ICOT Technical Memorandum: TM-0828

TM-0828

A Formalization of Reflection
in Logic Programming

by
H. Sugano (Fujitsu)

December, 1989

© 1989, ICOT

Mita Kokusar Bldg, #1F (03) 456-3191 -5
|[:O ' 4-28 Mita- 1-Chome Telex ICOT] 32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Formalization of Reflection in Logic Programming

Hiroyasu SUGANO

International Institute for Advanced Study
of Social Information Science, FUJITSU LIMITED

1-17-25 Shin-Kamata, Ota-ku, Tokyo 144, Japan

E-mail: suga@iias.fujitsu.co.jp

Abstract

We propose reflective logic programming language R-Prolog and formalize its
operational and declarative semantics. R-l'rolog is obtained from pure Prolog by
two step extensions; meta-level extension which employs new symbols quote, up,
down and reflective extension which incorporates reflective computation by reflective
predicates. These two extensions allows us o redefine some of extra-logical predicates
of actual Prolog from a consistent framework. We also show the soundness and
completeness results based on a given semantics.

1 Introduction

Logic programming language Prolog utilizes many kinds of “meta” facilities, such as pred-
icates which can manipulate variables, atoms and clauses as data. By means of thesc
predicates, Prolog has capabilities which pure logic language does not have as it is. For
instance, a meta-interpreter of Prolog can be written easily, in 3 or 4 lines, in itself. rom
logical point of view, however, the scmantics of Prolog is rather complicated and opaque
because of the employment of these predicates. In a logical sense, variable are not data
by themselves but are carriers of data. Aloms and clauses provide relations among data.
Dealing with them as data can be said to be a confusion of object{data) and meta(data-
processing) levels. ['urthermore, several extra-logical predicales in Prolog, such as database
management predicates and input/output predicates and so on, can be given no logically
reasonable semantics. Even though these predicales are introduced for satisfying demands
as an actual programming language, they should be given semantics in a uniform frame-
work in order to keep logic language as a transparent programming language.

Rellection (or computational reflection), proposed by B. C. Smith [7, 8], is a notion
by which we can make programming languages and computational systems compact and
transparent. Smith introduced 3-lisp as a reflective dialect of lisp and showed lots of
advantages of reflective computation. A reflective computational system can recognize its
own computational states as data and modify them in a formerly described manner. In that

sense, a reflective system is said to be a self-modifying system. In 3-lisp, environments and
continuations are dealt with as its computational state, and it is shown that, by recognizing
and modifying these states, many kinds of system functions of lisp can be redefined as
user-defined functions in it. Taking advantage of reflection, we can amalgamate meta-level
feature of programming language in a consistent manner.

Regarding the importance of reflection, several programming languages with reflective
capability are proposed after 3-lisp (5, 11, 10, 9]. In the logic programming area, Tanaka
9] introduced reflective operation in concurrent logic programming language GHC, and
illustrated its usefulness by constructing several applications in logic language. However,
the semantics and the behavioral nature of programs of the language are not yet made
clear. In this paper, we propose a reflective logic programming language H-Prolog from a
rather more theoretical motivation.

As stated above, Prolog as an actnal programming language has two problems in the
logical point of view; treatments of variables and extra-logical predicates. R-Prolog can
be obtained by two step extension from pure logic language corresponding to these logical
problems of Prolog. These steps are called meta-level extension and reflective extension.
Meta-level extension is the employment of quote, up, down symbols; we can solve the prob-
lems of variables by means of them. Reflective extension is the introduction of reflective
computation by means of reflective predicates. Reflective extension allows us to redefined
several extra-logical predicates in Prolog. In this paper, we provide an operational and a
declarative semantics and prove the soundness and completeness of R-Prolog computation
with respect to the declarative semantics. Further, we show the advantages of reflective
computation in logic programming, by reconstructing Prolog from a consistent and logical
viewpoint in R-Prolog.

The organization of this paper is as follows: we introduce reflective logic programming
language R-Prolog in the next section; in Subsection 2.1 the syntax of R-Prolog is pre-
sented introducing up , down, quote symbols and reflective predicates; in Subsection 2.2
its computational semartics, with new unification called nu-unification and reflective com-
putation rule, is described. In Section 3 a declarative semantics of [1-Prolog is provided
as an extension of that of pure logic programs, and some semantic properties (soundness
and completeness) of R-Prolog are shown; in the section 4 we make some discussions and
concluding remarks.

2 Reflective logic language R-Prolog

In this section, we introduce the syntax and an operational semantics of R-Prolog.

2.1 Syntax of R-Prolog

The syntax of R-Prolog is an extension of Horn clause logic (pure Prolog). Its language
has extra three symbols, ‘ (quote), T (up), | (down). Furthermore, besides usual predicate
symbols, a special kind of predicate symbols, called reflective predicates, are included to
materialize the reflective computation.

Definition. 2.1 (Language of R-Prolog)
Language of R-Prolog L is a sextuple;

' L=(VAR,FUN,OP, RP,DL,S5)

2

where
. VAR s the countable set of variables,
VAR={X;,...,X,...}
2. FUUN is the finite zet of function symbaols.

Fun={f,.... [}

Lach function symbols f; is associated with its arity &;, where &, is a natural number.
We always assune the existence of the special nullary function symbol nil and the
special binary lunction symbol cons among fy, ..., f..

3. OP is the finite set of ordinary predicate symbols.

OF = {_ph £ lpn}
Each ordinary predicate symbols p; is associated with its arity k;, where k; is a natural
number.

