ICOT Technical Memorandum: TM-0822

TM-0822

Rescarch Issues in Parallel Knowledge
Information Processing

by
N. Ichiyoshi

Movember, 1989

{€) 1989, ICOT

Mita Kokusai Bldg 21F (03 456-3191—-5

lc DT 4-28 Mita 1-Chome Telex [COT J32064

Minato-ki Tokye 108 Japan

Institute for New Generation Computer Technology

Research Issues in

Parallel Knowledge Information Processing,

Nobuvuki Ichivoshi
Listivnte for New Generation Computer Technology

-2 Wite, Minato-ku, Tokyvo 108, Juapan

Abstract

The Japanese [ifth genceation computer systems (FCUS) project attempls
to build & parallel mlerence machine (PIM) to provide the compulational
power necded in large-seale knowledge information processing. This paper
deseribes the outline of the concurreat logic langnage WL1 and the PIM ar-
clutecture, IL also disensses sowe of the issues to be addressed in parvallel
knowledge information processing, mcluding load distribution, comminica-
tiom overhead and speculative computation, and reports on the performance
results of experimental programs on the pilot parallel inference machine Multi-
PSI.

1 Introduction

The Japanese hfth generation computer systems project (FGCS) is a ten vear project
thial started o V982 G 1L atlempts Lo build a massively parallel computer to provide
the computational power needed in large-scale knowledge information processing.
Sinee the machine rims a logie programming language in parallel, it 15 called 4
parallel inference machiue (PIM). Several PIMs which differ in architectural details
are under development [3]. Thev are scheduled to come into existence in 1990-1991.

The kernel language of the FGCS is the concurrent logic language KLI{1). KLI
1s suited to describe concurrent systems in which a lot of processes cooperate to
solve a large-scale problem,

We built a pilot parallel inference machine Multi-P51 [9] in late 1988, Its is a
loosely-conpled MIMD multiprocessor with maximum of 64 processors with large
wemory. The purposes of the development of the Multi-PSI were (1) Lo test various
new implementation techniques of concurrent logic languages, and (2) to develop
a parallel operating svstem and rudimentary a.pplicat.ion programs by the time the

PIM becomes operational.

A number of mediim-scale parallel programs lave been written in KL, and the
performance was wncasured on the Malti-PST Thougl still limited, the experience
hias tavght us the importance of scheduling and load balance in programs on a
loosely-coupled machine. The realization of logical paraliclism in a Program as

phivsical parallelisin on a multiprocessar is called mappiing.

2 Concurrent Logic Language KL1

The parallel inference machine runs a concurrent logic language K11 [1]. which con
e executed in parallel and s suited for deseribing imteracting processes or ohjects.

A RET program consists of a collection of guarded Horn clawses [12] of the {orm:
Ho:—Gyo o G B By o = 1)

where M 05 and By are atomic fovmulas, H s called the fend. G the quard qoatls,
B3, the body goals. The guard part consists of the bheael and e guard goal, the body
Pt consists of the hady goals, and they are separated by the commitment operator

(1. The declarative reading of the abave clanse s simply:
oy, oo, Gy oand By, . H, then M.

A vollection of guarded Horn clauses whose heads have the same predicate svmbol
Fawd the same arity N, define a procedure 2 with arity N fdenoted P/N).

Chie example of a KL procedure s as follows:

filter([] ,F,0ut) :- true | Out = [].
filter ([XIXs],F,0ut) :- X mod F =:= 0 | filter(Xs,F,Out).
filter([X|Xs] ,F,0ut) :- X mod F == 0 |

Out = [X|Out1], filter(Xs,F,Out1).

Declaratively, filter is a ternary predicate whose first argument is a list of
integers. the second an integer, the third a list of utegers. filter(la, I, Out) is read
as “Ju filtered by Fis Owt”. [1 denotes the empty list {called wil), [HIT] denotes
the Lst whose head (first element) is H and Lhe tail is T.

Operationally, the hcad corresponds o a procedure call, the guard pari rep-
resents Lhe test on the input arguments. and each of the bordy goals represents a
procedure invocation. In particular, the equality svmbol (=) in the guard represents
a passive pattern matching, and that in the body represents assignment to the out-
put argument. When the guard testings of oue or more clauses have succeeded, one
of those clauses is selected (called commitment). and its bady goals are called. The
body goals can be executed in parallel. If an input argument is not ready for testing

(because the value has not been computed vet), the guard testing 1s suspended.

Thus, KL1 provides two basic mechanisms of concurrent programming: concnrrent
execution and svnchiouization.

