ICOT Technical Memorandum: TM-0827

TM-R2XT

Guide to the Japanese Demonstrations
at Joint Japanese American Workshop
on Future Trends in Logic Programming

by
K. Rokusawa

November, 198Y

© 1989, 1COT

Mita Kokusai Bldg. 21F (03} 456-3191—5

Ic DT 4=28 Mita 1-Chione Telex ICOT J32964

Minato-ku Takyo 108 Japan

Institute for New Generation Computer Technology

Guide to the

Japanese Demonstrations

Joint Japanese/American Workshop
on
Future Trends
in
Logic Programming

October 11-13, 1989

Institute for New Generation
Computer Technology

4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan
phone: +81-3-456-251 1 fax: +81-3-456-1618

A List of Demonstrations

1.

om

Parallel Software Development Svstem Multi-PSI and PIMOS
e Hardware for Parallel Software Development Multi-PSI
¢ Distributed KL1 Implementation
e Parallel Inference Machine Operating System PIMOS
e Parallel Application Programs
(1) Natural Language Parser PAX
(2) Tsumego Solver
(3) Packing Piece Puszzle

(4) Shortest Path Problem Solver

. Knowledge Application Oriented Advanced DBMS Kappa

Computer Aided Proof CAP-LA

. Constraint Logic Programming Experimental System CAL

. A General-Purpose Reasoning Assistant System EUODHILOS

Visualization and Transformation Apprentice

for Concurrent Logic Programming VISTA

. PIMOS Development Support Svstemm PPDSS

. Experimental A"UM System XAS

Titl
“1¢| Parallel Software Development System
Research and development of parallel operating svstems. parallel algorithm
Purpose | design aud load distribution methods on an implementaiion of a concurrent
logic programming language on a parallel processar
o The Multi-I’5T counecting up to 64 CPUs of the sequential inlerence
machine (FP5])
e A high performance distribuled language implementation for a concur-
el i — - a ; -
Dut Line ren logl.t [rrogramonng | nguage (L1
& + A parallel operating svstem {(PIMOS) for research and developnent of
Features parallel software
¢ Ulsed to extend and optimize the KL1 langnage pracessor and the PIMOS
for parallel inference machines { PIAls)
Parallel software development system
R&D of parallel software
in KL1
System
Configu- T .
Parallel operating systen
ration PIMOS
Distributed language processos
for logic programnung langngage
KL1
Parallel processor
Multi-PST

F—1 -1

Title

Hardware for Parallel Software Development — Multi-PSI

The Multi-PSI hardware offers high processing power and useful functions

Purpose | for (1) research and development of parallel software and distributed processing
mechanisms, and (2} designing PIM architecture.
The CPU and memory of the compact version of the sequential inference
machine, P5[. are used as the processing elements {PEs) of the Multi-P5SL.
PEs are connected to each other to form a two-dimensional mesh network by a
specially designed message switching and antomatic ronting network controller.
The system can be configured with up to 64 PEs in units of eight PLs.
Outline The compact version of the PSIE the PSI-TT, is used as the front-end [eoe-
cessor (FEP). Up to four {ront-end processors can be connected to the network
& to perform /O functions for the Multi-PSI syvstem.
Features
lag architecture 8-bit tag + J2-bit data
PE control Horizontal microprogram control
Cycle time 200 nsee (whole system synchronized)
Main memaory 80 MB (16 MW)/PE max.
Network channel 5 MB/s
Devices 8K, 20K-gate CMOS gate array LSI, and others
FeYrZY K. Takyt
Front-end pracessor
(PS1-1) 2> b7~ HWEHE BRI o,
Network controller Frnﬂgggins element
= e f_’ s [
System ~ ” — ---—
,f" .’l'r =4
Configu- - -’ r"" .r’
* -+ f’ .p.‘
ration /
el o
| ALY LT 8 PEs
e i /
J_ [s —_—
y/ /
A 8 PEs d

D € t a i 1 & {lx‘”z]'

Processing element (PE)

The wide (53-bit) miero instruction architecture of PEs allows flexible ex-
periments of KL language implementation. The tagged architecture enables
efficient execution of logic progranuning languages. It 15 especially suitable
for high level abstract machine instruclions because tag mampulation and
multi-way branching on tag values can be performed i parallel with an A LU

operation.

Network controller

A PE eammunicates with four adjacent nodes through bidirectional chan-
nels, each nine hits wide. Messages received are stored in the Read buffer for
the PE in the node, or forwarded to another node through the channel chosen
bv looking up the Path table with the destination address of the message.

A buffer of 48 byvtes for cach output channel is used for husy waiting svn-
chronization with the adjacent node.

When a complete message is stored in the Read buffer, the PE of the
node s notified of it (by a NWINT signal), and the PE will process the iessage
as early as convenient for its internal processing.

Message sending from the PE is initiated automatically when a complete
message i= stored in the Write buffer of the nelwork controller.

Network controller

th0 (in) Path controller 0 (out)
S el I ====crrazsssEmsd
?h'l {i]ﬁ-- B Fath — | D-Buf. 1 =====EE’:£:£EE£1
Ch.2 (in) table Ch. 2 (out)
szeszszzssszzssszzz==s) —_ ET_EI sszzeszmsszzzc)
EE E;Eiﬂnunu-un — | 0-Buf. 3 :.---EE;L,E::E}

' : (48byte x4) Ch.0~3 : Chanel 0~3

W-Buf. —T I—- R-Buf, 0-Buf. : OQutput buffer

{4Kbyte) | {dEhyt;l W-Buf. : Write buffer

‘I‘ HFIHTL i , E=Buf. : Read buffer
KEINT : Network interrupt
PE -signal

Figure, Netwark coatreller and Processing element {(FE)

1-2-=2

D & t a i l 13 '[2/"2)

Hardware implementation

A PE is implemented on three printed circuit boards {PCBs) with nine
8h-gate UMOS gate array LSIs. The network controller is implemented on
one PCB using two 20k-gate CMOS gate arravs.

One PE can have up to 80M bytes of main memorv on four PCHs, each of
which contains 20M bytes, using 1M bit dynamic RAMs.

One cabinet of the Multi-I'SI contains eight nodes, and one system can
have up to 64 nodes hy connecting eight such cabinets. The entire system is
synchronized by a single clock distributed to all cabinets.

Up to four front-end processors [FEPs) can be connected to the network
for IfO. One of them, the master FEP, also performs console processor {(CSP)
functions, such as system start-up and diagnosis, through a specially devised
maintenance path.

— N#C - WWC p—
PE .| PE
Front-end processor (PS 1 —1} . :
Communication : :
PS5 1—10|FENKC NWC NWC —
natwork : :
WPC FE .. | PE

BiiiwemciiaZiimaiiacss I |

Maintenance path

PE : Processing element
NWC : Network controller
FENWC : Front-end network controller
WFC : Maintenance path controller

Figure. Multi-P3I and its front-end processor

] =-2~3

Title . . ot
Distributed KL1 Implementation
The distributed KL1 implementation manages kL1 processes
Purpose and dala distributed over the network-connected processors of the
Multi-PST and executes KLI programs efliciently.
KLl programs are compiled by an oplimizing compiler mnto ab-
stract machine instruetions, which are executed by the wicrocode
(150 KLIPS (Kilo Logical Inferences Per Second] per processor).
OQutline . . . L .
The distributed IKL! implementation is designed to reduce the
&
amouni of inter-processor communication by utilizing the single-
Features
assignment property of KLE and by various other techuiques. In-
novative intra- and inter-processor garbage collection schemes are
implemented.
F oo
processor
- 5= %
— data
O - 7utz€)ﬁﬁ‘E]
System 1- process }
Configu- 4+
ration O ¥

=

Hoitho ok
migrating process

I =3 -1

D e t) i | 5 {lfé)

1 KL1

KL1 is a stream AND-parallel logic programming language. In stream AND-
paralielisim, concurrently execnted processes that share data constitute the pro-
cess structure 1n the form of canse-consequence chains. Unlike OR-parallelism
and independent AND-parallelisim. in which concurrently runuing processes do
not communicate with each other, programs originally written for sequential
wachines cannot be readily executed in a stream AND-parallel manner, but
complex cooperative problem solving can be hest modeled in stream AND-

parallelism.

2 Multi-PSI Architecture

There are two categories in parallel computer arehitectures: shared and non-
shared memory architectures, In the shared memory architecture, PrOCEsSOrs
communicate with each other by writing and reading shared memorv: in the
nen-shared memory architecture, they communicate by sending and reced ving
niessages over the communication channels. The shared memory architecture
has the advantage of relatively low communication overhead, but the maxi-
mum number of processors is severely limited because of the memory access
bottleneck. The advantage of non-shared memory architecture is ils scala-
bility. It was chosen for the Multi-PS1, since the machine is to serve as an
experimental machine for the Parallel Inference Machine (PIM) project whicl
alms at bLlildillg a parallel machine witly up o 1,000 processors. Pr:};.;rnruﬁ on
a non-shared memory machine, however, need to he designed with the problem

of high communication overhead i mind.

1—3-2

D e t a i l 5 ‘:2/'2}

3 Distributed KL1 Implementation

The task of KL1 implementation is to execute WL1 programs efficiently on
the Multi-PSI. Algorithms have been developed to keep the amount of inter-
processor communication as low as possible. Since the rate of memory con-
sumption in KI.1 programs is high, new techuigues are employed in garbage
collection {GC), reclamation of memory arca that is no longer used. One is
the Multiple Reference Bit (MRB) technique that uses one-bit pointer tags to
recognize reclaimable data in a local processor, and another is the Weighted
Fxport Counting (WEC) technique suited for inter-processor incremental GC.
The implementation provides metaprogramming capabilities to support the
operating system. They include the “shoen™ facility — core of resource and
task management, priority execution, and nser-programmable load distribu-

tion mechanism.