4. HF 1s the finite set of reflective predicate symbeols.
RP = {1"1....,1"“}
Each reflective predicate symbols r; is associated with its arity k;, where k ;is a
natural number.

5. DL is the set of delimiters, which are listed as follows:

comina(,), peried(.}), implication symbol(«-), parentheses(()).

6. 55 is the set of special symbols, which are listed as follows:
l{down}, T{up), '(quote).

Terms and atoms of R-Prolog are defined as follows.

Definition. 2.2 (Terms and atoms)
Terms and atoms of R-Prolog are defined recursively as follows;

1. Terms.

(a) A variable is a term.
(b) Iftis a term, then | ¢ is a term. This term is called a downed term.
(c) Iftis a term or an atom, then 1 ¢ is a term. This term is called an upped term.

(d) If s is a function symbol, an ordinary predicate symbol, a reflective predicate
symbol, a term or an atom, then ‘s is a term. This term is called a quoted term.

(e) Let f be an n-ary function symbol and #,....t, be terms. flly, .. 0t,) is a
term. This term is called a compound term.

2, Atoms

(a) Ifty,... 1, are terms and p is an n-ary ordinary predicate symbol, then plte, ..., 1)
is an atom, This atom is called an ordinary atom.

— 3 —

(b) Ifty,... 1, are terms and r is an n-ary reflective predicate symbol, then r(ty,...,1,)
is an atom. This atom is called a reflective atom.

(c) A downed term is an atom.

i

We write TERM for the set of terms and ATOM for the set of atoms. Following the
conventional list notation, nil is denoted by [| and cons(ty, cons(ty, ...,cons(ts,nil)...))
is denoted by [t %2, ..., t,]. These terms are called list. If t is a term and [is a list. term
cons(t, 1) is also a list and denoted by [{[{].

Quoted terms, upped terms and downed terms are newly introduced in R-Prolog, which
allow us to deal with meta-level object legally in its own language. So we sometimes call
them multi-level terms. As we describe their meaning in detail in section 2.2, a quoted
term represents its quoted "term” as syntactic object. They are dealt with as ground
terms because they are data as they are. Contrasted with that, upped and downed terms
have somewhat dynamic feature. Variables in these terms can be binded to some terms hy
nnifications when goals including them are exccuted, and after that they are transformed
to their name{quoted form). In other words, they are used as information carrier from
object (meta) level to meta (object) level. In fact, they are closely related to variable
handling concept freeze and melt proposed by Nakashima et al. [6]. The relation between
onr primitives and them are discussed in section 4. Atoms of R-Prolog are defined almost
same as that of usual logic programs. The distinctive difference is that downed terms can
be used as atoms.

As stated above, terms without up and doewn symbol are considered as ones staying in
the same level everytime. This leads to the following definition.

Definition. 2.3 (S-term and S-atom)

1. A term t is called S(Static)-term if ¢t has no occurrence of up or down symbols. The
set of S-terms is denoted by STERM.

2. An atom a is called S(Stalic)-atom if a is not a downed variable and each term
occurring in a is an S-term. The sel of S-atoms is denoted by SATOM. Furthermore,
SATOM, denote the set of S-atoms whose predicates are p.

a

S-term and S-atoms play important roles in the operational and declarative semantics
of R-Prolog.

Clauses of R-Prolog can be classified into the following three ; ordinary clauses, re-
Hective clauses and reflective definition clauses. The next definition is for the first two
clauses,

Definition. 2.4 (Ordinary and reflective clauses)
Let ap be an ordinary S-atom and a,,...,a.(n = 0) be ordinary or reflective atoms.

1. If a; is a reflective atom for some (1 < ¢ < n), Then
g &= tly,...,0,.

is called reflective clause(RC).

2. Oiherwise,
g 4= Ay e s G-

15 called ordinary clause (OC). Particularly, in the case that n = 0, we write it
Q.

and we call it ordinary unit clanses (OUC).

Definition. 2.5 (Reflective definition clause)
Let r be a reflective predicate and a,, an be ordinary (or reflective) atoms. Reflective
dofinitron clauwse (RDC) for r is
riarg,db, ndb env,nenv) «— a,,....a,.
where arg. db, ndh, env, nenv are S-terms. r(arg, db, ndb, enu, nenv) is called an LS{level
shifting Jeafom. Note that an LS-atom is uot an atom. o

Definition. 2.6 4 .Fmﬁmm F of R-Prolog is a pair of finite scls of clauses,
F = [Fg, Pr),

where Fp is a finite set of ordinary or refiective clauses, Pr is a finite set of reflective
definition clauses. . o

Definition. 2.7 Let ay,...,a, be ordinary or reflective atoms. 4 Goal clause of B-
Prolog is defined as follows,
At] IS T . O

We present some examples of R-Prolog programs below.

In the actual representation of R-Trolog programs, we declare each reflective predicate
to be reflective to distinguish it from ordinary predicates. In the followi ngs, we employ
a declarator “reflective” Lo specify reflective predicate symbols. The example below is a
definition of assert in R-Prolog.

reflective assert(X)
assert(|X], Pr, Prl, Sub, Sub) « insert clause(X, Pr, Prl).

where inserl_clause embeds X in a suitable place in Pr and return Prl.

lu the following, we fix. the language (symbols) L of R-Prolog. Atoms, clauses, pro-
grams, and so on, iu the language L are called respectively atoms, clauses, programs of L
and so on .