Ideallv. a logic programmming language system is both sound and complete as
a theorem proving system. SLD-resolution on which Prolog 15 based has such a
property [7] The commitment to a single clause makes the KL1 {or any commutted-
chower lnnguage) systermn a sound but imcomplete theoremn prover. This s uot to
e regretted because KL1 15 designed not as a theorem prover in a small axiom
system, but as a practical production language for describing concurrent systems
while retaining some of the nice properties of logic programming languages (such as
possibility of declarative reading, veferential transparency of logical variables, ease
of mechanical program transformation).

A KLI goal can be interpreted as representing a process state, and a chain of
soals recursively calling the same procedure can be interpreted as representing a
process which interacts with the environment [input/output arguments}

For example, when filter/3 is calied with the first and second argument con-
crete values, and the third an unbound varable, it recursively calls itsell until the
end of the list (first argument) s reached. and incrementally returas the liltered
ol put,

Added to the above basic mechanism are Lhe execution control and mapping
facilities. The descendant processes of one goal can be gronped as a unil of con
trol, and can be stopped, re-started, and aborted, ctc. The mapping facility in-
cludes priority and load-distribution specification. The programmer can anni-
tale the program by attaching pragmas to body goals to specily under what pri-
ority (specified by Goal@priority{ Prio)) aud in which processor {specified by
Goalliprocessor(Proc)) the goal should be executed.

The sequentiality specified by the raw semantics of Guarded Horn Clauses is thal
comes from parent-child relationship of processes and from data dependence. The
priority mechanism allows the programmer to specify less strict sequenliality, such
as mandatory worl before speculative. To this end. the KL1 hnplementation on the
Multi-PSI provides a fine priority system (Lhere are 4,096 physical priority levels).

Currently, the prugrﬁmner must tell the implementation which goals to execute
on which processors.” This is becanse simple-minded automatic load balancng could
result in closely cormnunicating processes to be executed on different processors
and cause much communication overhead. In contrast, processor allocation in P'TM
clusters will be done automatically by the unplementation.

KL1 program defines large amount of line-grain parallelism, and it is up to the
implementalion and the programmer to decide how to map this logical parallelism
into physical parallelism realized on the parallel inference machine. The priority

YThe processor numbers can be dynamically computed.

3

Multiple Hvpercube Network

Houter | i
..... —IH] s s S——

S o I
FEP I PE,|..|PE, | PE, |..|PE. | S :
L:fﬁi}i‘it NCedd) |Cacd [Cackd] [achd| it el
T
E Shared Memor ’ .: E :' J: :
L Clustery e .M Clustery Clusteryy

FLEP: Front End Processor
NITE: Netwenl Iaterlace Tinit

Pie: Processing Elemient

Fignre 10 Architecture of PIM/p

and processor pragmas represent. the user-definable part of the mapping. Since
the pragmas do not change the meaning of the clause, the program sernantics and

mapping are separated jin KL

3 Architecture of Parallel Inference Machine

3.1 PIM Architecture

The rationale o designing the parallel inference machine architecture was petfor-
mance and scalability. Scalability means the architecture should be parameterized
by the number of processors n and n should scale up {in PIM, up to about 1,000).
One of the PIM (PIM/p) [3] being developed adopted a two-level architecture: 1t is
a loosely-coupled system al the igher level, and is a shared memory multiprocessor
{called a clusier al the lower lovel {Fig. 1} Clusters at the lower level provides
powerful processiog units with 8 processors per each, and they are connected by a

hypercube network to forn a large-scale parallel computer.

3.2 Multi-PSI Architecture

The pilot parallcl inference machine Multi- PSI [9], which has been operational since
late 1988, is a mesh-connected multiprocessor. Each processing element is the same
as the CPU of the PSI-TI [10] personal sequential inference machine, plus the network

i

interface,

4 Parallel Knowledge Information Processing

Tightlv-coupled medinm scale compuicrs. such as the Sequent Syinnetry, have colne
into practical use in a wide variety of applications. and large-scale parallel network-
connected computers have shown near-linear speedup in execuling numerical com
putation programs (such as partial differential equation solvers) for large problem
sizes. It is time large-scale parallel computers begin to show their effectiveness in
large-scale knowledge information processing.