1 —3-3

Title

Parallel Inference Machine Operating System: PIMOS

The PIMOS aims at providing operating svstem facilities throngh which
application programs can easily and fully utilize the processing power of the
parallel inference machines,

(utline

&

Features

System
Conf igu-

ration

Described in KL1: The PIMOS is completely described in the concurrent
logic programming language KL1. Making use of the mefa-programniing
features of the KLI language. Uhe design of the PINOS is independent of
various hardware parameters, such as the number of available processors
i the svstem,

Single OS on multiple processors: The PIMOS is not an aggregate of in-
dependent operating svstems on each processor, but one single integrated
operating system. However. not only the application programs but also
various parts of the PIMOS are executed on multiple processors in par-
allel. Computation and conununication botilenecks due to information
centralization are avoided by distributing management inforination close
to the application program tasks.

Providing basic system functions: The I'IMOS provides basic functions
required in operating systems, such as management of execution, resource
allocation and input/oulpul devices. Additional services are planned.

All the demonstralion programs shown on the Multi-P31 systems are operated
under the supervision of the PIMOS.

Parallel Application PIMOS

. rogram TanaAcenen!
1mn IFI'E'!I'.'[’ P g n o

machine T tasks“'ﬂ Processes

ol

=
e _...-"‘.-’
[

To 1/0) devices

)

p—y

+ v

1—4—1

] E i & i 1 g (1.72)

The functions of the PIMOS are demonstrated by operating the application
programs in their demonstrations,

Stream communication and filters

All communication between the PIMOS and application programs is made
through streams, which is one of the most advantageous features of the ANID-
parallel logic programming languages. Filters inserted to such streams handle
abnormal termination of application programs and pratect the operating svs-

tem from failures in application programs.

Disiributed processing by the resource tree

Each application program task or input foutput device used in such tasks
has a PIMOS management process associated with it. The processes in this
case are quite light-weight anes provided by the microcode of the KL1 lan-
guage processor, which correspond to ofjects in ohject-oriented programming
languages.

In the PIMOS, tasks can be created inside a task, which. as a whole, forms
a tree structure. Thus, the corresponding PIMOS management processes also
forin a tree structure. This tree is called the resource tree. All the PIMOS
management information is distributed to the management processes, which
arc the nodes of this resource tree.

The management process is allocated on the processor where the corre-
sponding application prograin task is running {when the task uses multiple
processors, the processor on which the request was made to create a new task
or to open an IfO device). This distribution of management processes alsa
distributes the management overhead to multiple processors. Also, by placing
management information near the application program tasks, communication
congestion Lo a single processor, as expected when all the information is cen-
tralized in a single table, is avoided and the total amount of inter-processar

communicabion s uinimized.

1 —4 -2

D £ t a 1 1 s (2.72)

Shell

Execution of an application programs supervised by the PIMOS can be
initiated by invoking it from the command interpreter (shell). Based on the
functions equipped by the PIMOS, the shell provides the following features for

the user.
o Starting, suspending, restarting and aborting the execution of jobs
« Controlling foreground and background jobs

Defining the standard input/output of jobs

Inter-task communication via pipes

Controlling resource allocation to jobs
s Handling exceptions in application programs

Utility programs invoked from the shell provide monitoring of the status of
task execution and allocation of resources such as input/output devices.

Input and output devices

The PIMOS currently provides functions to access high-level 1/0 leatures
of the operating system (SIMPOS) on thefront-end processor {PSI-II), such as
files and display windows, from KL1 programs. Various display facilities used
in demonstration programs are operating on the front-end processor, controlled
by KL1 programs on the Multi-PSI through the standard interface provided
by the PIMOS.

Further details of the design of the PIMOS are given in the following paper,
presented al the session 1COT-5S51 (3:30 p.m., Wednesday, Nov. 30th}.

“Overview of the Parallel Inference Machine Operating System”

1—4-3

Title

Parallel Software Development Environment on PSI-II: PIMOS-S

Purpose

The PIMOS-S provides a parallel software development environment gual-
itatively equivalent to the Multi-PS1 system on much less costly PSI-11 work

stations.

futline

Features

Compatibility: The language and operating systemn features provided are
fully compatible with the Multi-P5[syvstem. Parallel software developed
on PSI-II workstations using PIMOS-5 can be executed on the Multi-PSI

without any change.

Pseudo-parallelisim: Processing elements of the Multi-PSI running in par-
allel are simulated by pseudo-parallel processes.

High performance: The same micracade as used in the Multi-PSI system
is utilized. Thus, the provided performance is equivalent to its one pro-

cessing element.

Decent debugging environment: A debugging environinent qualitatively
equivalent to the Multi-PSI system is provided. It is even hetter in
some aspects; e.g., non-determinacy due to parallel execution can he
eliminated by applying pseudo-random scheduling.

System
Configu-

ration

Communication
buffer PIMOSS

(Pzeudo-parallel

/ excculion
‘ Process Process . Process

l
B
1
I
i

i 1 I 1
| | 1
[! | |
i ! 1 |
i | i 1
i |

Multi-PSI
(Paraliel

execulion)

PE PE PE
il i

0 T ~

Title

Parallel Software Research

To develop novel software technology essential for making large scale network-

pose connected parallel machines work efficiently for various application fields.
Almost every software technology in programnming and execution of application
programs must be reconstracted for parallel processing Lo achieve a satisfactory
execution efficiency of large scale parallel machines. Especially those listed
helow arc essential.
» To develop algorithms with much parallelism without increasing the
Outline amount of required computation
& o To accumulate programming styles or paradigms which give guidelines
Features to parallel programming for various types of large scale problems
¢ To develop load distribution methods for balanced work load and Ligh
communication locality
The research has jnst started by implementing parallel programs for several
types of applications {e.g. the programs demonstrated), The resulis of the
research will be fed back to improve the functions of the operating systemn and
the language processor.
FHV 7 b= TOESIRME
e zhL T Important issues in parallel software
Applications
(#PMT ATy LA h
<: Parallel algorithms
Y -HF7OY L
System EFIGR 7O &2 4 Programming paradigms
Conf igu- Parallel application programs AMSHER EAEORR{LAR
Laod distribution method and
ration | communication locality control

BRI AR =-Ff 2T AT L
Parallel operating seystem

WIEALEE .
Language processor WSRO T 4= Kty g
Technology feed back

WM FPSIN— VYT
Multi-PSl hardware

1—-6-=1

Tit]ﬁ|

Processaor Work Rate Measurement Program for The Multi-PS1
Performance NMeter —

Purpose

[.:1 evaluate [oad distremitaen of wser Progralis li.‘i IRRL | 1'f"£’|: f1me visual dj -jp]::l,:.'

y . P PO
Ol provessor wors loads.

: (it line

&

Features

System
Configu-

ration

Work rate of cach piocessor of the nult-P51 s displaved eraphically at real
tune. Display mierval is two seconds (can be clhaneead),

The measurerment prosrans s weitten i L1

I'he program is constructed of measuring processes allocated to all processors
and a management process which gathers the measurement results, The results
are packed and sent to a display device on the front-end processor via the
uperating system. PIMOS.

work rate

1 et
el R

processor
ntinibher

--i- I'"'E_-'p'": =
Eag B €S "

BrEdn

EY

e g

WELD '
5]

Mhisplay exampie of Lhie Pecformance meter

Title

Parallel Application Program (1):

Natural Language Parser

Purpose

The natural language processing svstem originally usf:d in _DUI.—"'.th s
implemented in parallel using layered stream method. A load d]ﬁtl‘lb:l.t.h:u
method is studied and evaluated for it in order to realize a very last

natural language parser.

Dutline
&

Features

OQutline The PAX analvzes natural language sentences, makes parse
trees. and displavs them. Parsing i1s performed by bottom-up, pars
ing messages between processes which correspond Lo cach node of
parse tree,

Parsing program The parsing program is generated from definite clause
grauunar by a translator, which adds load distribution code auto-
matically.

Problem characteristics All solutions are searched in the parsing al-
gorithm. However, the result is not always unique because of the
ambiguity of gramunar, particularly in natural langnage.

Programming paradigm The layercd stream method, a broadly appli-
cable paradigm for all solution search problems, is used.

Load distribution A load allocation which mininizes inter-PE com-
munication s examined,

System
Configu-

ration

prep

[failing] [student]

S ——

WiFRLRBESALR P —AME
Parse tree and layered stream communication

1—-8=1

D e t a i 1 £ [1;”3:'

Configuration

The PAX is a natural language processing system. [t analyzes natural language
sentences, makes parse trees, and displays them in the window. This system 1s
divided into three parts, the input part of sentences, Lhe analysis part (parser), and
Lhe vutput part of results [parse trees)

The parser is the main part of this system and only this part runs on the Mult-
PS1in parallel. The parsing program is generated from definite clause grammar by
a lranslator,

Both the input program and the output program are written in ESP and run on
the front end processor PSI-I1 machine.

Problem characteristics

Fur parsing, a bottonr-up breadth-first algorithm calied left-corner parsing is used.
Clenerally, all solutions are searched in the parsing algorithm. However, the result
is nol always unique because of the ambiguity of grammar, particularly in natural
language.

In general, we use the following way to write all solution search programs in
languages that do not support the hacktracking mechanism, such as KL1. First, we
gather all solutions as a sel, then the set is sieved gradually to select the adequate
one- U - the PAX, the layered stream method, a broadly applicable paradigm for
all solution scarch problems, is used.

Algorithm

The PAX analyzes the input sentence by using the bottom-up parsing method with
gencraling processes which correspond to each node of the parse tree, based on each
word. The analysis progresses by messages passing between two adjacent processes
through the stream. Each message contains partial results {partial parse trees).

We explain it by using an example shown in the figure of first page. This example
ai 4.z » the sentence “failing student looked hard™ with the following grammar.

s -=> np, vp. adj --»> [failing].
np --> adj, noun. adj --» [hard].
np --> prep, noun. prep --> [failing].
vp --> verb, ad). adv --> [hard].
vp --» verb, adv. verb --» [looked].

noun --> {student].