2.2 Computation in R-Prolog

In this subsection, we describe the operational semantics of R-Prolog. Cemputations of
R-Prolog programs are sequential {left-to-right, depth first) search with backtracking,

We first have to define the unification in order to deal with meta-level terms, i. e.
upped, downed and quoted terms.

Definition. 2.8 (Substitution)
A substitution & is a mapping from VAR to STERM such that {X|eX # X}, which we

call the domain of o, is finite. O

In such a case that the domain of a substitution is empty, we call it identity substilution
and write it as e. When the domain of a substitution & is {X;,..., X.} and o{ X;) = {; for
1=i<n, wewritea = {X,/t),..., X,/t,]}.

The domains of substitutions are extended to S-terms as follows. If 1 is a compound
term f(ty,...,1,) and o is a substitution, application of & to t, o (following the conven-
tional notation) , is defined as f(t0,...,1,0). If t is a quoted term, to = tie tis
dealt with as a ground term and & does not affect £. Composition of substitutions are also
defined as usual.

In R-Prolog computation, instead of usual unification, a special unification called -
unification is employed to deal with upped and dewned variables in actual computation.
nu-unification is decomposed into two aspects; the partial mapping 7 transforming a term
into its 5-form and g-unification among S-terms which are defined below. Tn order to define
np-unification, we first have to introduce an ordering relation and an equivalence relation
on the set of S-terms.

Definition. 2.9

1. We definc a relation >, on the set of S-term STERM as the smallest one satisfying
following conditions.
(a) If t and s are S-terms and s = ¢, then s >y .

(b) Let f be an n-ary function symbel, and tiy.oytny 81,..., 8, be S-terms. If
t; 2um s for any i(1 <4 < n), then f(ty,...,1,) =ar fls4,. TR

(¢) Let f be an n-ary function symbol, and t,,..., 1., s,... ,8n be S-terms. If
i = s; for any i(1 < i < n), then ['f,s,,... Van] Zar fty ..t
2. The symmetric transitive closure of >p is denoted by =yy.

o

The relation > defined above is clearly a partial order relation and the relation =py s
clearly an equivalence relation. In the followings, STERM/ =4 is denoted by ESTERM,
SATOM[=u is denoted by ESATOM. In R-Prolog computation, if two terms are
equivalent in the above sense, they are identified. The u-unification defined below unifies
two terms under that constraint.

Definition. 2.10 (u-unifiability)

1. Let t and s be S-terms. ¢ and s are said to be y-unifiable if there exists a substitution
o such that to =,y so.

2. Let a and b be a pair of S-atoms or LS-atoms. a and b are said to be g-unifiable if they
have the same predicate symbol and each corresponding arguments are u-anifiable.

—_f —

Now, we present the g-unification algorithm.
p-unification algorithm
p-unification algorithm is described as the following function g-unify.

p-umafy(t s):

Input: Two S5-terms { and 5.

Output: Returns the most general g-unifier of # and s if it exists, and otherwise returns

Jazl.

case
variable(f): return {i/s]
variable{s): return {s/t}

quoate(t): Let £ ="u.
case
quote{s): Let 5 ="v,
if u=1v then return ¢
else return fa:l
u= fit;,... 1)
begin
if s = [sg,81,...,5,) then
return p-unify-quote(t.s)
else return fail
end

‘otherwise: return fail
endcase

quote(s): Let s ='u.
case
w= f{ty,... 1)

begin

ift =[tg,t1,...,1s) then
return p-unify-quote{s,t)

else return fail

end

otherwise: return fail
endcase

compound(t): Let { = fity, ..., 1),
case
5= f(81,...,8.):
return p-unify-compound(t,s)

otherwise: return fail

endcase

endcase
p-unify-compound(,s):

Input: Two compound S-terms t = f(fy,...,t.) and s = f(51,...,8,).

Output: Returns the most general p-unifier of ¢ and s if it exists, and otherwise returns

Sfaul.
begin

d=ct=¢i=1
while £ £ fuil and { < n do
begin
= p-unifv(i;0.5,0)
if# # fail then
{=¢b
else £ = fail endif
end
return §

end

_p-unify-quote(t,s):
Input: qouted terms ¢ ='f(t,,...,t,) and list s = [sg, 5,,... 8n).

Output: Returns the most general p-unifier of ¢t and s if it exists, and otherwise returns

fail.
begin

if p-unify("'f.s0) = fail then
return fa:l
else
begin
B=¢f=¢1=1
while £ # fail and i <n do
begin
0 = p-umify('t;,s;8)
if 0 & fail then
£=¢0
else £ = fail endif

end
return £

end

end

Definition. 2.11 Let s and £ be 5-terms, & and be g-unifier of s and t. & is said to
be more general than v if, there exists a substitution # s. t. sofl >, s7. o

The generality relation on w-unifiers above is a pre-order relation. The next theorem
shows the existence of the most general p-unifier of two S-terms up to renaming.

Theorem. 2.1 (Uniqueness of most general g-unifier)
Let = and ¢ be S-terms. If # and = are maximally general p-unifiers of s and #, then there

vxist substitutions 8 and £ s. t. ofl = 7 and £ = .

proof. irivial. O

Definition. 2.12

I. A partial mapping % from I'EHM x SUBST to STERM U SATOM is defined
recursively as follows. Let { be a lerm and ¢ be a substitution.

