ICOT Technical Memorandum: TM-0818

[M-OETE
A'UM Introductory Guide

by
K. Yoshida

October, 1989

© 1989, ICOT

Mita Kokusa [3dg. 21T {3) 456=-410 — 5

I l C] I 1-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A'uM Introductory Guide

/.J (Version 1.0} l ~

Institute for New Generation Computer Technology

Fourth Laboratory

—

Copyright @ 1989 Institute for New Generation Com puter Technology

Ahstract

AUM ' is a concurrent object-oriented programming language which looks at concurrent
computation and object-oriented abstraction from a microscopic viewpoint based on the notion
of a stream. VAS is an experimental system to execute A'UM programs on top of PDSS
(PIMOS Development Support Svstera). This manual desgibes the computational model and
programming language of A'UM and guides how 1o use YAS .

LAUM 15 a Japanese word, derived from the Sanskrit “ahum” consisting of 4 and Hum. which imphies the
Beginning aud Uhe end, an open volee and a close voice, and expiration sud mspiration. This name waz given
1o symbolize stream communication which s the basic notion of this language.

Contents

1 Model and Language of A'l{\ 3
I Imtroduoction o o 0 o o o e e e e 3
1.2 Streamn Computation 0 e e e 4

L 4 - ¢ 1 1- i
L2011 Stream Operations 4
L22 Joints . . .00, } 5]
123 Messages oL L e e e G
1.4 Object-Oriented Abstraction it e 7
1251 Objects © L 0 L e e T
L2 Generallons o o v it e e e e e 7
1321 Mahods . o o0 000 e g
1.3.2.2 Generation Descending #&
1.3.2.3 Sell ... 8
1.3.2.4 Succession and Termmnation L L L L L L L, 4

.33 Stream Completion and Computation Termination 10
1.3.3.0 Sink Objects 0 . . . 11

134 Slots . . oo L e e e e e e
1.3.40 Imlet Slots L o L e e e e 11
1.3.4.2 0 Outlet Slots . 0 . 0 0 00000 L 12

145 Primitive Objects © . L 0L 0 0 L0 e [
Lab Classes . . . L 0 e e e e e e e e 13
L3T Inheritance . . o . . L L e e e e e 14
1371 Iwheritance Tree 00 00 0o .. L 14

1.3.7.2 Extrasuper Class ($object) o000 0L 14

1.3.7.3 Infra Class ($0BJECT) 15

1.3.7.4 Method Search L 15

1.4 Basic Grammar 15
140 Class Definition 15
1.4.2 Method Definition 13
L4.d Stream Vamables L. 16
L4 Tunctional Grammar 0 0 0 0 0 0 0 0 0 0 e e e e e e 16
1441 Right-to-Left Principle 0000000000000 17
1442 Denvationof Nils . . 0 .. .0 L. oo o e 17
1.443 Primitive Objects e 17

1444 Common Messages o v v v i vt vt i a 17

1.5 Extended Grammar L 21
1.5.1 Implicit Completion of Streams 21

|

Iz

CONTENTS

1.5.1.1 Implicit Closingof Outlets
1.5.1.2 Implicit Discharging of Inlets
1.5.1.3 TDmplicit Termination of Objects
1.5.2 Macro Expressions
1.5.2.1 Arithmetical /Logical Operation Macros
1.5.2.2 Instance Creation Macro
1.5.2.3 Slot Access Macro e e e e e
[.5.2.4 Pseudo Variable $self 0 B
1.5.2.5 Generation Descending Macros
1.5.2.6 Destination Updating Maere
1.5.3 Channel Variables, o e
L34 Wolatile Objects . . _ 0 © 0 00 00000 L
1.5.4.1 Creation of Volatile Objects
1.5.4.2 Immutable Volatile Objects
1.54.3 Mutable Volatile Objects 0 L.

2 Experimental A'{M System: A AS

2.1 Introduction L L L e
2.2 Installation L L L e e e e e e
23 Imitiabion o . . L L L L L e e e e e e e e e e e

2.3.1 Initiation of PDSS
2.3.1.1 Imitiation of PDSS under GNU-Emacs
2.3.1.2 Initiation of Stand-Alone PDSS 0 0 0o oL

2.3.2 Initiation of XAS L L

24 A'UM Shell . . L e e
2.5 Compilation and Execution of A'UM programs

251 Compilation
2.5.2 Loading '
2.50.3 Execution

Language Specification

AT BYmLax . . L L e e e e e
A2 Operator Precedence . L 0 L L L0 L L e e e e
Ad Primitive Classcs . . L . 0 0 0 0 0 0 e e e e e e e e e e
Ad Built-in Classes oL L L 0 L e e e e
A5 Arithmetical/Logical Operation Macros