1—-8-12

D e t a i | 5 {2/’3 3

Firat, the input words gencrate processes with streams which connect two adja-
cent wards,

This picture is a snapshot of parsing. The noun phrase (np) and verb phrase
{vp) processes have already been made, and each np process (there are two) sends
partial parse trees that it made to vp processes through the stream. The partial
parse trees are as follows:

np np
-
rep noun adj neun
{failing) [student] [failing] [student]

There are two np and vp processes, because there are two canditates for failing :
adjective (ady) and preposition (prep). hard also has two candidates, adjective (adj)
and adverb {adv).

Communication between an np process and a tp process uses the layered stream
that was connected when processes were generated from the words.

I. Each np process sends its partial parse trees through the stream between
student and looked.

3

Both the adj process and adv process are adjacent to the verb process and are
connected with the stream between looked and hanl. When they communicate
with each other, the verl process puts the streamn counecting student and looked
intto the message.

3. On receiving messages from the verb process. the adj process and adn process
generate the ep process above them, The stream between sfudent and looled
are gol from the message and given to the vp processes.

4. Each vp process receives the stream between stadent and looked, and can re-
ceive the message [rom the up process through it

In this way, Lhe np process conununicates with the vp process. Fach op process
receives two partial trees {rom the np processes, and construets ils Lrees and gen-
erates the last node senfence. {This completes parsing.) 1L means that four parse
trees are made,

1-8-3

D e t a i 1 s (3.73)

Load Balancing
Two kinds of parallel exceution are applicable to the PAX-

l. Making adjacent nodes can Le done in parallel, In the ahove example, the
processes Lo make an np process and a 1p process can be executed in parallel.

2. When there are two or more node candidates, each process corresponding
to node can be executed in parallcl. In the above example, there are Lwo
candidates for failing { prep and adj), and they can be exceuted in parallel.

If all the processes mentioned above are distribuled to different processors. too
much inter-processor communication occurs.Because the messages {rom some can-
didates are merged into one stream, which is sent some candidates again. Thai is
N to one to M communication occurs.

[order to minimize inter processor communication, we use following load hal-
ancing method. Processes that receive a message from the same streain are executed
on the same processor.

First, processes that correspond to each word are allocated to dilfcrent proces-
sors. A process corresponding to a word puts its processor number into the head
of a stream which connects the process and a process of next word. The process
of next word reads this stream and moves to the processor that is designated by
the processor number. In this way, inter-processor communication decreases to N
o one.

Demonstration

PAX analyzes sentences according to the grammar listed in “Oxford Advanced
Learner’s Dictionary of Current English” which consists of about 420 grammar rules
and about 200 words of vocabulary. In the demonstration, PAX analyzes sentences
explaining PAX itsclf and show the change of execulion time changing the following
parameters,

* The number of processors used.

¢ The load distribution method; The following two methods arc tried.

— The method which minimizes inter-processor communication by maving
the processes to the processors where the accessed data reside.

— The method where the process never moves.

* The number of consecutive words allocated to one processor.

1—8—4

Parallel Application Program (2):

Title

Tsumego Solver

A paralle] algorithm, programming paradigm and load distribution method
Purpose for the game tree search problem are studicd and evaluated implementing

a Tsumego solver.

The solution (life, death or tie) is caleulated for a given Tsumego problem

and the first move is made.
Characteristics of the problem : Game tree search (to leaf nodes).

Algorithm : The alpha-beta pruning method is modified for parallel

Catline
execution
& . . : .
I'he search tree is expanded in parallel, and processes corresponding
Features to each node exchange messages wilh cach other.
Priority is attached to each process to realize an efficient pruning
for the search tree,
Load distribution : Targe grain processes are allocaled Lo idie proces-
sors dynamically.
LT BT LTS h]
« Tumege prablem - Game Leee in the
problem SEFCapiign
. »Parallel alpha-beta
|
I
System s 301 2 1
igu- | hosLHESLRE
Configu- B 0 ccakecccscdeesssssssas h ;
: s
tlach's turm i Specilied dop
ration 8
PETE R UMY EEF
Large grain TLaFoxailR
processes Each process executes
tial alphasbats
BT :"q“'."’m‘ »r
ﬂd.l.b—pruh'ltm

FPEm @ & B @

PEr

High — e Low
Prisrily

1-9-1

D e t a i | g f.ifz}

1 Overview

A parallel algorithm, scheduling and load distribution method for the game tree
search problem are studied. The alpha-beta pruning method 1s modified for parallel
execution. Priority is attached Lo all the node processes to realize an efficient pruning
for the scarch tree. Processes are allocated dvnamically in order to balance work

loads of all processors.

2 Tsumego problem and solver

Tsumego problem is to determine lile, death or te of the surrounded stones given
the Go board state (placement of white and black stones) and whose turn is next.
The program shows the first move according to the result.

The program is essentially a game trec scarch. In the scarch, the alpha-beta
pruning method is used with some modification for paralle! execution.

Exhaustive search down to leaf nodes is made in this solver.

3 Alpha-beta pruning for parallel execution

In the conventional alpha-beta scarch, the game tree search is done in depth first
manner. Since the result of a subtree scarch is used for pruning searches of other
part of the game tree, the alpha-beta scarch has a sequential bottleneck. Therefore,
the alpha beta pruning method should be modified for parallel execution.

If the game tree search were done in purely parallel breadth first manner, there
would ke no pruning of search space, A priority control is used to realize an efficient
pruning for the search tree.

4 Algorithm

The game tree is expanded in one master prowessor to a cerlain depth using the
parallel alpha-beta pruning method. Blow the deptl, the conventional sequential
alpha-beta search is executed. Each sequential alplia-beta search is performed by a
large grain process, which is the unit of distributing computational load o proces-
sars. The parallel alpha-beta scarch is as follows.

1. Make a move for the given Go board situation. Pick up stones to he cap-
tured if any; Trace of adjacent same colored stones and if they are completely
surrounded by enemy stones, they are captured.

2. Make judgment whether the game tree is expanded to a certain depth. When
the game tree is expanded to a certain depth, sequential alpha-beta search is

executed.

3. When not expanded, the search is continued spawning children node processes.

1=0-=—1

D e t a i 1 § (2,-""_?_]

Each node process tests conditions for branch pruning or termination, exchanging
information through streams. The information for renewal of alpha and beta values
flows downwards, values of terminating nodes upwards, and termination commands
caused by pruning downwards.

5 Scheduling using priority
In the parallel alpha-beta search, following three kinds of scheduling are tried.

(a) The moves of the first player are sequentially searched.

(b) The searches of the first player's moves are given priorities so that
left-hand tree searches always prior than right-hand ones. The
moves of the second player are given the same priorities.

(c) Each search of the first player’s moves is given individual priority
according the individual game tree. The moves of the second player
are given the same priorities.

Scheduling (&) is closer to the sequential alpha-beta search than (b) and (c), and
has less parallelism.

Il is expected that for a problem instance where the pruning effect in the se-
quential alpha-beta search is large, scheduling (2) will do well, while (b) and (¢) will
have good speedup for a problem instance in which the pruning effect of sequential
search is small.

6 Load distribution

On-demand dynamic load distribution is used in order to balance work loads of all
ProCessors.

When a processor becomes idle, it sends a message requesting a new process to
the master processor in which the game tree is expanded in parallel. On receiving the
message, the master processor distributes a process as the response to the message.

7 Outline of the demonstration

1. Sequential alpha-beta search is tried to the problem where the best move 1s
searched first.

2. Parallel alpha-beta search using 16 PEs is tried to the same problem above.
Both scheduling (a) and (b) are used.

3. Parallel alpha-beta search using 16 PEs is tried to the problem where the best

move is searched after many moves.

4, Using scheduling (c), parallel alpha-beta search is tried to the same problem

above,

1—9-—3

Parallel Application Program (3): Packing Piece Puzzle

Title
Dynamic load balancing scheme for OR-parallel search programs is studied.
Furpose | Multi-level load balancing scheme is proposed, and evaluated by implementing
all-solution cxhaustive search Pentomino program.

i FPacking Piece Puzzle is a puzzle, a rectangular of a collection of pieces with
various shapes. The problem is to find all possible ways to pack the pieces into
the box. This puzzle is known as the Pentomino puzzle, when the pieces are
all made up of 5 squares. This is a typical OR-parallel search program, and

Outline | Multi-level dynamic load balancing scheme is applied.
& Program structure:
Features An QR parallel exhaustive search by forking tasks at each alternative choice,
' forming a tree structure.
Load distribution:
Tasks are distributed to idle processing elements (PEs), in order to balance
work loads. When a PE becomes idle, it send a message to the master PL3,
requesling a new task. To overcome the distribution bottlencck, multi-level
load balancing is introduced.
Search Tree and
Load Distribution
5[] A
] L
System
Configu-
ration

PEi1s

PEX:PE1S

FE0

1-10-—1

Details (1/3)

1 Overview

In the demonstration, packing piece puzzle of 10 pieces{Fig.1) is solved with different num-
ber of processing elements (PIs), and speedup by parallel execution and effectiveness of
load balancing are shown.

The demonstration is carried out as follows.

e Program is excculed on 1 processor, and execntion time is displaved.
e Program is executed on 16 processors, and execution time is displaved.
¢ Load balancing can be observed by the performance meter.

e Near-linear speedup is obtained.

3 &

l4|—ﬁl
—ZL‘SHT 10

Figure 1: Packing Piece Puzzle

2 Description of the program

To solve this puzzle, the program starts with the empty box, and finds all possible place-
ments of a piece to cover the square at the top left corner, then, for each of those placement,
finds all possible placements of a piece (out of the remaining pieces) to cover the uncovered
square which is the topmost leftmost, and so on until the box is completely filled. Each
partly filled box defines an OR-node, where the possible placements of a piece to cover the
uncovered topmost leftmost square define child nodes.

The program does a top-down exhaustive search of this OR-tree. Here, deepening the
tree depth corresponds to pack one piece. Number of OR-nodes increases as the search level
deepens, but since some OR-nodes are pruned when there are no more possibie placements,
number of OR-nodes decreases below a certain tree depth. ‘

3 Load balancing scheme

Load balancing is done on master PE by partitioning a program into mutually independent
subtasks (Subtask Generation), and by distributing subtasks to idle PEs so as to balance
work loads (Subtask Allocation). To detect idle PEs, on-demand distribution method is
utilized. When a PE becomes idle, it sends a message to the master PE, requesting a new
subtask. Subtask generation is done until the search reaches the certain depth in the tree.