[to if £ is a variable or a quoted term,
‘Inis, o)) if tis an upped term T s and 5(s, o) is defined.
u if t 15 a downed term | s and n(s, o) is defined
=
n(t o) = 4 and n(s, o) =y, u

where u is a term or an atom.

fin(ty,a), .. qltn, o)) if tis a compound term f(4,,...,4,), and each
n{ti,e)(1 <i<n)is defined and it is a term.

| undecfined otherwise

2. Let a = p{t;,...,1,) and & be a substitution and assume that 5(t;, o) € STERM.
The mapping n is extended for an atom a as follows.

na,a) = p(n(ty, a),...,0(t,, o))

The partial mapping 5 transforms some terms to an S-term by a substitution.

Definition. 2.13

1. A term { 15 yu-unifiable with an S-term ¢’ in a substitution ¢ if 5(f, &) is defined and
it is g-unifiable with £’

2. An atom a is pu-unifiable with an S5-atom a’ in a substitution & if g{a, @) 15 g-unifiable
with a’.

Definition. 2.14 A program and a substitution can be associated with terms repre-
senting themselves as follows.

L. Let P = [{c1,....ca}.{ds,... d}] be a program and o = {X/t,.. ., X [} bea
substitution. An associated term P with P is defined as Uers..n ent'd), .. 'dy] and
an associated term & with o is defined as ['X;,'t,],...,["X;,./ t;]].

2. It is an associated term with a program P or a substitution @, then T denote the
program [” or the substitution o respectively.

O

We now describe states of R-Prolog computation. Let PROG be the set of prograins
of L, Subst be the set of substitution of [, and GOAL be the sel of goals of L.

Definition. 2.15 Continuation af.R—Prolﬂg is defined as a finite sequence of ele-
ments of Goal x Var x Var. The set of conlinuations is denoted by Cont. (i

Definition. 2.18 The set of computational states of It Prolog is defined as follows.
State = Goal x Cont x Prog x Subst.

]

Definition. 2.17 R-computation beginning at the state s € State is a (finite or infi-
nite) sequence of elements of STATE, sg,81,...,8,..., satisfying the following conditions.

1. Sp = 3,
2. Assume s; = (G,,C;, B, o)1 = 0).
(a) If G; is empty goal,

i. When €} is empty, there is no descendent s,(; > 7).

il. Otherwise, let €, = [efipge|Crese] and Crirat = (7, V], V3). There exists the
next state s;4y = (G, Cigr, P, i), with the following form;

Gy = @

U:-H = Grui
-Pi+l = IF].?#'-
Ty = F‘J!?i

(b) If Gi =— a,,...,a,(n > 0), then

i. The case that a, is an ordinary atom.
There is a fresh variant of OC or RC ¢l = b« by, .. .+ by in Py where a,
is nu-unifiable with the head b in o;, and 7 be the most general p-unifier of
n(a;, ;) and b. There exists the next state 8ip1 = (Gip1, Cisr, Pipr,y i),
with the following form;

Gig1 = =by,... by.a,,... 4,
Ci'-i-l = c{
Py = B

Tiq1 = T+ T

ii. The case that a; is a reflective atom r(t;,....4).
There is a fresh variant of RDC ¢l = b « by, ..., by, whose head b is unifiable
with the reflective definition atom rd = r(fy(ts,0:), ..., n(ti, &)}, B Y, 6:, Z)
where Y and Z are variables not appearing before, and 7 is the most general
unifier of hand rd. There exists the next state 5,4, = (Gi41, Cisry Pis1, Tiz1)
with the following form:;

GI+] = FB]H._J,bma
Cu-l-l = E{‘_ gy eenyln. ¥ z}l‘:’ﬂ
P = F

Ty = T T

a

In the above definition, a fresh variant of a clause means a variant of the clause which
does not include any variables which appeared before.

Definition. 2.18 R-computation of goal & in program P is defined as an R-computation
beginning at the state s = (G,][], P €). O

Definition. 2.19

1. If there is a finite R-computation sy, s,...,$, of a goal & in a program P, it is
called an R-refutation of G in P (of length n). Furthermore, if 5, = ([|,[], P", 7}, P’
is called the final program of the R-refutation and o is called the final substitution of
the R-refutation.

2. Assume there is an R-refutation of a goal ¢ in a program F. Let o be the final sub-
stitution of the R-refutation and FV((') be the set of free variables in . Restriction
of o to FV(G), ¢|rvic), is called an answer substitution of G in P.

The program in the figure 1 is a meta-interpreter of R-Prolog.

3 Declarative Semantics of R-Prolog

In this section, we present a declarative semantics of R-Prolog. Because computational
reflection is a procedural notion, we cannot adopt the usual declarative semantics given as
logical consequence of programs. In order to incorporate a procedural aspect of reflective
computation, we define the extended notion of interpretations and models.

3.1 R-interpretation and R-model
We first define the equivalence relation on the set of programs PRO(.

11 —

solve([], Prog, Prog, Subst, Subst).
solve([A|Rest], Prog, Progl, Subst, Substi)—
reduce(A, Rest, Prog, Progl, Subst, Subst1).

reduce(A, Rest, Prog, Progl, Subst, Substl)« ordinary(A),
get_clause(A, Prog, Subst, C1, Mgu),
make_new_subst(Mgu, Subst, NewSub),
get_body(Cl, Body),
append(Body, Rest, NewGl),
solve(NewGl, Prog, Progl, NewSub, Subst1).

reduce(A, Rest, Prog, Progl, Subst, Substl)« reflectiveld),
A=[Pred, Arg],
| [Pred, Arg, 1 Prog, 1 Prog2, T Subst, T Subst2],
solve(Rest, Prog2, Progl, Subst2, Substl).

