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Abstract

Genetic information processing is focused on as a fruitful application
area of logic programming in the FGCS project, A prototype DN A knowl-
edge base systen: | KNOA | has been developed on an inference machine CHI.
ENOA aims at providing an integrated system for genetic information pro-
ressing in logic programming. DNA sequence data, protein sequence data
and protein structure data have been already available with raxonomy in-
formation. Several homology search svstems and a secondary atructure in-
ference verification system have been also developed experimentally. The
effectiveness of stochastic inductive inference in homology search is cmpha-
sized.

1 Introduction

The Fifth Generation Computer Systems {PGCS) project has been pursuing
high performance inference machines for knowledge information processing
based on logic programming since 1982 [14. 13, 11]. As part of the project, we
have developed an inference machine CHI [6] and also have proposed knowl-
edge representation. inference mechanism and knowledge base construction
methodologies based on logic programming [7]. To make gond use of logic
programming, we have developed a protolype DNA knowledge base system
KNOA [8] on the inference machine CHL In this paper, we will discuss the ef-
fectiveness of the logic programming and the inference machine architecture
fur genctic information processing.

The rest of this paper is as follows. At first, we will guickly review
the genetics information processing, such as homology search and prodein
structure prediction in section 2. Next, we will discuss the advantages of
logic programming approach for genetic information processing in section
3. Then, we will introduce the prototype knowledge base svstem KMNOA in
section 4.
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2 Genetic Information Processing

2.1 DNA Sequence, Amino Acid Sequence and Proteins

Genetic information processing deals with jssues concerning DN A sequonces,
amine acid sequences and proteins. A DNA sequence is u double-stranded
giant molecule which consists of four kinds of nucleotides. It contains Eelies
that produce proteins. A protein is oblained according to the following pro-
cedure. First. a messenger RN A is copied from a gene. Then. the messenger
RNA is translated to an amino acid sequence by replacing every three nu-
cleotides {codons) to one corresponding amine acid. Finally, the amino acid
sequence starts folding and acts as a protein.

We especially focus on homology search and protein structure predie-
tion from the viewpoint of knowledge information processing application,
although computers are used in various ways in genetic information pro-
cessing [0]. The homology search deals with ambiguous search for an un-
recognized DNA sequence, and the protein structure prediction deals with
stricture prediction from a DNA sequence or an amino acid sequerce,

2.2 Homology Search

Homology search is a kind of ambiguous search in the sense that it finds all
sequences that are similar to, but ot the same as, the targel sequence in a
databank. In ordinal homology search algorithins, a DNA FBQUENCes is con-
sidered as a sequence of chararcters, each of which represenls an amino acid
or a nucleotide. Similarity is often measured by the Hamilton fength of two
sequences, that is, the number of exactly matching elements. In the search,
appropriate bfanks (called “gaps™) ean be inseried to align sequences as seen
in the example of Figure 1. In the example, more thay half the elements can
be aligned hy insertiug gaps, while only two elements are aligned wilhout
the gaps. In order to deal with the gaps, the dynamic programming (NP
matching algorithm and the hash-coding matching algorithm are commonly
used [5].

Une of the big issues in homology search is the size of databauks. Current
DNA databanks, such as GenBunk [2], have more than 20.000 SEUeNCEs, if
other words. more than 30,000,000 nucleotides: their size rapidly increases
year by vear. The sizes of databauks will greatly increase if the Human
Genome project [1] starts. This implies homology search will take an un-
bearably loug time unless remarkable performance improvements are made.

For this purpose, we proposed an alternative method based ou stochastic
inductive inference [12]. The advantages of this approaches will be discussed
i sections 3 and L
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(1) Before Gap Insertion
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Figure 1: Gap Insertion Example

2.3 Protein structure prediction

Many attemptis have heen made to predict a protein structure from a given
DNA sequence or an amino seguence. Houghly speaking, the methods are
categorized into two ways: an energy minimization approach and an empir-
ical inference approach.

The energy minimization approach tries to calculate a stable structure
that minimizes the entire energy in the protein. This approach is very at-
traclive since il may predict the exact molecular structure. Howewver, it is
often said that the required computation power is far heyond the ability of
current computer systems for giant molecules like a protein.

Therefore, we are more interested in the latter approach, empirical in-
ference. Empirical inference tries to predict a protein structure by applying
rifes ahtained from the known three dimensional protein structures (tertiary
structures ). Currently, around 300 tertiary struetures are known, and we can
obtain the relations between the tertiary structures and the corresponding
amino sequences (primary siructures). Then, we can extract rules that map
aminn sequences to protein structures by analyzing the relations.

To reduce the complexity of protein atructure prediction, “secondary
structures” are proposed between primary structures and tertiary structures,

The secoudary structure represents a characteristic part of a protein and
is often categorized into an alpha helix (a helix atructure), a beta sheet
{a sheet structure), a turn (a turn structure) and others that connect the
previous three structures.

We are very interested in this issue from the viewpoint of knowledge
information processing application, such as knowledge representation. infer-
ence mechanism and learning.