1—-10-—-2

Details (2/3)

However, as the number of processors increases, the rate of subtask execution eventually
becomes larger than the rate of subtask supply. In other words, subtask generation becomes
a bottleneck.

To overcome this bottleneck, we have introduced multi-level load balancing scheme.
Each subtask generator is in charge of a certain fixed number of processors, which form
processor groups (PG). N processors are grouped into M processor groups, therefore, cach
PG is composed with 5 PEs and a certain PE in a PG is called group master PE.

In Fig.2, two-level loa.d balancing scheme is shown. At the first level distribution, super-
subtasks are distributed to idle PEs to balance the loads of PGs. At the second level,
subtasks arc distributed to idle PEs to balance the loads of PEs which belong to a PG,

This scheme 1s scalable to any number of processors because of this multi-level structure.

5 -Subtask
AN Generator
‘ﬂﬂ W] wm] Im m&m Super-Subtasks
Diistribution

ﬁm ’ ﬂ ' First Level

Distribution

51 PGM i PGM
f |

O O O Subtasks
O 00

Distriliolion
=~ Demand =
l b} |Q| Second Level
Distribution
P, P'E'ﬁ--l
I—_-—m.——-—f

Figure 2: Structure of Multi-Level Load Balancing

1—-10-—3

Details (3/3)

4 Speedup Measurement

Execution times are measured for one-level load balancing and two-level load balancing.
Speedup (Sy) is defined as the ratio of execution time on 1 PE (71) to N PEs (Ty), and
calculated by 5%, and it is described in Figure 3.

Speedup of one-level load balancing is getting saturated because of the subtask gen-
| eration bottleneck. However, it is improved by two-level load balancing, and near-linear
| speedups are obtained: 7.7 with 8 PEs, 15 with 16 PEs, 28.4 with 32 PEs, 50 with 64 PEs.

4 ,-
s 1 woleve] load balancing
a4 -
B
:
d J,r':. o= Une-level load balancing
u 143 -r.." "’/‘
P J //

T T Ll

1 8 16 a2 64
Number of Processors

Figure 3: Speedups

5 Conclusion and Future Works

This scheme is efficient not only for OR-parallel search problems, but also applicable to
some types of search problems such as alpha-beta pruning problems, which does not involve
frequent inter-processor communication. Applying the multi-level load balancing scheme
to such programs is our future works.

1—-10—4

Title

Parallel Application Program (4):
Shortest Path Problem Solver

Purpose

A parallel algorithm, programming paradigm and load distribution method
for the hest solution search problem are studied and evaluated by imple
menting a shortest path problem solver.

Outline

&

Features

The single-source shortest path problem is to search for the minimum cost
paths between a given start node and all other nodes of a network in which
each network branch has a non-negative cost. Large networks with tens of
thousands of nodes are generated using random numbers as the test data.

Type of the problem : Best solution search.

Algorithm : Processes corresponding to each network node exchange mes-
sages with each other. Dach message contains path and cost from the
start node. Priority is attached to each message so that a message
with lower cost is sent earlier than a message with higher cost. Each
nede remembers the shortest path notified by the messages arrived so
far and its cost.

Programming technique : A message is represented by a process so that
a message has a priority.

Load distribution : Making more processors work for the part of the net-
work where communication is dense.

System
Configu-

ration

s rooel node

=]

™ Best path
a9

9 * Algorithm

e

a
/ message(8,north)

Start node f
§—8E

.—,.-'"

Saves the minimum messagel (9, west)
cost path known so far

(9,s0uth)

message2(10,north)

b
b Cost Path

Messagel will be sent earlier than message®.

1—-11-—-1

D e t a i 1 s ('/3)

QOutline

The single-source shortest path problem is to find the minimum cost paths between
a given start node and all other nodes of a network in which each network branch
has a non-negative cost. In the demonstration, the network consists of about ten
thousand nodes and is generated using random numbers.

In the demonstrated program, processes are generated for each network node
and computation is performed by exchanging messages between them. The order of
required computation with this algorithm is smaller than that with the algorithm in
which processes are forked for each candidate path. Using prierity control, efficient
pruning for the search branches is done. As a result of that, the program works in
the same order of computational complexity as well-known Dijkstra's algorithm.

Algorithm

A message contains the path from the start node to the receiver node and its cost.
The computation is initiated by sending a message with an cmpty path and zero
cost to the start node. All the nodes remember the minimum cost to reach the node
notified by the messages received so far. Initially, the cost remembered by all the
nodes is infinite(Figure 1).

When a message arrives at a node and the cost notificd by the message is smaller
than the minimuin cost remembered in the node, the new cost is saved and messages
with better paths and costs are sent further to the adjacent nodes (Figure 2). T the
message has a larger cost value than the known minimum, it is simply discarded.

Since a message is represented by a process, sending message means a creation of
a message process, while receiving message means an execution of a message process.
Fach message process has a priority decided by the cost. Thus, a message with a
lower cost is received earlier than a message with a higher cost.

When all the messages on the network are discarded, cach node has the shortest
path from the starl node and itz cost.

Load Balancing

The heaviest part of the processing is communication, and the communication is
initiated at the start node and propagates gradually to the whole network in waves.
The program tries to balance the load based on the following Lwo ideas,

o Divide the network into sub-networks and distribute processes for sub-networks
to distinel processors.

¢ Make more processors work for the part of the network where communication
is dense.

l1=-11~-2

(273)

Mapping Strategies

The following three mapping strategies are tried. In cach mapping, p = ¢ processors

are employed.

Two-Dimensional Simple Mapping

Divide the network into ¢ % ¢ sub-networks and map each sub network onto

the corresponding processor.

Two-Dimensional Multiple Mapping

Divide the network into k super-sub-networks, each of which is again divided
mto p sub-networks just as in the two-dimensional simple mapping. Bach
processor 1s responsible for k sub-nctworks, each one from each super-sub-

ne Lwt:rli.

One-Dimensional Simple Mapping

Divide the network simply as p narrow rectangular strips and map them onto

the processors.

Fach node saves
I: e,)

Start node
.

par —

N Figure 1
Initial message(0, [])

®;
message(8 north)
f E
Remembering
{9.50uth) Py
1
J
F>P1>P2 message(D, west)
¢ | @priotity(P1)
E
H:mmhu'mgf message{ 10,north)
(&,north) @priority(2)
Figure 2

1=11-—3

a i | s (S/2)

¥ 13 14 15
H B | 10 11

' 4 B [T
= | :| s

The shaded block is mapped onto processor 0.

Figure 3: The decomposition of a graph for the two-dimensional simple mapping

12 13114 15

Fi
—noniy
T'he shaded blocks are mapped onto processor 0,

Figure 4: The decomposition of a graph for the two-dimensional multiple mapping

The shaded block is mapped onto processar 0.

Figure 5: The decomposition of a graph for the one-dimensional simple mapping

1 —11—4

Title| Knowledge Application Oriented Advanced DBMS : Kappa
Kappa, a DBMS based on the nested relational model, is implemented on PSI-IT in or-
der to study management of very large and/or complex structured databases in the logic
programrmung envirenment and to provide a platforin for implementing various knowledge
applications (including deductive T/Be and semantie netweorks).

Kappa is a DBMS with the following features:
1. Nested relational model 1s adopted.
2. Terms stored as one data type are retrieved by unification.

Outline 3. Large amounts of data, such as electronic dictionaries, math-

& ematical knowledge and genetic information, are effectively

. accessed.

satures

4. An User interface suitable for nested relations and program
interface customizable for various applications are provided.

. It’s written in object-oriented logic programming language
ESP. and will be rewritten in parallel language KL1.

[§

System
Configu-

ration

, K 1 ..
User AP;?E&?E: < Administrator
b ty ti
Kappa Kappa Metadata
User Interface Program Interface Manipulator
(Tuned for Nested Relations) (Customizable Commands) and other utilities
Kappa

Nested Relations

D e t a i 1 s (1,75)

GenBank Sequence DB on Kappa

1 Guidance

1.1 Yeatures of Nested Relational Model

The definition of the nested relational model (according to the standpoint of Kappa) is:
NRCE; ... =L,
L= D | 2R

wlile that of the relational model is:
RCSD,=...x1D),

where L), is a domain, R i a relation and NR is a nested relation.

[0 Keppa (the nested relational model) :
1. We can represent tree-structure naturally.

e lt's suitable for complex structured data.

o It's more user-friendly than the relational model.
2. We can utilize features of the relational model.

s Extended relational algebra is available.

* Latity-relationship concept are effective at the design and the management
phases.

¢ Deductive database system is implemented on Kappa.

1.2 Schema of GenBank/Kappa

Schema based on nested relational model for GenBank data is shown in Fig. 1 in detail

gene : main table which has locus name, definition, accession, keywords, iden-
tifiers to the other tables, and so on.

reference : table which has ils authors, title, journal where it has appeared,
and so on,
feature : consists of a region of the sequence and its feature,

seqdata : sequencc data represented in string form.

1.3 Stored Data

Data we stored for this demonstration is sequences of invertebrate, virus, bacteria and
phage. The total amount is 7285 entries, 10 mega bases, and 22 mega characters in the
original data, which is stored into 60 mega bytes (30 mega characters) including 10 indexes
and about 16 mega bytes (8§ mage characters) of “fertdata’in Kappa.

GenBank sequence DB (89.6.15) has 26323 entries, 32 Mega bases. So it will cost
about 240 mega bytes in Kappa.

D e t a i 1 s (<)

2 Demonstration
2.1 Show Schema : Metadata Manipulator

We can see he sehema of the database.