Figure 1: Meta-interpreter of R-Prolog
Definition. 3.1 A relation =p on PROG is defined as follows. Let P and P he
programs.

P =p I <= Foreachclauseecl in P therccxist a clause cl’ in P’ and substitutions
¢ and 7 such that elo = ¢l' and cl'r = of. and vice versa,

=p 15 clearly an equivalence relation. We define EPROG as FPROG] =p. o

T'wo programs are equivalent in the above sense if they are same up to renaming.
The next definition introduces the reflective variant of interpretation.

Definition. 3.2 (I0-pair and R-interpretation)

1. The set 10 is defined as follows.
10 = ESATOM = (EPROG x EPROG) x (SUBST x SUHST)
The element of /O is called an [0-pair.
2. A subset of JO is called R-interpretation.
]

Theorem. 3.1 The set of all R-interpretation 2/ is a complete lattice with respect
to set inclusion. O

In the following, elements of EPROG, ESTERM and ESATOM are denoted by P,
{ and @ respectively, where P, ¢, a are their reprsentatives. However, equivalence classes
will sometimes be denoted by representatives of themselves for simplicity in case that it
is obvious from context. An TO-pair can be denoted by, for example (a, P, Py, 0y, 03), or
{a, Jﬁ]:,ﬁg._,ﬂ'l.,ﬂ'g}.l where a is an S-atom, /4, F, are programs, oy, o3 are substitutions.

Definition. 3.3 Let P& EPROG, ¢l = @ «~ ay,...,a.(n 2 0) be OC, RC or RDC
in P. IO-description of ¢l in program P is defined as follows.

1. If el is OC or RC, an 10-deseription of cl in P is
{b'\-‘ﬁﬁsp‘.l.!*“"lFﬂigﬂ?g'l'l"'1ﬂ-u:|
where

(a) bis an S-atom g-unifiable with a and ag is an mgmu of a and b,

(b) m1,....0, are substitutions, such that o; = ouo) for some o) for each 2 (1<:i=

(¢) Po.....P, € EPROG and P, = P.

9. If el is RDC and a = r(fy,...,ts) is LS-atom of ¢! where r is an n-ary reflective
predicate, an [O-description of el in P is

{b, Fﬂ, Fh..., Pml'.‘p“n.,ﬂ'h,. .‘rfﬂ}
where

(a) b = r(sy,52, 83,54, 55) is an LS-atom unifiable with ¢ and oy is an mgmu of a

and b.
(b} oy....,0, aresubstitutions, such that ¢; = gac! for some o} for each (1 <1 < n}
(¢} Pov..., P, € EPROG and Py =P,
(d) sy = [uy,....un), where w1, ..., u, are S-terms,

(e} s; = P, and s4 = ¢ for some substitution ¢ in which each free variable in cf
does not appear,

(f) sa and s are variables,

(g} 330, is a program and 3,7, is a substitution.

The next definition is a preparation of the lollowing definitions.

Definition. 3.4 Let P be a program. For an R-interpretation] € 2/, the set of
programs appearing in I, Wp(T), is defined as follows;

{P) fr=0
Wp(l) = { {P" € EPROG) there exist i € [and P" € EPROG,i = {(a,F', P", ey, m3) o1
i = (a, P" P oy,04)} otherwise

a

In the followings, we use Lhe notation r[s] for r(uy,...,u,) if r is a predicate symbol
and & = [Upy. .ty
A notion of model in R-Prolog is introdnced as follows.

Definition. 3.5 Let P be a program and I be an R-interpretation. [is said to be an
E-model of P if the [vllowings hold;

- 13

1. P e Wpll).

2. For any @ € Wp(l), Q@ € Q, any OC or RC in @, say el = a « ay,...,a,, any
[0-description of ef in @,

and any substilution ¢ in which each free variable in el does not appear, if for any
0 <i<n-—1), L

(laiya. oi), Pry Pipa, doi, o) € 1
then (E}. Fo. F... o, 1;5-5"“} e f.

3. For any @ € Wp(l), @ € O any RDC in Q, say ¢l = a + iy, ... i, any [0
description of of in ().))
{b,PﬂT.....PmO'm-”.G'H}

where b= {s;,...,55) and s4 = @, if for any 1 (0 € i < n — 1),

(M airi, 00, P, Pigr, 600, 00:41) € 1

then (r(s,), 75,537, 53, 550) € |
|
Theorem. 3.2 If J = {I} is a non-empty set of R-models of program P, then the
intersection [.J is also an R-model of P.

proof. trivial |

The intersection of all R-models of program P is denoted by M(P). M(P) is the
smallest R-model of program F.

3.2 Fixed point semantics

In this subsection, we show the smallest R-model of P, M{P), is obtained as the least
fixed point of a certain continuous function on 2/ determined by P.

We define the function Te on 279 as follows. It is a reflective variant of the usual
characterization function of pure Prolog.