However it is nol as easv to obtain near-linear speedup knowledge information

ITOCESSIAE 4% 10 most numerical compulalion wroblems for the following reasons:
] = [P

e The sizes of the problems and subproblems are usually vnpredictable, and

problem partition and processor allocation are more difficult.

e Data access patlerns are regular {low locabity), which cause Jonger latency.

synchrouization overhead and require more communication bandwidih,

e Often, a main problem is search in some problem space, and just going par-
allel eanses a lot of redundant computation {in other words, the amount of

speculative computation may increase in parallel computation],

Care should be taken to reduce tliose overheads in order to make most of the
computational power of the parallel machines, These are newly added dimensions
to sequential symbalic processing. Closer look at preblem decomposition, communi-
cation patterns and speculative computation would be needed, but the efforts would
be paid off by a decper understanding ol the problem at hand, and of course, the
ability 1o solve problems of much larger-scale than would be possible on sequential
machines.

There has not been any good-for-all theory of parallel algorithms and mapping.
We have to attack each ivpe of problems separalely, But then, this was the case

with designing good sequential algorithms, too.

5 Experimental Parallel Programs

We have written KLl programs for a few problems, and taken performance mea-
surements [4]. The programs show different run-time characteristics and different

degree of speedup. Here are the programs:

5

Itgure 20 Pentoming

o £nd Point

Start Point

Figure 3: Shortest Path Problen

Packing Piece Puzzle (Pentomino)
A rectangular box and a collection of pieces with various shapes are given (I'g.
2). The goal s to find all possible ways to pack the pieces into the box. The
puzzle 1s also known as the Pentomino puzzle, when the preces are all made up
ol b squares. The program does a top-down OR-parallel all solution search.

Shortest Path Problem
Given a graph, where each edge Las an associated nonnegative cost, and a
start node in the grapl. the problem is to find a shortest path 10 every node
in the graph from the start node (single-source shortest path problem). (Fig.
3). The program performs a distributed graph algorithm. We used a 200 x 200

grid graph with randomly generated cdge costs.

Natural Language Parser _
The problem is to construct all possible parse trees for an English senlence.

6

— M W ke W

A°B CDETF G

Figure 4 Tsunwgo

The program called PAX [8] does a hattom-up chart parsing, It is a commu-

nication ntensive program.

Tsumego Solver
A Tsumego problens is to the game of Go what the checkmate problem is Lo the
game of chess. The black stones surrounding the white stones try Lo capture
the latter by sulfocating (e, while the white tries to survive {Fig. 4], The
problem is to find out the result assmining the black and the white do their
hest. The result is one ol [1) the white doomed, (2) the winte surviving, or

(3} the Ko siluation® reached. The program does a parallel alpha-heta search.

An experimental [ormula of paraliel speedup is as follows:

5 -5 W W
TETTW Oy Wlso)
P i ST B /

where p is the number of processors, 5, the speedup, Ty the execution time by one
processor, 1 the execufion time by p provessors, Wy and Wy the smount of compu
tation done by one processor and p processors, respectively, O the overhead incurred
by parallel execntion (including communication overhead), and I/ processor uliliza-
tion rate. This Termuls savs, Lo obtain good speedup (close to p), (1) processors
must be kept busy (U high), (2) redundant computation must be kept small (W,
close to Wy), and (3) parallel overhead must be kept small (€7 small}.

ln Pentomina, Lhere 1= no speculative computation (W, = M}, and alternative
search branches do nol communicale with each other (' = 0). By dynamically

balancing the load of the processors ({/ = 1}, near linear specdup was obtained.

*The Ko is a special rule in Go to avoid infinile repetition of twa alternating states. In the case
of Taumego, the Ko situation means thal the survival = decided by tradeofl with gains or losses

in ather part of the board

‘the shortest path program has a lot of inter-process communication. bul the
communication is bhetween neighboring vertices, A mapping that respects the local-
iy ol the original goid geaph can keep the amonut of inter- poerssor communication
low. Reasonable speedip was obtained,

The PAX program was the most difficult to speed np — we could got only three-
fold speedup so far. The main reason 1s that the mnonul of communication js large
and the communication is nol vestricted to hetween neighboring processes, which
makes it diflicult to localize it within processors. This also mnakes dvuamic Joad
halancing extremely difficull (the processor utilization is abont 20% in 16 processor
execution). Finding & good wapping method for this tvpe of problem (kind of
dynamic programming; is a chiallenge to s,

The Tsumego program did parallel alpha-beta search up to the leaf nodes of the
game iree. The sequential alpla-beta proning can reduce the effective branching

factor of the game tree by hall in the best case [3]. Simply searching dillerent

alternative nioves in parallel wonld lose much of the pruning effect. In other words,
the parallel version might do o lot of redundant speculative compuiation. Parallel
alpha-heta algorithins have heen extensively studied. For example, Fishburn [2] has
shiown Lhat stmple tree splitting allocanion has the theoretical speedup of " where
pis the pumber of processors, when the hest moves are searched first. Mandatory
work first scheduling has the speedup 375 for a best-fst lookahead tree of finout
degree 38 {typical in chess), though it does not do decp eutofls, Our program takes
tree-splitting allocation scheme to distribute warlk a mong processors, and the search
branches are given execution priorities so as to do less specilative compulation
efore more speculative computation. We have vel to analvze Lthe speedup, though
the performance resulls have heen similar to Fishburn's first scherue.