We show the schema of all four tables of GenBank/Kapna (gene, seqdata, reference
and feature, Fig. 1) through metadata manipulator.

gene table reference table

Tdf_id {imdexed)

— locus AINE {indesed) refl_comment

length baserange — refdrom

atranid . r=f_to

muoiecule_type a._uthurs (™1 (indemed)

shape title

division Jclurj:laid W

= date ye standard " std.degree
] injith st Jevel
day
= definition

m— ACCPESION [T) (idesed))
kv words [*) fndesed) fealure table

— segment =T segment.oumber

= total mumber

T SOLres - — abbreviation it (iadexed)

organism 1 org-formal C {ra.tl::\e-ﬁ {* T hevonames

org devel findesed) region [* from-mark
— refblock () T ref_number - frivm
veford (indeaed) to mark
F— fealure_id (indesed) -
— cormment cstrand fap
= base_count # descripticn
C
B
t
I
[sequence Origin SE”d&tﬂ. t&blf

block {*} ""_E queue
data_td (indexad)

|: sequati i (indeced)
data

— textdata

Fig. 1 Sehema of Genllank/Kappa (*(*)" means repeating)

2.2 Display Tables : Kappa User Interface

We can see fiow the data is stored.

We show all four tables by projecting into smailer tables (Fig 2.1), and the contents
of their attributes by clicking each cell. Kappa can have attributes with variable length
directly in each record. Now in the attribute fertdata we can see the excerpt of each flat
gene data as it is in GenBank original (Fig 2.2). '

Kappa can also have attributes with multi-values, Sao it is necessary to scroll values
in the user interface.

relwrence. table. 4 (scbuny W
el _commanl puthors JEitle I
Fanmn Lodo EET0 (We 0 en,® clin penes snd achl [0, ke Miol. 168, ©f [imwd CLLELTTIT B
[TIICTEEETE] i in GE-18 c1sEg) | F1c@acanrs
< AN hamsEbE caslal s
qroelcgoog
S Hinl. Cnem, ¥ Pl T
foatura |I~:u-_l Ju-_a:-'qﬂhmﬁ-h 2 .
i - b P o icancans
t_rd [fantwres
Vo [eeE mmgctiEicm
ko rama freaion DUkl iehad (IPATT L] [emwf |BRCECGCEER
{ [fram ko e pptron at. ab Lell Hizlogy, T :]
FI — M1tk Meimesda, un 2| (27 ShLRR Lo
Tl pag [FECET MG Eam Auir |
BT
re-mny o1 ane
Tocus Hafinition nm:n“.gnrrm e lrefl] [fealu r;n.nmqt [nmaue [faut
leepe leon bamn 1arg chrow [ref_i Llochk
—
Ve Haia_
b el [=-H T fTT |Denema (8 & |J0E00F = T} Tt S petmntl imed OGS
Biellamil) mp e can [nl Coldes
T Win gere-| vl bandd ra-Hagnas AraanT
w [Am3Eha = Bow 15 1
T THAE 18 cmmtE | Lan) | |veenad Fmaimea (] e inud LN Lt
FEfimmune LE o [——— o
CIER in o
T T —— L i i e
haln gene, P.[i’l?-‘:.‘l] Emud i
HCAMPAETE [RRAA |Myomim 10 masliomars Farasin D] bowh 5] Clemm cop|Lrt LIS
W chakn aane LT Ly = W af scqu
Iy o L ence fal |~ R
| i;l"-Tﬁ!-_ Lindly gr[In-# |o1E
ETRIAVZ LIRS, , LB
Le— bR I, #92 TTFas BT LILE,
Lo - PEBALS TR, | BTLE LS,

Fig.

RCARCT [
Moo
SOIEIR
mutim.
fpantramoaks catellanil

1871 Bp)
EASREN JAALLY mciim pene-y,

F=GE R LR
L

{mmumiza) dns.

ABIUAHIEE fcaniksmnsbe coatad]and i
Eukarysts; Proinzesl Gercedine Fii rapnida,
R FRRE e L imanes 1 ks 1570
PR Hallan,¥. mnd T | Ly n, De
TITiE fenwn geres and sckin mesaen Rl in Acenybesoeed R
nuzleni |de seguence of The splst BEtim gena §
JELEMA Ao sl Basl. (%R, 1=18 (1880}
STARDARD full se8i b revlom
O WT A patantial Guldeer-p=logresn sav (6'-8-a-1-n-g-a-a=3"% Dims i
FEATIMES from tosapam desariptian
pEpE 1¥y e sciln smon 1
BH1 13600
prp-mny Bl = 13 LR [
{*h] 453 LE_]
ro i i i husber gd =136 in fi]] ?4®8 Aot wied
BALF COnm 21 RAF « 3 g el
(LR L] Hind=011 atte swsut 136 be upnbresm from the Retin cdw wisrt

I pgegssgagi mendpionts
i lassspgogs gontscagcs
181 cwmsisoala ETES8EETAg

A&EE AddLcoomce
1afiitoota SARCicIncE MohcC Gac0Bo
tcaggaicig griaiogacs mcggticgnn

cpttatieid
Eos 1] 25 4

Fig. 2.2 GenBank Original Teztdata

D [t a i 1 s (1.4)

2.3 Retrieve Data

We can relricve dota by various condilions.

Example: make a table of genes whose reference Mr. Smith,C. writes.

ﬂ—rcl‘_id|1Uauthul‘s:‘bm.th,b. [ICfCICIILC}J > gene

Tables and attributes are shown in Fig. 3.

reference table gene table
re i [indesed)
;ef_n:lmmen! i — locus OATTE (indeaed)
aserange — | reldrom length
ref_to strand
a_uthnrs (P Gimdrnad) molecule tvpe
ticle shape
= jw“rllalm i eivision
— standa - _'l: sl AcgTen clanke Vs
st Jevel [month
tlay
— definition

— ACCeRsion (7] (indesed)
= kev_words {*) findezed]
_ﬁ-l'?'g][IE]JL —r hl‘glllfutﬂlllllhﬂl

tolal number

A — abbreviation
OrEamism T org.formal

o devel findesed}
— refblock {*) T ref_number

ref i indexed)
= feature id (indexed)
— comment
— base_count

L =B E I

I e — origin
block (*) ———7 gueue

= dafo_id (mdesed)

== textdata

Fig. 3 Tables and Atbributes{*(*)" means repeating)

2.4 Translate into Protein & DP matching

We can transiate DNA code into amino acid sequence and execute DP matching.

Flowchart is shown in Fig. 4.1.

Translation We select a DNA sequence in the feature table to translate into an amino
acid sequence. The sequence is translated according to the table shown in Fig. 4.2.

DP matching We compare the ‘translated’ sequence with the object sequence deter
mined in advance. The sequences are compared according to the table selected by
the user shown in Fig. 4.3 for example.

{GenBank DNA)

alggitgactggacaalpeacetacactaa

/'— Translation Phase \\

atg = startim)

gac ==
gta = v

tas.taa,tga = end.

l

mvdwamvg

_ J

(Object Amino Acid)

[mvwpldhg

(DFP matching Phase N

mv=wpld-hkq
LRI,

mvdwamdv-q

|

N

{Amino Aad)

Fig. 4.1 Tvanslation and DP mafching

J

Fig. 4.3 Amino Acid Difference Table

Fig. 4.2 DNA-Amino Acid Table

[Mutability

A

t

4

a

£

1

i

lsb
{5%end)
T

¢ cwvatelne
OHErIme
t: threonine

nd (| dred
ClalaG
s |y e

o
—
(=)
z
="
L

H =] B

5

P proline

a: alanine
glycine

D asparagine
aspartic acid
glutamic acid
glutamine
histidine
arpinine

k: lysine

m: mathionine

ic isalevcine

I: leucine

Vi varine

f: phenylalanine

(™ tersninate codon) ¥ Lyrosine

w: tryptophan

E

d
E
q
h
r

muumh}mmmmul—-npmmumu@.mn

HHMMMMHQMHMNHLTUM»MG‘Q

e S,

MMMHHMMMHWHEMMH%@

wummwmuwmuumﬁwcr&

uun—numn—mun—mnnmm

cul—'wl-rh:-—-nh-mmwmr.nm

f.::lb.:rl--t:..}l-l-—-Dt.JM:u..z..mm

i - T)

Title C'IJH:I.PUt or .."‘I!Li{.:[{fd Prqﬂf [C.’!'.I.P“L-'ﬁk}

(1) Man-machine cooperation in mathematical problem solving

Purposea
{2} Assistance in proof checking and formula manipulation
|
|
!
| |
. outline
(1) Checking theorems and proofs in linear algebra
(2} Assistance in writing therorems and proofs
Outline features
& (1) Checking proofs with inference zaps
(2) Interactive checking and debugging
Features . ..) "
(3) Proof-structure-eriented writing and editing
Structure editer (Grammar guidance, Partial parsing, Structure editing)
TEXoutput Natural language deseription
B . . |
Equation editor | Checkpoint display | Proof checking strategy
T e :!: — ,
Proof checker
Systen } Proof tree generation
Configu- [| Proof checking
ration Inference gap interpolation |«
Inference rule aquisition
b
Equation checker 1
. Proof knowleds
Term rewriter ! owledge base

31

D e t i i s (1.73)
theorem
det_trans:

Froof written in PDL (Proof

Description Language)

all A:squ_mat,
det (Al =det (trans [A))
proot
let Azsqu_mat be arbitrary;
row (Al saal (trans (A)) ;
ool (A =row (trans [(A)) ;
dat (Al =sigma pipermasal (&)3,
(sga (p) #pi i:1..e0] (4],
Alp (i}, 1)
zzigma prperm<eol (4] >
[saniinv (p)i#pi i:1..eol (4).
Allirw(el) (i}, 1))
wsing sigma_pl
=slgma p:permacol (A) >,
[sgnip}*pi P21, zal {a).
Allknaviz)) (1), p(i}]}
uging sigma_pi
=sigma pipermdool (A) s,
(sgnipl=*pl §:1..cal(a).
Alline (20} (e 1)), pUID1D
using sigma_ ol
=zigma p:perm<col [A) >
legnpl*pi 1:1.,cnl (4},
Ali, ell)
uzing sigma_p}
=gigma piparmscol (4)
{sgmipl®al i:1..col (A).
(trans (&)} [o (), i1}
using sigma_pi
=det (trans (&)}
end_proat
end_thecram