Definition. 3.8 Let P be a program. The function Tp : 20 — 270 s defined as

follows. Let J € 219,
Te(I) = Up(I) U Vp(I)

where

Up(l) = Ugew,(n Ugeg Usieqo (b o, P, 8, @) l{b, Fo,..., Pa,00,...,0,) be an 10-

description of ¢l = a &« ay,...,an In Fy = ¢, ¢ is a substitution in which each
free variable in ¢ does not appear, and for any i (0 <1 < n — 1),
{W{EH-I rdi}: Ijir "“H"? d’ai: ¢"Uf+1} = I}

VF{I} = UQEWP{J’] qu& Uc-JEQR{{r[Sl]: 57, 8305, E?EE‘?H&! J::Jlllll EER Fﬂ\ Thy e \‘Tﬂ} be
an [O-description of ¢l = a « a;,...,a, in Py = Q where b = r(s;,..., s5),

and 54 = ¢ and for any 1 (0 <2 < n — 1), {(plaiyy, o), Py Pryr, b0y, doigy) € 1}

: o

Theorem. 3.3 Function Tp : 2/° — 2/? s continuous.

proof. Let X be a directed set in 210 We have to prove Tp(lUX) = UTp(X). Let
z = {a, Py, Py, @g. 1) € IO be an I0-pair. Note that if z € Tp(]) for some I, Py e Wgl(I).

First, we assume z € Tp(UX). By definition, z is in Up(UX) or Vp(UX). Tf z €
Up(l) X), there are a program @ € P, an 10-description {a, (o, oo Q. oy Ta) of some
OC or RC in @, say b+~ b,... by, and a substitution ¢ s. t. Qp = Py, Qu = Py, 670 = 00
by =y, and a; = (b,), iy Pigr, 07,70) €U X foreach i (1 = t<n—1). By
directedness of X. there exists { € X to which each of a; belongs. Thervefore, = € Tp(T),
and z £ UT}J{."::I.

If = & Vp(lJ X), there arc a program () € ft".;., an [Q-description {a’, Goneeos Qs Tone o Tal
of RDC b by, ... boin@,s.t. @' =v(s1....,85), a =r[s1], Po =53, P = 537y, 00 = 54,
o, = 5570, and a; = (9{by,), Py Py, 0aTi, datiga) € U X for eachi (1l €<i<n-—1). By
directedness of X, there exists / € X to which each of a, belongs. Therefore, z € Tp([},
and z & UTp(X).

Now, we prove the opposite direction. Assume z € UTp(X). Then, for some e X,
x € Tp(T). Therefore, by the fact I CTUX and almost same argument as above, we can
conclude =z € Tp(lJ X). o

Tt is well known that a continuous function on a complete lattice has the least fixed
point given as the lub of w-chain beginning at the bottom. We now write [fp(Tp) for the
least fixed point of Tp.

Theorem. 3.4 Let P be a program.
M(P)=1fp(Te)

proof. From the definition of M(P) and Tp, we can show that
I'is an R-model of P <= Tp(l)C 1

for R-interpretation I. Then, by the fixed point theorem on complete lattice (see I'rop.5.1
infd]};

M(P) (1] is an R-model of P}
(WITe(I) € 1}

[fp(Tp)

3.3 Some Results
The next theorem show soundness of R-refutation with respect to its declarative semantics.
Theorem. 3.5 Let P be a program and sq = (G, Cy, Py, 00} be a computational

state, where Gp is a goal + ay,...,8x., Co=[c1,...,cm),and foreach j(1 £ j S m), ¢; =
(¢ al,...,a} ., X{, Xi). If there is an R-refutation of the length more than 1 beginning

at sq with the final substitution v and the final program Q', and Py € We(Ifp(Tp)), then
there are a sequence of substitutions and a sequence of programs,

1 1 m —
Thpee o Oy Oy e a gy ey Ty o, O = 0

t 1 Y
Py, P Fy,..., Pl WB L PR =0

1

satisf _'-,ring that

. there are o/, U’k such that meo! = o, nrﬂrrk =,
2. oy = Xlow, P! = Xlo,, o) = Xiol o Pi= }125‘}; for each j (2 < j <m),

and further, for each ¢ (1 < i < n), {-r,r[a a._lj P Poi.i,00) € Ifp(Tp), and for each
1 Zj<m)and k(1 <k < hy), (n(el,oh_y), P, P{.ol_,,ol) € Ifp(Tp).

proof. We will prove by induction of the length of R-refutation.

If the length of R-refutation I = 1, then sy must be {~ a, [}, o, o), and there is a
unit clause (OC) b. in Fy with which (a, op) is g-unifiable by an mgmu ¢’. Then, o =
(nla, o), Py, or '} is an 10- descnptmﬂ of b. and by definition of Tp, (n(a,oq), PD,Pﬂ,go,a-ua“} =
Tp(0). Therefore, (y(a,cq), Fo, Fo, ou, ooo’) € 1fp(Tp).

Now we assume the proposition holds when | = n — 1. Let the R-refutation be
80,81, .., 85,1 with the length n. We prove it m'::ording to the construction of definition?2.17.
If Gy is empty, Cpy, must not be empty, and s, is (« al,.. ol [y em], X ag, Xiag).
By induction hypothesis, there are substitutions and programs

1 f m
JI:rl_1---:'“.‘r.h“'*‘1":"I..'I ﬂ'j:“

I 1
Pl'l‘""Fh]!" .P&“, h.