3 Effectiveness of Logic Programming

Logic programming has good capabilities for genetic information processing
from the following viewpaints: rapid protwotyping and “logical inference”.
Most practical systems dedicated for genetic information processing are writ-
ten in conventional procedural languages, such as Fortran and O, However,
this does not mean the procedural languages suit genetic information pro-
cessing, and much remains to satisly biologist's requirements.

The problem is that little is kuown abont genelic information processing
models and new algorithms are alwavs required to analvze more exact genetie
models. In such cases. rapid prototyping is more appropriate than conven-
tional sofllware development methadologies. such as a water fall model, since
feasibility of the algorithm is much more important than performance.

Logic programming language greatly enhances prototyping. becanse it
provides high level programming lacilities for matching, inference and database
access, which are main operations of genetic information processing. The
facilities enable us to concentrate our efforts mainly on exploiting new al-
gorithis concerning genetic information processing and to keep away from
data management and complex exerution control. For example, we can easily
develop a DNA databank using a clause database which provides advanced
database facilities: dala retrieval by matching {unification), automatic alter-
native search (backtracking), arbitrary length data structures (strings and
lists}, and relational definitions by predicate logic (Horn Clause).

The other important advantage of logic programming is that we can make
use of “logical inference” for genetic information processing. For example,
we are now interested in the application of stochastic inductive inference
to find an assertion that distinguishes a unique superfamily from the other
superfamilies. The stochastic inductive inference can deal with the proba-
bilistic validity of assertions, that is, intermediate values between “true” and
“false”. This implies that we can make use of an assertion even if it does not
completely satisfy all the sequences in a superfamily, and even if it satisfies
gequences that do not belong to the superfamily.

In addition, the stochastic inductive inference has mathematical founda-
tion of reasoning in contrast to the black-box reasoning such as back propa-
gation learuing in neuron netwark processing. This implies we can improve
the result by analyzing the process of inference,

4 KNOA

KNOA is a prototype DNA knowledge base system developed on an infer-
ence machine which provides a fast Prolog processor (500 KLIPS) and a
large scale main memory (320 MBytes). The advantage of KNOA dlesign is
in that all genetic information, such as DNA information and Protein infor-
mation, are tightly integrated with experl systems, sueh as homology search,



Figure 2: Dot Matrix Example [ X-axis: & - hemoglobin, Y-axis: 4 —

hiemoglobin )

protein structure inference, and so on. Such integration greatly reduces the
impedance mismatch of a database syetem and its application systems E][]i.

4.1 DataBank implementation

In KNOA, all DNA and protein databanks are implemented as collections of
Prolog clauses, to make full use of clause database facilities. Currently, Gen.
Bank, NEBERF, and Protein Structure Data Bank are availabie. The clause
database provides a memory-based single-user relational database model
with deductive [acilities. The biggest advantage ol logic programming is
in its expandability of a clause database. Well-known logic programming
methodology, called “meta programming” enables us to design any database
maodel on a clause database by means of defining a predicate that simulates
the database model, It greatly enhances database model design research for
genetic information processing,

One of the interesting issues of DNA database development is to design a
new database model that is more suitable to genetic information processing
than a relational database model. Although a relational database model is
powerful enough to cover most gemetic information, it is too rigid to deal
with hierarchical information like taxonomy and advanced user-interfaces
such as graphical data and animation. KNOA is partly suceessful in solving
this problem by providing a hierarchy of clause groups. ’
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Figure 3 Alignment Fxample (Seql: a— bkemoglobin, Seq? o5 lieowsglolin

4.2 Homelogy Search Systems

KNOA provides several homology search algorithims as well as graphical
2and 3). Well-known homology algorithms, such as
e E'I‘I"L[f'J'j'1EI and L'l&éfi-ﬂf!fiinij ]'llah’h"lll"" work well to *\':-mt' extoent., ]']an;_"-.'{-r,

output tools {Figures .

they does not fullv wake use of genetic information, and require a long time
to searcl the data bank,

-.[.”' :"1:1"” 1||.".' J)r“}"'Jl"nl. W I!Iu".-'!' ]"rrl]l‘f'l"'r"(l ooTIE |:'|I'H'];E'I|I'HT"|' r\.f".d]fjl d]gﬂ-
rithm, called stochastic homolagy search. Stochastic homology scarch prob
ablistically infers a specific superfamily according to the assertions obtained
by the stochastic induetive inference. Appendix A shows examples of as-
serLions for “cvtochrome ¢, The assertions can he considered as a kind of
“moti” that distinguishes “evtochrome " from other superfamilies in the
protein databank currently avaitable.

T he .'-lri'l.':-illr:iflr‘-:-c of *stochastic hrmlnhu{}' search™ are as fellows, First of
all, a great performence inprovement can he oblained at the search time,
since we can omit redundant matehing against sequences in the same supes
family. In addition. we can apply the assertions for an arbitrary length of
sequences. sinee it reguives only small segments of a sequence to induce 2
superfamilv.

