exacition code

sQUTCAe image
restoratic
code

Figure 2: Structure of a dynamic clanse



The structure of cach dynamic clause is shown in figure 2.

Indexing Information

The indexing information slot holds the type information of the first

argument, and is referred by entry/retry instruction.

Entry/Retry Instruction

These instructions control exccution over chained clanses. Entry in-
struction{itry) is the instruction, which is executed for the first time,
when a dynamic predicate is called. Retry instruction(iretry) is the
instruction, which is execuled when a dynamic clause fails. The details

of these instructions are explained in 3.2.2.

Execution Code

This is the code, which is executed when this clause is called. It starts
from the next address of entry instruction. The code generation scheme

15 the same as WAM,

Source Image Restoration Code

This is the code, used to restore source image of a clause. If the clause

has the form:
Head :- Bodys.

then its source image restoration code is obtained by imaginary creating

a unit clause

clause(Head,Body,Clause).



concat ([X|Y],2,[XI¥YZ]) = concat(Y,Z,YZ).

Execution code | scurce image restoration code

glis a0 gstr al,conzat/3
urvr ad urvr al
urvr ab urvr a3
grvr  al,af wrvr  ad
glis aZ glis a0
urvl at urvr ad
urvr a7 urvr ah
prvl al,ab gli=z  ad
prvl  al,ab urvl al
prvl  a2,a7 urvr ab
exec concat/3 | gstr al,concat/3
urvl as
urvl ad
urvl ab
geon  al,clause
pred

Figure 3: Code for the second clanse of concat/3

and compiling the unit clavse. The location of this code is recorded in

the operand of the entry instruction itry.

Figure 3 shows an example of an execution code and a source image
restoration code for the second clause of well known concatenate predicate.
The execution of exccution code/source image restoration code is controlled

by the flag explained in 3.2.1.



3.2 Instruction to Support Dynamic Predicate Exe-
cution

For the purpose of efficient dynamic predicate execution, we have extended

the instruction set of CHIL

3.2.1 Execution Mode Flag

We have prepared a flag, which shows the current execution mode. This flag
is managed by various call instructions. If this bit is on. then it indicates
that the execution code of dynamic clauses should be executed. If this bit
15 off, then it indicates that the source image restoration code of dynamic
clauses shonld he executed.

On CHI, this flag is assigned to a special hardware register bit. Since
handling of the bit can be done in a micro step, parallel to other micro

operations, there is no overhead with regards to mode handling.

3.2.2 Clanse Execution Control Instructions

To control execution of dynamic clauses, we introduced two instructions,
which are extensions to WAM’s choicepoint control instructions try.me.slse,
retryme else, with regards to mode handling and the indexing on the first

argutmnent.

These instructions are the essence of our dynamic predicate implementa-
tion.
itry
This is an instruction, which is executed upon entry to a dynamic

predicate. First, it checks execution mode flag, and in case of execution

mode, does following jobs.

10



find a candidate clause, whose indexing information matches with

the first argument.
if such a candidate does no exist, then fail.

else, create a choice point to prepare failure. The current execution

mode [lag is also saved in the choice point frame.
finally, execule the execution code of the candidate clause.

If the execution of the candidate clause fails, then the iretry
instruction of the candidate clause is executed, which tries to ex-

ecute the next alternative clausc.

Iigure 4 shows a moment, which is aboul Lo finish 1try instruction

execution. Predicate £/1 has just been called with the first argument

g(10), and itry instruction of the first clause is being executed. The

itry instruction first [inds a clause such that the indexing information

is g/1 structure. So the 1try instruction has made a choice point frame,

such thal the iretry instruction of the second clause is executed upon

failure. And the new PC points to the execution code of the second

clause,

[0 case of source mode, itry instruction does the following.

. find a candidate clawse such thai the first element of the first

argument matches with the index information of the clause,

it such a candidate does no exist, then fail.

. else, create a choice point and execute the source image restoration

code of the candidate clause.

Il



functor £/t

]

' flal:-..

a
iretry

itr

/// L4 New
current
PC
A
pravicus
call £/1 » - " PC

Argument Regs.
A0 £(10)
Al

PC==s gstr A0

flg()):- I{a):-
—1 |/
g1 a
iretry P iretry
itry itry

(S

Maw
CPF

Figure 4: Calling £/1
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functor

£/1

]

£(X) - g(X).

alternative addr

iretry

itry —

Registers

| Testoratio

Spurce image
code

|
.