THECREMI: dettrans:

TEX output

PROGF:

For all A Esquare matriz,

det (4] = det [*4)

Now let A gsquare matrix be arbitracy.

row (A} = enl ("4)

el [A) = row ('4)
cal{d}
det{d) = 3 sgmip) [] A
PES i =1
selia)
= 5 agmiptl) IT A
FEF iy i=L
USINE SIZMAPI
cal{A])
= 20 soip) JT Ao
[L TP im
using sigma.pi
cal{A)
= 2 sl JI A

FEF catfa) 1=l
using sigma _pi

[1-]
it |
o
]
(%]
e
%
L

D

Equation Editor

Vo Imieializati

—

| dat_kranst
all Atsgqu_mat.
I det (A} sdat (trana (A)])
since)
lat Arsqumat be arbitrarg: EQUALITY EDITOR =-3 RIGHT HAND SIDE
! | end_since
| and_theorem

[5EMACS (map) (95, 15] damall sysiuserd
| Rend: icosd (8823 sysduaer aamaeadbe

| BEMACE (paed [57,6) 48731
v

2) Formula manipulation

ECLAALITY EDLTOR ==3 LEFT HAND SIDE

igma piparmicol (AY3,
(lpsgniplEpi itl..col Ak,
. k[, fphiad111d

Egulu Tag:det func det
crdition: {4 squ_nat)

[SEMALS (map) (57,6 B46/18
this ruls (w/'n/slbort))Ty
raplacali_13}: p
raplmca (i 23 |

(31 Final result

all A:sgu_mat.
det (Al =gat (trans (A))
SiNCH
lat Arsqu.rmat be arbitraryi
dnt (Al =ajgma poperndool (AD 2,
Clzpgniplipy jil,.o0] (&),
ki ek iiddaas
sxigna piparmdcgl (Erens (D) 3,
({mignipiipi 1:i]..col (tramead),
(AL Epd Cud o L0003
=aigma piparmical (brans LAJ) 5,
tlaignipt®pr oil..colitransial),
[ltrmns AN N0, () dLalhdn
scdak (Erars (A)D
and_sinoa

le3pf [F5 15T damol] awaruser}samacartextrdat_trana, .

D e t a i 1 s (3.3

Structure-oriented proof development

(This example illustrates “universal quantifier elimination™)

Before elimination

LTER
nt (trans (A))

and_thaaram

irule_penud
univ.elin
contradiction

After elimination

lat Atagu_mat be arbitraryd
dat (Al edet (trans (b}
and_since;
end_theorem

. o . - . . ¥ - .
Proof checking (This example illustrates an error in indexing)

LAP= &S5

| thearem
trans_trans:
all B« nipos. Atmatrisdm. nb,
{trans (brans (A2) =AY
Eince
let m: nipos. Aimatrixde. n} be arbitrarg;
trang (trans (A¥¥=a -

sined using thagren mat_Eg:
cal] (krang (krans (AY) b =roultrans (AN)

=cal f4);
rowftranzs{trana {4} 1) =col it ans (A} }
=row (A
all ifl..col ttrons (brons (4233, L. . rewial,
Ctrans (brans dADI i, jI=(A0C il
Since i
Ist §tl..colitranstbransinidd, j:
(erans ibrang CARIILE. i+
={A Ly 30

(A} ba arbitrarg;

and_zince

IuBrusEr>senacatexRt FTR —-29%-- ¥

Grawwar name™ 3pdl
Top Category nane (theoryl? 3
Butter (TRTRI: =G

ERALTTY »
draal (bransfal]l = n
rrowitransftranatdl i) = p
*rool itramaiirans (A1)) = g
drrowitrang il = m
Mrrowldl =

Fhcal (A = m

CINEGUALITY

¥ w
¥p o m
Brj hm
A y=
Adm p=
el dm

goal: (hrana(brana (A0 50 » (krams(adi0j,)3
rule: (brans C_RII0 R, Y = _4[_C
found differnca of. ..

i ang B, | snd _C. | mnd _C. | mnd _B

E POl MINITOR

reatare funation @ trams ... 0K

P —

EGUALTITY THS

:1:1*-2:-5#-”H:rln-lﬂl'lﬁlfﬁlililll.rﬂ = (krana(&}I0Q,j3 ¢ (by eoua
Pty

gress avy koy

Title! Constraint Logic Programming Experimental System CAL
1) Programs easier to write and read

Purpose 2) Highly abstract programming
3) Research on efficient problem solving techniques
1) Amalgamation of logic programming and constraint solving
2) Multiple Constraint Solvers
3) Solution of non-linear algebraic equations and Boolean equations
4) Natural extension of Prolog

Cutline

&

Features

user »| Pre-processor
i program/
query/
command

Systen internal form

Configu- HOSWEr Y

ration Inference Engine

&
constraints normal forms
Constraint Solver

1

D e t a i 1 s (')

* Examples of CAL : Heron’s Formula(non-linear)

Program & Query& Answer

:— public triangle/4, triangle1/4.
surface(IHeight, Base, Area) : — Base * Height = 2*Area.

pythagoras(A, B, Hypotenuse): — A2 + B*2 = Hypotenuse"2,
triangle(A, B, C, S) ; —

C=CA + CB:alg,
pythagoras(CA, H, A),
pythagoras(CB, H, B),
surface(H, C, S).

trianglel(A, B, C, 8) : — precedence(S : > 0, triangle(A, B, C, S).
?7— heron:trianglel(a, b, ¢, s).

§'2= —1/16*b"4+1/8%a"2*h 2 —
1/16%a"4 4 1/8*c"2%b 2+ 1/8*c"2%a "2 — 1/16%¢c "4

surlace: pythagoras:
Hypotenuse
A
Height
triangle: .
Base B
A H B
m!
CA CB
C

Program & Query& Answer

:— public lagrange/3.

lagrange(F, Constraints, Vars) : —
construct 1{Constraints, L),

partials(Vars, F, L).

partials([1, _, _):= L

partials([Var|[Vars], F, L) : —

difiF, Var) = dif{L, Var):alg,

partials(Vars, F, L).
construct_ 1([J,0):= 1.
eonstruct_ 1{[C|Cs], C*Alpha + L) : =

C = 0:alg,

construct_ 1(Cs, L), 1.

7—lagrange((1/2 +1)"2%a + (1/2—1)"2*h,
[A"2+(1/24r)"2 =1,b"24+(1/2—1)"2 = 1],

[a, b, rl)

r'7=(29/12)*c"5+4(~17/48)*r"3 + (5/576)*r

Maximize {x7,...)

sLoxy, .)=_..=0
Lagrange
i
Solve
alfaxy = allgxy, ...

cylxg,..0=..=10

where 1(x),...) = cy{xy, ...Jay + ...

Maximize f{a, b} = a(l/2+)2+ b(1/2—1)2

3

a4+ (1/2+r)2—1=0,
b2+ (1/2—r)2—1=0

Lagrange

Solve
a2 H(E24+ri=1=p2+{l/2—-r)2=1=0
alfda = aflda, al/ab = affab
where 1= (a2+{1/2+r12—1)ay+
(b2+{1/2—-1)2 =1)ag

D e t a i 1 s (3/)

Query

?—lagrange((1/2+1)"2%a + (1/2 —r)" 2%b,

(a"2+(1/2+1)"2 = L,b"24(1/2—-1r)"2 = 1],
{a, b, r]).

D e t a i 1 5 fd'/s)

* Examples of Boolean CAL : Counter Circuit

Program&Query& Answer

:— public circuit/8.
circuit(X1, X2, X3, X4, X5, Y1, Y2, Y3):—

. 11 = X1&X2:bool, 12 = X1V X2:bool, 13 = X3&X4:bool,
' T4 = X3V X4:bool, 15 = I1:bool, 16 = 12:bool,
17 = I3:bool, 18 = I4:bool, 19 = 11 V I3:bool,
110 = 11&I8:bool, 111 = I6 VI8:bool, 112 = 16&I8:bool,
113 = X5:bool, 114 = 15&12:hool, [15 = I7&I4:hool,
116 = I14:bool, 117 = T15:bool, 118 = 115 V I16:bool,

119 = 114 VI17;bool, 120 = 114V 115:buol, 121 = 116 VI17:bool,
122 = T9& T4 &12& X 5:bool, 123 = T11&I7&TS&TL A bool,

124 = X5&I18&119:bool, 125 = 113 &1208:12]1 hool,

126 = 122 V I1(:bool, 127 = 126 V 123 V 12:boul,

Y1 = 126:bool, Y2 = 12%:bool. Y3 =124 VIZ5:bool.

? — eounteireuit(x1,x2,x3,x4,x5,1,0,1).
7 — count:eircuit(1,x2,%x3,x4,%5,y1,¥2,y3), x2 = x3 : bool.x5 = 1.

X1] a g
‘o ﬂ’ i o

4
. - Y1
Dt v
X3 EDLE’“’ i 'DLt—\
xa =4 O

A

D e t a i 1 s (/%)

* Conclusions

® Constraint Logic Programming

1) Constraint Logic Programming extends unification to constraint
solving, allowing symbolic answers to queries

2) Powerful semantically clean, language in which to generate and solve
constraints.

3) More powerful pruning of search space.

e CAL

1) Solves linear and non-linear equalities over complex numbers using
Grobner Base method.