Therefore, if we let @y = X]op and P} = X}o, the required result is obtained.
Assume Gy is non-empty. If a; is an ordinary atom and there exists a clause (OC)
= b« by,....b.[r = 0) in I such that b is u-unifiable with n{ay,o0) by mgmn o,
and s = (& by,... b, a2,...,0,.,Cp, Fy,000"). By the induction hypothesis, there are
substitutions and programs,

1 1 o
Thyee s Try O2s ey Tna s ey Ty Oy e o OF

Q[....?Q,—,F'} Pn1P1:}1“ P;j., ..._FG"I+1._.,PE‘

such that 7o = ogo’, Qg = Py, 7 = 747! for some 7, for each i, and for each i (1 <
vo=or), (b iy). Qicy, @iy Ticy, i) € Ifp(Tp) and so on. Then, by the definition of
Tp, with an 10-description of ¢l, (n{ay, o0}, Po, Qh,..., Qv 0" 07,..., 07"}, we can have
(nla1,00), Fo, @r,00,000'r]}) € Ifp(Tp) where 1. = ogo'r!. Therefore, if we take P, = Q,
and ay = 7., the desired result is derived.

In case that a; is a reflective atom, there is an RDC e = b «— by,...,b,. such that
5= (&= by b [(— ag, .. 8, X0, XD)|Co), Py, pe’). By the induction hypothesis,
there are substitutions and programs,

1
TlaeeasTr Tay... aﬂ-j,au,...,u'}",.”,a'.;"',.“,a,’:‘m

.. Q,,P.;.,“. Poy Py, P, PR, B

and 7y = ogo’, Qo = Po, oy = Xar, and P, = X7, such that, for each i (1 <1 < 1),
(b, izt), Qica, Qiy Tica. i) € Ifp(Te) and so on. Then, by the definition of Te. with an
[Q-description of el, {r{s1,...,85), Fo.Qh, ..., Qe 0y, 7.), we can have (r[s,], Po, Pr, 00,00} €

[fp(Tp).
O

Theorem. 3.6 Let P be a program and G =+« a be a goal clause for an atom a. If
¢ has R-refutation in P with the final substitution o, and the final program P’

{a.P,P'.c.o) € 1fp(Tp).

proof. Let sg = (« a..[]. P,¢). Because there is an R-refutation beginning at so with
ihe [inal substitution o, and the final program P’ , by theorem 3.5, the result is obtained.
W]

The next theorem shows completeness of R-refutation.

Theorem. 3.7 et @ be an S-atom, P, P, P" be a program and ¢ be substitutions.
1f

(a, P', P 5,0") € 1fp(Tp).
then there exists an R-refutation beginuing at sg = («— a.,[]. P, @) with final substitution
o' and the final program P”.

proof. As stated before, [fp{Tp) is given as the lub of w-chain beginning at the bottom,
L e

fp(Tp)=TpTw=\J{Tp 1nlTp10=0, and Tp Tn = Te(Tp T (n — 1))}

A

We prove this theorem by the induction of n of Tp T n.
Assume I [p(Tr) is non-empty because the proof is trivial if it is empty. Let

a = (a, P!, P", 0,0") € Ifp(Tp).

We first assume a € Tp 71 = Tp(#). Note that We(d) = {P}. If @ is an ordinary atom,
there exist an ordinary unit clause ¢/ = b. in @ € P = P' with which ac is p-unifiable by
7. and there is an 10-description of ¢f in P, {a, P, 7). Then sy has a descendent {[],[]. P, ¢’}
hecause o' — o7, and it can have no descendent. If @ = r(ty,..., 1) is a reflective
atom, there exist a unit RDC o = b in @ € P with which r(s,,...,s5) is p-unifiable
by 7, where sy = [lio,...,tad], 82 = P, 53 = X;, 34 = &. Then sy has a descendent
sy = (0,10, X1, X)), Poor), and sz = ([, [}, P, 0"} where Xior = P", Xyor = o' and it
can have no descendenl.

Now we assume @ € Tp T n. For some Q € Q@ € Wp(Tp T (n — 1)), there exists a
clause el = b «— by, ..., b, which support it. If a is an ordinary atom, ¢l is OC or RC, and
there is the mgmu 7 of ag and b and 10-description of el in @, (ae,Qo, ... Gn; 70, - y Tr)s
where Qp = Q, 70 = 7, and for each i (0 €1 < n =1}, (n{big1,0m:), Qi Qis1,0Ti, OTipa) €
Te 1 (n — 1). By induction hypothesis, for each ¢ (1 <t = n), there exist an R-refutation
beginning at s = (n(b;, o7mi1), [l,@,07i-1). Then it is easy to construct an R-refutation
beginning at sq by combining these. If ais a reflective atom, we have the result by the
almosl samne argument. a

— 17

Theorem. 3.8 Let a be an S-atom, P, P’ he programs, o, ¢’ be substitutions. If
(a, P, P',0,0") € If p(Tp)

then there exists an R-refutation of goal «~ a. in P.

proof. Il we let sg be (+«— a.,[]. P, ¢}, the result is derived from theorem 3.7. m)

4 Discussions and Concluding Remarks

We have introduced a reflective logic programming language R-Prolog and investigated its
semantics rather formally. We have not given, however, the illustrating examples which
show the benefit of R-Prolog. Although we will discuss those in the other paper, we will
remark on some properties and possibilities of R-Prolog in this section.

4.1 Up and Down

As stated above, up and down construction introduced in this paper is closely related to
freeze and mell proposed by Nakashima et al. [6]. Freeze and melt were introduced in order
to manipulate variables themselves as data, and it is shown that these concepts enable us
to distinguish several features provided in actual Prolog. Although our motivation is quite
similar to theirs, we can indicate some distinctions between our apparatus and them.

One of the distinctions is a syntactic matter that freeze and melt are provided as special
predicates. For example, freeze(X,Y) freezes a term to which X is bound into its frozen
form to which ¥ is to be bound, and melt(X, Y} melts the frozen form to the original one.
In R-Prolog, T X denotes the frozen form of term X is bound to, and L X melts the frozen
form to the original one.