PC

choice
point

frame

Figure 5 Execution of source image restoration code

4. if the execution of the candidate clause fails, then execute iretry

instruction of the candidate clause.

Figure 5 shows a moment, where the source mode restoration execution
of a candidate clause has just succeeded. Registers A, A; and Ay are

unified with the head goal image of the clause, the body goal image of

the clause and the pointer to the code object, respectively.

iretry
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This instruction is executed when the execution of a dynamic clause

fails. It first backs up various contral information, including current

execution mode flag, and does the following jobs in case of execution

mode,

1. find the next candidate clanse, starting from the next clause of

the current clause.

2. if no candidate clause exists, deallocate current choicepoint frame

and fail.

3. else, modify the current choicepoint frame. and execute the exe-

cution code of the candidate clause,

4. if the execution of the next candidate clause fails, iretry instruc-

tion of this current candidate clause s executed.

The action of iretry instruction at source restoration mode is easy to

mnfer, and is omitted here.

3.2.3 Source Image Restoration Instructions

In order to implement source image restoration predicate clause/3 and

instance/2, we introduced following two instructions.

predicate

instruction

|

clause
instance

axec_clause
exec_instance

4 Ewvaluation

In this section, we evaluate the performance of dynamic clause compilation

and how they affect in real application program.

14



Table 1: Speed of dynamic clause assertion
| data | assert | encode | assert/encode
3 (msec) | (msec) | .

1.49 0.17 8.76

1.93 0.19 10.16

414 0.31 13.35

209 0.25 8.36

3.26 0.35 4.31

N e e

4.1 Performance of Dynamic Clause Compilation

First we evaluated the performance of dynamic clause compilation, fram the
view points of compilation time, abject code size and execution speed.

As a comparison, we used predicates encode and decede. encode freezes
a term on the global stack, and create a corresponding heap data. decode
melis a heap data and creates a terin on the global stack area. These are
used to implement dyvnamic predicales in conventional

We used five simple clauses as follows:

i foo(a).

2 foel(X,X).

3 foo([XIY],£(X),g(¥)).
4 foolX) :- bar(X).

fool(X) := bar(X),baz{(X).

on

Table 1 compares the speed of assert and the speed of encode. In
average, assert is 10 times slower than encede. The rcason is that CHI's
dynamic clause compiler is written in Prolog, whereas encode is written in
low level machine instructions, and are very carefully tuned.

Table 2 shows comparison of the the object size. It shows that assert

consumes approximately 60% more memory than encode. However, we find

L5



Table 2: Code Size of Dynamic Predicate

data | assert | encede | assert/encode
| (words) | {words) | .
1 21 12 | 1.75
2 21 13 | 1.62
3 38 200 1.9
4 22 17 | 1.28
] 34 22 1 1.55

Table 3: Execution Speed of Dynamic Predicate
data | assert | decode | assert/decode
(msec) | (msec)

1 | 0.036 | 0.095 0.38
0.037 | 0.110 0.34
3 | 0.043 | 0.163 0.26

that the problem of global stack consumption in application program is much
more critical compared to heap area consumption. So, We find such increase
of memory consumption is permissible.

The comparison between the execution speed of a dynamic predicate,
and the speed of decode is shown in table 3. We used only sample clauses
1 from 3, because clauses 4 and 5 have body goals, which makes the correct
evaluation difficult. This shows that calling a dynamic predicate takes only
30% of decoding an encoded data.

However, this execution retio is measured by a predicate, consisting of
only one clanse. However, predicates have several clauses in application

execution, so So calling dynamic predicate will be much faster than decode.

16



4.2 Effects of dynamic clause compilation in applica-
tion program

To prave the effectiveness of our dynamic clause compilation method, we
evaluated the performance of an application program.

The application is a bibliography information retrieval program, which
consists of 2100 lines of program and 7700 lines of bibliography data. The ap-
plication uses an inductive inference method based on the stochastic logic [9].
During program execution, the inductive inference method generates, tests
and cancels hypothesises repeatedly. Dynamic predicates are used to repre-
sent such hypothesis management.