The feasibility of the staochastic homology search as well as stochastic
imductive inlerence is being evaluated. For such evaluation. the inference
machine CHI is very effective, since we are almost free frow the linitation
of meinory capacity, and a memory-based DNA databank greatly improves
search performance, We believe inferenre machine CHI is one of the hest
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Figure 40 Secondary Structure Prediction Example (Cyvtochrome o of Tuna
Heart 3] — 70}

mackines to research gewetic inlormalion processing,.

4.3 Protein Structure Inference

Protein structure inference is one of the big issues in genetic information
processing. As the first step of protein strocture inference, an inference ver-
ification system Lias been developed. Figure || shows the resull of secondary
structure prediction for a eytochrome ¢ protein of 2 tuna heart, using infer-
ence rules proposed by Coben [4] Tu the verilication svsiem, inference rules
can be verified step by step with graphical representation of protein tertiary
structures which have already knewn [See Figure 53) Such visualization
greatly improves intuitive understanding of tertiary protein structures,

5 Conclusion

The advantages of the logic progranoning approach and joference machine
architecture in genetic information processing is described. The expansibility
and powerful largonage Tacilities for matching, mference and database access
are very useful for advanced knowladge base svslem development. ['he large
madn memory capacity and high perlormianee logic programming execution
cnable inference machine CHT Lo be a practical tool for this purpose, The
effectiveness s especially proved in e application of stochastic inductive

inference to homolozy seqcch,
=



Figure 5: Tertiary Structure and Main Pass of Tuna Heart Cytochrome ¢
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Appendix Some of the assertionz for cytochrome o

% contain{Patterns,SuperFamilyName Total ,Success,Validity).
contain(["TEM' ,"CHT'] | "cycochrome o' 69,68 ,0.9885073) .
contain([?ANK','CHT'], 'cytechrome c',61,58,0.9672131).
contain{['GTK",'CHT'], 'cytochrome ¢’ ,71,68,0.9577465] .
contain(["GPN®,"CHT '] ,'cytochrome c’,70,67,0.9571428) .
contain([*TEM', ANK?], ‘cytochrome = 67 ,64,0.9552238),
contain([*TEM' ,"NPK'] , 'eytochrome o' ,73,69,0.9452055) .
contain{[*PNL','CHT’], 'cytochrome ¢',71,67,0.943882),
contain(['AYL','CHT ], 'eytochrome <’ ,61,57,0. 93442683).
contain(['NFK','GFN'], cytochrome c',73,67,0.%17B082).
'L83,TB,0.9186627) .

contain([*TKM® ,'PGT*], ‘cytochrome c

contain{ [*PGT’,'CHT'], 'cytochrome c',75,68,0.9066667) .
contain([*GPN*, 'ANK'] ., ‘cytochrome <’ 67 ,60,0.8955224).
contain( ['TEM! ,'GTH'], 'cytochrome o’ ,B5,76,0.8841177).

contain( [*NPK','CHT'], cytochrome c',75,86,0. 88),
contain{ [*IPG’,'CHT'], 'cytochrome <’ ,75,65,0. BESEAET).
contain{['GTK’,*NPK'], cytochrome c’,81,70,0.8641976),
contain{[*TKM', 'FNL'], cytochrame c',B0,68,0.B625) .
contain{[*THM’ ,'GFN'], *cytochrome ¢’ ,80,69,0.8625),
contain(["THM® ,"TRFG"], ‘eytochrome c’ ,79,68,0. 860755E).
contain{[*PNL*, "ANK'], ' cytochrome <’ ,73,61,0.8356164) .
contain{ ['NPK',’AYL'] ,'cytochrome <’ ,70,58,0. 8285714},
centain(['GTK’,'ANK'],'cytochrome ¢',78,64,0.8206128),
contain([*TKM','AYL'], *eytochrome ¢ ,77.63,0.8181818).
contain([’GTK’,'GFN’],  cytochrome ¢',84,68,0,8095238).
contain({[*PNL','IPG'], cytochrome o’ ,B2,66,0. 8048781).
contain([*IPG’,'GPN’], cytochrome c’,B2,66,0.8048781).
contain{ [*PGT','NPK'],’cytochrome c’,B7,69,0.7931035),
contain{[*AYL','GPN'], 'cytochrome c',77,60,0.77392208),
contain([*NPK','PNL’], 'cytochrome o’ ,B6,67,0.7790698),
contain([*GTK?,'IPG’], 'cytochrome c',B88,68,0.7727273).
contain{[*PFGT’,'ANK'],’cytochrome ,B3,64,0.7710643) .,
contain({["AYL','ANK'],’'cytochrome c',72,55,0.76388849),
contain([’GTK’, AYL'], cytochrome c',80,61,0.7625).
contain{[*PGT','GPN'], 'cytochrome c¢',91,668,0.74T72528) .
contain([*NPK', ANK’],’cytochrome c’,82,61,0.7439024) .
contain([*AYL','IPG'], 'cytochrome ¢’ ,79,58,0.7341772).
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