A eritical difference is that the existence of the notion of “name” or “meta”, 1. e, a
quoting apparatus. Using [reeze predicate, if X is bound to a ground term,

freeze(X,Y), X ==
always holds. On the contrary, the corresponding R-Prolog expression,
A==t X

always fails, because upped terms (T ¢) have its quoted form ("t) explicitly. Conceptually
in R-Prolog, quoted terms denote a names of theirs !, and it is assumed that an object
and a name of the object are different. This notion of “name” is necessary to give the
consistent semantics from a logical point of view. In fact. freeze and melt are somewhat
computational notions and their logical meanings are not clear.

4.2 Some Applications

Advantages of R-Prolog can be shown in several applications. In this subsection, we will
mention two basic applications among them: global variables and meta-level reasoning.

!This notion of “name” is similar to the notion of Barklund[1]

Reflective operation on current substitutions allows us to realize global variables which
are distinguished from usual logical variables. For example, the following reflective defini-
tion realizes the global variable declaration.

reflect global{ X, Y).

global([X, Y], Pr. Prl, Sub, Subl) — getlinding(Sub, X, Z),
Zl =} Z,
Y =271,
set binding(Sub, X, T Z1).

By this definition, we can utilize global variables as follows;

plX Y)Y — 8 X, Z), global "G X, Z), 1 X,Y).
(X, Y) — global('GX, Z),r(Z, X, Y).

This program employs a global variable GX for communication between two predicates p
and g. Note that glebal can be used for both way communication.

Meta-level reasoning is also realizable by means of reflective operations. Using meta-
interpreter presented in section 2.2, well known predicate demo [3] can be defined in R-
Prolog as follows;

Reflective demol(Db, G1).
derno([Db, G, Pr, Pr,Sub, Subl) — solve(G1, Db, Db, Sub, Subl).

[t has been shown that Lhis kind of deme predicate makes many kind of applications
realizable, such as database management, knowledge representation, and so on [3, 2]. For
example, with the following programs,

believe(Person, Knowledge) +— haskb{ Person, K B), demo(K B, Knowledge).
haskb(john, [lazy{paul), lazy(...},...,]}.

the goal «— believe(john, T lazy{X')). retreives the person who John believes to be lazy.

4.3 Concluding remarks

We formalized the semantics of R-Prolog and proved soundness and completeness of its
operational semantics with respect to the declarative one. Based on these fundamental
and imporiant properties, we believe we can discuss the formal properties of behaviors of
programs with reflective operations. Works now we are concentrating on are described as
lollows,

In R-Prolog programming, we can say that anything is allowed to be changeable by
users in some sense. Although this increases the language's flexibility, it involves somewhat
dangerous situation, e. g. a given program might be a self-destroying one. We have to
investigale in which case programs describe meaningful computation and in which case
it leads to inconsistency. In order to enable that, much finer arguments about R-Prolog
programs is required. Among programs of R-Prolog, following three classes have particular
significance in studying behaviors of R-Prolog programs; programs which have no reflective
predicates, programs with reflective predicates which operate on current programs only,
programs with reflective predicates which operate on current substitutions only. We are
very interested in making behavioral characterization of these classes.

—_ 18—

We are also trying to make more illustrative applications for reflective computation in
logic programuning, Such an extention of the scope of the applications of reflection will help
people to realize the substance and the importance of reflection. It is also quite important
to implement this reflective language.

Acknowledgements

This research has been carried out as a part of Fifth Generation Computer System project
of Japan. 1 wish to thank Dr. Jiro Tanaka, Dr. Masaki Murakami, Dr. Youji Kohda and
Mr. Munenori Maeda for the fruitful discussions and their helpful comments.

References

[1] Jonas Barklund. What is a meta-variable in prolog? In The Workshop on Meta-
Programming in Logic Programming (META 88), pp. 281-292, 1988.

(2] K. Bowen, Meta-level programming and knowledge representation. New Generation
Compuling, Vol. 3, pp. 359-383, 1985.

(3] K. Bowen and R. Kowalski. Amalgamating language and metalanguage in logic pro-
gramming. In S. Tarnlund, editor, Logic Programming, pp. 153-172. Academic Press,
1982,

[4] J. W. Lloyd. Foundations of Logic Programming, 2nd. edition. Springer, 1987,

[6] P. Maes. Reflection in an object-oriented language (draft). In Preprint of the Workshop
on Meta-Level Architecture and Reflection, 1986.

[6] II. Nakashima, 5. Tomura, and K. Ueda. What is a variable in prolog? In FGCS '8,
pp. J27-332, 1984,

(7] B. C. Smith. Reflection and semantics in a procedural language. Technical Report
272, MI'T LCS, 1982,

[8] B. C. Smith. Reflection and semantics in lisp. In Proc. 1{th ACM Symposium on
Principles of Programming Languages, pp. 23 35, 1984.

[9] J. Tanaka. Meta-interpreters and reflective operations in GHC. In FGCS ‘88, pp. 774-
783, 1988.

[10] M. Wand and D. P. Friedman. The mystery of the tower revealed: A non-reflective
description of the reflective tower, In ACM Sympeosium on Lisp and Functional Pro-
gramming, pp. 295-307, 1986.

f11] T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent language.
In Proc. of ACM Conf. on OOPSLA, September 1988.

20