The flow of this program is as follows: First, the systemn gives a user,
10 bibliography information aceording to initial retrieval commands. After
that, the user repeats following three operations, until he is satisfied with

the bibliographies that the system gives.
Select bibliographies
The user tells the system, which bibliographies are necessary and which
arc not. This is called select phase.
Calculate a new retrieval command

According to the select phase information, the system caleulates new
retrieval command. This is the kernel phase of the system, and we call

it think phase.

Find new bibliographies

According to the new retrieval command obtained in think phase, the
system newly retrieves 10 bibliographies and gives them the user. This

is called find phase.

17



Of the three phases explained above, we analyzed think and find phase,
since select phase does nothing but interactions with the user. These two
operations include ne [/0 operations.

As stated before, this application repeatedly generates/cancels hypothe-
sises. To represent hypothesises, the application uses record. record can
be regarded as a special dynamic predicate, that the system provides. Its

rough implementation iz as follows:

redorda(X,Y,Z) :- asserta('Functor for record’(X,Y),Z).
i
redordz(X,Y,Z) :- assertz(’Functor for record’(X,Y),Z).

recorded (X,Y,Z) :- clause(’'Functor for record’(X,Y),_,Z).
The difference between records and ordinary predicate is as follows:

* Adding records is 30% faster than adding clauses.

» Object code for records is approximately 30% smaller than objects

codes for ordinary dynamic predicates.

* calling records is approximately 30 % slower than ordinary predicates.

First, we measured how many times record manipulating predicates such
as recorda, recordz and recerded are called. The result is shown in table 4.
This tells that the record reference frequency is § times higher than record
registration.

We then redefined recorda, recordz and recorded using encode and
decode, to cvaluate the time spent for adding records, the object size required
for adding records and the time spent for calling records. The results are

shown in table 5, table 6 and table 7, respectively.

18



Table 4; Predicate call counts

phase

recorda/z ] recorded

thinl
find

388
237

4268
827 |

Table 5: Speed of dynamic clanse assertion in application

phase | recordaz | encode | recordaz/encede | assert’ | assert’/encode
- (mszec) {msec) {msec)
think HISD 196 6.02 1534.0 7.9
find 83 120 6.53 | 1017.9 8.48

In the tables, the recordaz field shows the sum of the results of recorda

and recordz. assert’ field shows the estimated value, il we use ordinary

dynamic predicates instead of recards.

As for the time and memory consumption, the result is consistent with the

result of the result of simple data. However, if we compare the result of calling

records with that of simple data, we can see that the execution speed of calling

records is imuch faster. This tells that records have several alternatives, and

Table 6: Code size of dynamic predicates at application program

| phase | recordaz | encode | recordaz/encode | assert’ | assert’/enco de |
(words) | (words) {words) |
think 13540 | 13093 1.42 24102 1.84
find 14508 | 10857 1.34 18860 1.30

19



Tahle 7: Fxecution speed of dynamic predicates at application program

|-phase recordaz | encede | recordaz/encode | assert’ | assert'/encode
| {msec) {msec) (msec)

| think ATED 32803 0.071 28923 0.055

find HR6G . 5263 0.071 450.8 {]._[]_1-55

Table 8: Execution speed of application program

phase | recordaz | encode | recordaz/encode | assert’ a-s-s ert’ fencode
(msec) {msec) {msec)

think 10899 28958 0.18 | 10394.3 0.17

find 2214 9230 0.24 23137 0.25

itry and iretry instruction successfully controls the execution over chained

dynamic clanses.

Finally, the time spent for total time for spent application execution is

shown in table 8 The result shows the effectiveness of the dynamic clause

compilation method. Although assert process itself is slow, cxecution of

compiled clauses is very fast. And execution of dynamic compiled clauses is

much more frequent than dynamic clause compiling, so the dynamic clanse

compilation greatly contributes to the fast execution of application programs.

5 Conclusion

Dynamic Clause Compilation is proposed to accelerate dynamic predicate

execntion, And its implementation on CHI and evaluation resulls are de-

20




scribed. The measurement results using practical Prolog application shows
that the average execution speed of dynamic predicates is 14 times faster
than conventional Prolog implementation. And this result shorten the total
execution time 1/3 to 1/5, in spite of the slow execution speed of assert.
Since modification of database or rules is essential in practical Prolog ap-
plications, especially in AT applications, speed up of dynamic predicates is
very hmportant. The proposed dynamic clause compilation will have large

contribution to practical use of logic programming.
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