2) Solves Boolean constraints using Boolean Grobner Base method
developped at ICOT.

|
Title

A General-Purpose Reasoning Assistant System
EUODHILOS

EUODHILOS (Every Universe Of Discourse Has Its LOgical Structure) is a general-
purpose reasoning assistant system that allows vsers to interactively define the syntax

Purpose
and inference rules of a formal system and to construct proofs in the defined system.
{7t can be specified as YUniverseSogic EUODHILOS{ Universe, Logic).)
(1) Formal system description language
(a) Language system (symbols, terms, formulas, etc.)
+ definite clause prammar formalism
+ automatic generation of a bottom-up parser, an unparser and internal structures
of expressions
outline | (b) Denvation system (axioms, inference rules, etc.)
tHne [4 inference rules and derived rules: narral deduction style
& + rewnting rules: definition by a pair of forms before and after rewriting
Fe . .
eatures (2} Proof construction facilides
+ Sheets of thought: a field of thought where we are allowed to compose a proof
from its fragmenits, to separate a proof, or to reason using lemmas, etc.
+ Proving methodology based on several sheets of thought: forward reasoning,
backward reasoning, reasoning in a mixture of them, schematic proof, etc.
+ Tree-form proof with justifications indicated in the right margin
(3) Visual human-computer interface for reasoning: formula editor, software
keyboard, stationery for reasoning }
Input
Logic \ r~ support ™
—-Languags—\‘{_ arser Font
Syntax)(Symbol)_} unparser editor
() (_ enerato
Syoton Derivation Software
keyboard
C’ani = e — =y
& (nference rulgRewriting ruigl/ FormulaN | \—=———
ration T:EGFF = parser I
ata- arser
base ~Sheet of thought= (NP Reasoner
_— — M= = 1 Farmula
—a |[A] — . e—
| . ’,; = I editor
XLV %
X Input/output

D e t a i l s (1.°3)

A Scenario of the demonstration
- a case of the intuitionistic type theory -

(1) Specifying a logic
First we define the language system to be used by the definite clause grammar formalism, for
example, the judgement in the intuitionistic type theory is defined as follows :
Judgement «-> term, epsilon, type ;

epsilon --> "e" ;

Then, we define a rule of inference, a derived rule and a rewritin g rule in a natural deduction
style presentation, for example, the A-introduction rule and the negation are defined respectively

as follows -
fxe A
Flx] e B Aol
T —— W seeeeseee (def)
Ar.Flx] e AS B -A

(2) Constructing a proof in the defined logic

The proof is interactively constructed in a tree-form on sheets of thought through reasoning
forward or backward and/or connecting or separating several proof fragments. A proof example
in the intuitionistic type theory proceeds as follows :

[x e P']‘1
{inl-I [1})
e (Pv(Pol)>l)2 inl(x) e Pv(P = 1)
—— (=E 2,1}
feinlix) e L
(AT (2]
Ax. feinlix} e P2 L
~-— {inr-I [2])
inr(Ax. feinl(x)) € Pv (P> 1) [fe Pv(Ps1)>1)2
(=E {2h
feinr{ix. feinl(x)) e L '
(A-I0)

Af. feinr(dx. feinl(x)) € (Pv (P> 1) o 1) =1
(def (1)

Af. feinr(Ax. feinl(x)) € —=(P v ~P)

(The actual screen layour is shown in the next page)

5 — 2

D =] t

a i 1 5

(2.73)

Reasoning-Oriented Human-Computer Interface

hao

indu
inktu
noy

e [Wmap],

! P
by
IE

(SREET

Y OEDEDEE
 Innnnnan
HELHEEE
MEELME
DEHEE
o DEEDE
OREO0

ksl
1

5 1= [EEER LEILEJLIIJLILLI L=
AENEEEEEDEFEECE
5-; [[al[wi[=jajr][v]wit]fele [

onOGoOnGN SN

GBI

EEEE
DEDD
oons

ool

[z z_'f;ﬂi Clvj[BHHluI !Br—l = .

wff_m:htor

i I [24)

inrd (i, Binl (xh }1EPY{P3L)

[PRIPY{PaLIFaL]
i

E-
25124) : M

faene (k. fBihl(x))l

L

H

B~
LI
[

wxaneisl

A iR (e, d81R] ﬂ'l}ltf’\'tﬂl.]':uﬂ';l ! E ; i iml
T T T To P Serrrrmrrr et ¥l
R, ARURE Lk, (OER] TR :u-{m-ﬂ:l.:r“l i Af - Fnr CEAR. fBLnE G220 (- G-t
LELFOEme (. FOamE ()))l e Py ;‘-' e :‘

000D

A

Intuitionistic Type Theory and A Constructive Proof

CSEET O TROOGT

Lntu_type

1

[mer]
@ LN EN D]
[FeiPviPau)yaL] aml (el ePy (P
(=€ 2. 1%)

A PN (M) @RIl

TR TS

[hE {230

iAr {fhoe, f8enl (x) 3) ePv (PaL)

CimrT {23 3

-
[P (PaLyian]

e F O EASE

LOGIC tntu_tups Pointu_t
dynamie FOMT udgemeni —-* ferml, aeRtsin. tyoel
hoars SOFT KEYBOARD Eormi --7 |&mbda, variable, “.*, 1aFmEE
induction SYNTAX parmk e vere
intu.typn INFERENCE _RULE termE =—» werissle, ops. termid:
== LT R T LH
nodal REWRITING.RULE [liorng v reemay o emme
prod CERIVED.AULE
permd == {7, (arml, ")7: INFERENCE_RULE
typa AXTOM TAFmd ==k AL, |ermE [
el == L. "0, berel, "1™ [F——
IX faw I SHEETOF _THOUGHT tarmd == warimmles i
% and ¥ “ltormd =-3 consent]
-1 raFmd ——3 e ta e IMEAT
I-: type === Uippe, Imp iy, Tgpels E
- ity == igpei; Fodjam

Pl (3. PBLnd {x}IaL

IaE 2y »

(Tl
K. d@ine (. (@imE ()) ECPYIPILIaL kg

dami {} ¥

Al i@ (O, fEERE Cud 3w (P (PR b 2L)

ki PBiae (e, t@im] (x) } @ {PvPaL)

ddmi [)

qdai iy

R Pldne DO, TEAT] CWD] il i~ (PP)

Exnmpisi

D

TAmimwedf 108 we0T e 1P

REWRLTING_RULE

Mmms | BF1bh

IF) progrwe =-> pros
Brogram <-» prage

Aolormiia ==> formis, ledt _bracs, progres, Fi!
AN o, e e

i propgramt ==> smwy [l i AT AT T By

progreml ——r while, fermale, "de®, progras, “od)
Bragrami -== §f, formuls, “then" , progree, "uls)
A%, pregea, T

Pregraml —-% "0" pFogree, "H5;

farmele == Forwuls, isp iy, fersul &bz
Tormilay == Fermled

forwulel -o» formslaZ, or, fermulad;

» hoare

)

F@ el pmiywliE

frusSim8d 1@ {3:3l) Eeg)
LLETET N R
trus {gieljzadyr

il _cl |G, progreel ;

TR [y =D) Fuy| Emig | fuhl | ey wdoy: mys iy 2

i

Trus iziml] gl =0) gey

ENCE_RULE

Fabatl

e

INFER

e

Fadi (21 F

F dush | | e Gadbd] Pl

TEYE A Ly) mrmy |

dmrdthip)

IEYIAE e s LISy L]l amigrLFE Oyl FE (i myge D} rugmgl
£

Tl Aeaguw gt g | pmyeygy TWgmy | (FEw

IR Ay Dl wy L] R Srag weyt

ir
ed] Iyl A [y

aas])

T (Wl | ey oyt syl S Eayad] peygl ayes

FONT
SOFT_KEYBOARD
SYNT AN
INFERENCE_RULE
REWR T ING_RULE
CERIVED _RULE
AXIOM
SHEET .OF _THOUGHT

T 1Pa (9P
(30 T I (33 8 TS
[ElPFE (] (AP

8 fAF (A RA[B]P)
PO axaTIe (T}

HEQD (HSQS e d

exim=i}loniain

Dynamic Logic and Reasoning About Programs

AT —

SYNTAX

| i
darmd) i)

Formulal
Permyisd

dorm a2
Aol a

Pl ald
Tarmylad
Tormylad

d q')'lhilu‘rir—u- e lwF L e rdy L DR T g Ty T
- e, dorw | 83;

et lormuin ==x lai Tolis, Fegul wr_progres, Fight, Bog]

o Ferdyind:

Farmula —=> dofmul s, soulvelamnce, fore|sd;
formuin ==» jormlsd;

Trum{ T mLpgInd); (whi leynasay! mys]] 5! sEdysdl] FETTT TS

£
¢
ot
qLii} <
-
ﬂa
'
&

WP (R =Ly SO D (v Leymmalog: 5y || BT SES4d B) Bouf

dHHﬂmlc '.ﬂ.hﬂr.T Ik S_fi.l'l_E X

—x dorwu | ed, g iy ferml sl
==r leread imL]

LNFERENCE_RULE. :. dynsmic

== Fermglml, or, Jermmlad;
== Torel el

==> lormilad, and, ferme sl
== formuled;

== "{®, joremils
==% fei, forms el

= i e, | armey e Fxtare

CE{xmd b Pt e b B faw 0 2ur e)

RS AR Lo (23 0] T (nmme] §

R Sy mE | e L

P | DD W L fawn)

Tl WA A0 (30w | X do- 10 FAd b
==} Lz wnl }
wwenalaz: wi) (xmnimnt)y

TEATEA]SE dxmd i 7] fxmmt)

ralAE P

Fiziml}e (halaxen}
irompl i)}

e e el T e

FEEEEE TR B R T TR T T R Ty
—— e {mr { BB})

== o] [h 2

Frmimn P SUOTE] famuion] Anwd) rmxientAwa00 ([wnar) (ZH(N=10 1m0)

&
W
(geme 1 [
<3

il e [G gy wHeE) BN (= 0 el § aml==1]}

zwnl St 2 Lae 0T 2 wxma) om mu=1)] {2ZHnz 3n

wwwl wnE ol O a8 gt mumr)} wt wme Jad) Gt

L ii=>8ain E5

Ll =10

fFa_ weri fjentlang

iy Oawmnoer B8 @3 (Ime QT8 @ wHnE D mu=1) g EmdT e trwnarent

{trETh)

BRIl (o2 w iy [maBP] wwRE) 02 mmed }) ws Mu ST I {@emd)

Title VISTA : Visualization and Transformation Apprentice for
Concurrent Logic Programming
The system helps programmers develop concurrent logic programs
Purpose easily by providing visualization of program structures which may
be useful to understand programs.
s VISTA has two visualization modes
- Static mode : a structure of the program is visualized by unfolding
a given top level goal.
- Dynamic mode : an execution of the program is visualized by
replacing a parent process with child processes and by redrawing
Outline the stream lines hetween processes.
& " Ll -
<> VISTA can be used to examine concurrent programming techniques
! Features - Layered-stream program
- Knuth-Bendix completion program
<> VISTA can be used to compare different versions of programs
- 'I'wo versions of unification program
- Partially evaluated program and its original
= Statle Image CGemperaior
E
System u
_ Sauree ,;I'rag“- Transianrmaiion Drower p—n Blimap Dlapiay
Configu Frogrem Fartiol Compuletlion 3 ’ ’
ration

—wDymamic Image Cenerator

D e t a i 1 s (a)

< Layercd-stream program

Layered stream is a type of data structure, which is designed for officient
scarch programming in GHC. Through a layered stream, information is prop-
agated to consumer processes as soon as possible, even if the information is
incomplete. Thus it provides very high parallelism. In our demonstration, a
4-(queens program using a Layered Stream is visualized.