Here is the sununary of characteristics and speedups for the above programs

(Table 1).

Table 1@ Characteristiics and Speedups of Experimental Programs

Program Amount of Amounl of Speedup
Communication /(Pattern | speculative romputation | 16 PEs | 64 PEs
Pentoming Mane None 15 5
Shortest Path Large/Local Medium 8 20
PAX Large/Global None 3 -
Tsumegn | Little Large 3~ 10 -

6 Conclusions and Future Work

The Japanese fifth generation computer svslems project attempts to build a parallel
inference machine (PTM) to provide the computational power needed in large-scale
knowledge information processing. I'he completion of the pilot parallel m [erenee
machine Multi PSI in late 19589 marks the beginning of parallel logic programming
practice at ICOT. We pointed out the main factors in speeding up parallel knowledge
PrOCessIng programms,

KL is a comforiable language in which to write parvallel symbolic processing
programs. Lspecially, the separation of progrim scinantics and mapping makes it
very easv to test varions alternative mapping strategies.

The Mult:-PST is powerful enougli Lo run medivin to large scale programs rea-
sonably [ast, and importantly, the issnes that come oul in prograins on large scale
loasely-coupled parallel computers do show themselves in programs runnable on
ihe Multi-PS1. The parallel inference machine operating systern (PIMOS]) has heen
developed [1] on the Multi-PS1, and is being expanded with programming and de-
bugging utilities.

We plan to write more programs for problens of different types than the ones
reported here, and study scheduling and load distvibulion strategies.

lu Al problems, finding optimal solutions 1s very often intractable. In such cases,
the realistic approach would be to come up with programs to find satisficing [11]
solutions. We would like 1o explore paraliel satisficing progiams. Such programs may
nol need strict synchronization, which is a good news for any parallel computers.

References

[1] T. Chikayama, H. Sato, and 1. Miyazaki. Overview of the parallel infereuce
machine operating system (PIMOS). In Proceedings of the Inicrnational Con-
ference on Fifth Generation Compuler Systems 1988, pages 230-231, 19885,

(2] J. P. Fishburn. Analysis of Speedup m Distribuied Algorithms. Compuker Sci-
ence: Distributed Database Systems, No. 14, 1TM] Research Press, 14s4.

[3] A. Goto, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto, Overview ol the
parallel inference machine (PIM) architecture. In Proceedings of the Interna-
tional Conference on Fifth Generalion Computer Systems 1985, pages 208-229,
1935,

[4] N. Ichiyoshi. Parallel logic programming on the Multi-Psl ICOT Technical
Report TM-487, [COL, 1959,

(1]

1]

e

Dl hnuth and B W, Moore. An analysis of alpha-beta pruning. Avlificial
frdediviprne e GEL 3203 3240, Winter 1475,

T huwrozumi. Present status and plans lor research and development. lo Pro-
coedings of e Tie raaliona! Confercaee on Fiftdh Greueration Computer Sysiems

FONN, pages 3-15, TU8S.

SO W Llovd, Feundatiows of Logic Programming, Springer- Verlag, second edi-
Lo, THST,
Yo Madsamoto, A parvallel parsing svstenn for natural language analysis, In

Procccding<of the Thivd Futernational Conforence on Logic Program nrng, pages

G- 108 Springer-Verlag, 1987, Lecture Notes on Computer Science 225,

oo Nakapima . Yo Inamura, N, Vehivoshi, v, Rokusawa, and 1 Chikavama, Dis-
Lritded nplementation of IKL1 on the Mult] PEUN2D In Procecdings of e

St luternational Confevence on Logic Progiwmuning pages 436-451, 1989

I Nakashiia and K. Nakajina. Hardware architecture of tlhe sequential ine
ference nuchine: 'S o [Mroceeding= of 1987 Infernadional Symiposiutn on

Logee Deogramaning, pages T = 113, 1987
Ho AL Sivone The Sedenees of the A elaficval. MU Press, 1064,

I Weda, Guarded Horn Clanses: A patallel logic programming language with

tie coneept of & guard. JCO') Technieal Leport TR-205. 1000, 1985,

10