Source program:

fourQueens(Q4) :- true |
q(begin,Q1), q(Q1,Q2), q(2,03), q(Q3,04).

q{In,0ut) :- true |
filter(In,1,1,0ut1), filter(In,2,1,0ut2),
filter(In,3,1,0ut3)}, filter(In,4,1,0ut4),
Out = [1*Dut1,2+*0ut2,3+0ut3,4*0uts] .

filter(begin,_,_,0ut) :- true | Out = begin.
filter([],_,_,0ut) :- true | out = [J.
filter([I*_|Ins],I,D,0ut) :- true | filter(Ins,I,D,0ut).
filter([J*_|Ins],I,D,0ut) := D =:= 1-3 | filter(Ins,I,D,0ut).
filter([J*_iIns],I,D,0ut) :- D =:= J-T | filter(Ins,I,D,0ut).
filter([J*Ini|Ins],I,D,0ut) :- J \= I, D=\=1I-J,D =\= J-1I |

D1 := D+1, filter(Ini,I,Di,0ut1),

filter(Ins,I,D,0Outs),

Out = [J*0uti|Outs].

fourDusan

Ilf_ﬁu!ﬂi..'ﬂun -

oy
=

BT T e

D e t a i 1 s (2/4)

< Parsing program

A parsing program called Meta-PAX is presented. Meta-PAX, given a set
of grammar rules and a sentence, checks whether the sentence is acceptable. A
sentence varies each time Meta-PAX is used whereas a set of grammar rules
15 fixed for some time while Meta-PAX 1s used, for parsing many sentences.
Using partial evaluation, a version of the Meta-PAX program specialized for
the given set of grammar rules is obtained which i1z more efficient than the
vriginal program.

parge(ltima.fliesl) ¥ bofore P
paran

paragiltime.flieall ® after FE

D e t a i 1 s (34

< Unification program

Two programs for unifying two terms are presented. The difference between
the programs can be easily seen by visualizing them. The first one tries to
unify two compound terms one branch at a time, updating the intermediate
result of the unifying substitution. The sccond one tries to generate a unifying
substitution at each branch of the given compound terms in parallel and tries
to check consistency between separately generated substitutions.

parallel unitication

harii Ty

P

D e t a i 1 s (%*/4)

<> Knuth-Bendix completion program

The Knuth-Bendix completion program is a kind of a compiler that, given
a set of equations, produces a set of term rewriting rules which has a nice
property called canonical. There are two major processes running in parallel
in the program: one for converting an equation to a rewrite rule, the other
for generating a new equation (called a critical pair) from a pair of rewrite
rules. Critical pair generation can be done in parallel for every pair of rewriting
rules, whereas conversion of an equation has to be serialized so that the simpler
rewriting rule is generated first. The scrialization of the conversion process
is realized by using a unique programming technique that makes the most of
stream parallelism.

Parallal Knuth-Bendix Conplation Procadura
bl

i

SHL tims ot B45

Faral lol Enuth=-Bendix Completion Procedurs

Title IQPIMOS Development Support System: PDSS |

Purpose PDSS is a KL1 system developed for supporting the development of PIMOS. |
¢ It runs on Unix machines. -

. Compatibility: PDSS is highly compatible with the KL1 system on Multi-
i PSI. Most of KL.! programs tested on PDSS can be installed directly
' onto Multi-PSI. Main differences between PDSS and Multi-PS1 are as
follows:

e Some function, such as atom management, is processed by the PDSS5
compiler, while it is done by the PIMOS software in Multi-PSL

s Code management Is also done by the PDSS compiler, while it is
done by the KL1 system in Multi-P51.

e The [/O protocol of PDS5 is different from that of PIMOS.

s The processor-allocation specification is not available, since PDSS

Outline & ia a single processor system.
Features
Portability: PDSS runs on Unix machines with GNU emacs or Nemacs.
(PDSS 2.51 is runnable on Unix 4.2 bsd with GNU emacs 18.53.11 or
Nemacs 3.0). Unix users can use PSS easily on their own Unix machine.
Friendly Interface: PDSS provides a friendly user-interface by making
much use of emacs library function. The user can invoke PDSS easilv |
from an emacs session.

5 Flexibility as a Test-bed: The primary aim of PDSS development is to
make sure of the design of PIMOS. PDSS is designed to be able to modify
its own design as PIMOS development proceeds.

User Program
Micro PIMOS (KL1)
1/0
code management
exception handling
command interpreter
System compiler
l Configu-
ration
KL1 processor Multi Windows
{language C) (Emacs)
UNIX

Details

KL1 Language Specification: A KL dialect runs on PDSS, which is almost com-
patible with the KL1 dialect on Multi-PSI and is distinguished from GHC at the |
following points:

o Sequentiality erecution of guard: Unification of head parameters and execution
of guard goals are executed sequentially from left to right.
o Guard restrictions: Only built-in predicates can be specified in the guard.

e Equahty of variables: Equality of unbound variables is not checked in the
guard.

e Modulamty: Clustering clauses in modules allows modular compilation and
debugging.

e Sho-en: The Sho-en feature is introduced as a functional unit to conirol the
execution priority and resource allocation.

® Erception handling: Exception handling for KL1 programs is described in
KL1 itself, using the Sho-en feature and second-order predicates.

o Failure handling: All failures are regarded as exceptions within KLI.
Micro PIMOS: Micro PIMOS is a very simple system which provides various services |
for KL1 users on PDSS. It is basically designed for single user, single task operations.
Micro PIMOS supports the following services:
¢ Command interpreter
¢ [/O functions (windows, files, etc.)
o Code management
& Display of exception information
Tracer: Tracing is done for goal invocations. The user can trace goals, set up spy points

to leap and monitor variables. When a goal is in either of the following states, called
trace poinis, it is traced:

¢ Goal invocation

]

Suspension due to an uninstantiated argument

L]

Resumption by instantiation of the variable

Goal failure

Swap out (caused by interruption or scheduling of a higher priority goal)

Deadlock Detection: Two kinds of deadlock detection mechanisms are supported.
One is activated during the global GC, and the other works during execution.

Title Experimental A’'UM System: XAS
Purpose X AS is an experimental A'UM system developed for executing A'UM programs
: on top of PDSS (PIMOS Development Support System).

Stream-based Object-oriented: A'UM is a concurrent pbject-oriented
programming language whose computation model is defined by stream
operations. A'UM aims at high parallelism and high expressivity and
makes it easy to write large scale parallel programs.

Compiled to KL1: In XAS, A’UM programs are compiled into KLI1 pro-
gramns, so they can be executed on PSS, '

Described in KL1: The entire system of XAS iz written in KL except for

Outline & a part written in A'UM itself, so it can be invoked from PISS.
Featuras . .

Portability: XAS is a system built on top of PD5SS which runs on Unix
machines. (XAS 1.0 is runnable on PDSS 2.51.) Unix users can use
XAS easily as well as PDSS on their own Unix machines.

Flexibility as a Test-bed: The primary aim of XAS development is to |
make sure of the design and implementation of an A'UM abstract ma-
chine. XAS is designed to be able to modify its own design as the design
and implementation of the A'UM abstract machine proceeds.

i
l A'UM Source Program
Tiny Shell —.@;@ XAS
System ¥ S Runtime
. Compiler .
- it
Configu PDSS Interfm)C: [Eavironmen
ration

_ X 1 V4

b F

KL1 Generated Code KL1 Programs

PDS5S

Details

1. A'UM

A'UM is characterized by its stream-based computation and object-oriented abstraction.
| The A'UM computation world consists of objects which communicate by message passing.
There is no distinction between primitive objects, such as integers, and abstract objects,
such as stack objects. The notion of an A’UM object is very similar to that of the Actor.
An object encapsulates a set of internal stales and provides a set of protocols to the
ontside; an object is activated by an event, and then according to the event, it takes
several actions in parallel. Multiple class inheritance is supported.

The major difference is that A'UM objects communicate with one another via streams,
while actors do so by directly specifving their mail addresses. The ordering {or sequential-
ity} and non-ordering (or parallelism}) of events are all explained in stream operations, that
are sending a message, closing a message, merging streams, appending streams, receiving
a message and detecting a stream being closed.

2. XAS
X AS consists of the following facilities:

Tiny Shell: XAS has its own tiny shell in which the following functions are available:

¢ to change the current directory,
e to refer to a directory,
* to compile, load and execute A'UM programs, and
¢ to compile and load KL1 programs.
Compiler: The A’UM compiler generates from an A'UM program a KL1 (KL1-C)

program which is translated to a KL1 abstract code (KL1-B) by the KL] compiler
embedded in PDSS.

Executor: The program executor is an interface between PSS and XAS. It creates
the first A"UM object to initiate an A'UM program.

Runtime Environment: XAS provides a set of primitive and built-in classes as a
runtime environment. Those included are integer, atom, boolean, string, list, vector
as well as of 1/0 classes, such as windows and files. The A'UM user can access
Emacs windows and Unix files, both as line streams.