Implementation Specification

B KTi Object Code - 0
B.1.1 Coade Generation o i i i i it e e e
B.1.2 Examples of KL1-C Generated Code

Sample Programs

C.l Counter © . oL L e e
C.2 Stack L e
C.3 Tree Reverse . . _ L . L e e e e e e .
.4 Prime Number Generator 0 i i i i e e
C.5 DP Matching

21
21
22
22
22
22
23
23
24
25
25
27
28
28

35
35
37
38
38
A8
S
38
10
+1
41
42

12

48

Chapter 1

Model and Language of A/ tim

1.1 Introduction

A concurrent system is one in which more than one event can arise independently, where the
word independently means that the evenis may arise in parallel or in any order.

For example, supposc thal there is a system § which consists of three events a, b and €,
hetween which the [ollowing ordering relations exist:

o o mnst arise earlier thao b
e ¢ is independent from both a and b,

A set consisting of uniquely ordered elements is called a totally ordered set or a chain, while
a sel containing elements whose ordering cannot be uniquely determined is called a partally
ordered sel [poset for short).

Let us define three sets, A = {a}, B = {b} and C = {¢}, then the ahove svstem 5 is
expressed as:

S=(A@B)iC

where & 1= called an erdinal addition and + a cardinal addition; + 15 commutative, but (& s
not. Fach operator implies a dilTerent kind of addition on posets and produces a poset as the
operational result.

In a sequential system, since only one event can occur at a time, the entire system is defined
as a chain of events. The ordinal addition is enough to define a sequential system. In a
concurrent system, in conirasi, some events may occur in a row and some occur independently
at the same thme. In addition to the ordinal sum, another operator is neceded to define an
ndeterministic order, that is the cardinal addition. Thus, a concurrent system is defined as a
posel of events.

Again, a chain is an vrdinal sum of elements, and a poset is a cardinal sum of chains. This
relation can be represented naturally with streams.

In general, there are several kinds of streams, such as streams of water (rivers), streams of
electricity (electric currents), and streams of cars (traffic). We visualize the notion of streams
lustrating a river in Figure 1.1.

The river consists of countless drops of water. The drops connect one after another to form
a conlinuous stream. Moving from the mountains to the ocean, the tributarics converge into
wider and wider streams until the river arrives at the ocean. One drop from one tributary may
arrive at the ocean earlier or later than another drop from another tributary. The river has a

4

4 CHAPTER I. MODEL AND LANGUAGE OF A" UM

direction of flow, downhill. Another example of stream is connected electrical wires. For each
wire, the end toward the anode is attached with a red tag and the other end toward the cathode
with a blue tag. We can make a long wire by connecting the red tag of one wire to the blue
tag of another.

Figure 1.1: River and ocean

A'UM is a concurrent programming language which deals with streams of messages [Yoshida88].
Let us regard the ocean as an object and each drop of waler as a message flowing into the object.
Here is the basic idea of A" M.

The computation model is defined in sections 1.2 and 1.3, The programming language is
explained in sections 1.4 aud 1.5,

1.2 Stream Computation

1.2.1 Streams

A siream is a sequence of messages. The direction of a stream is depicted as an arrow with
a pair of terminals: inlet, denoted by a variable name preceded by “*” (X for example), and
outlet, denoted by a variable name (X for example), as shown in Figure 1.2.

_ 7

inlet inlet outlet
— e
O X

s
T~ T~

object abject

Figure 1.2: Stream representation

The terms, inlet and outlet, are given from the viewpoint of an object who receives a message
from the stream or sends a message to the stream. So from the stream’s point of view, inlet
and vutlet each mean the opposite of what they say. For a stream, messages go out of the inlet
and come from the outlet. Remember that inlet and outlet are from the object’s point of view,

1.2.1.1 Stream Operations

Basic operations to produce and consume a stream that is a sequence of messages are defined,
as depicted in Figure 1.3.

1.2, STREAM COMPUTATION 3

send: sending a message to an outlet {X), when the outlet of the following stream
is given as Y,

close: closing an outlet (Y), when a state, ni, is left, which indicates that Lhe
stream 15 no longer accessible.

receive: receiving a message [rom an et (7X], when the inlet of the following
stream 1s given as “Y.

is_closed: detecting that an iulet (X) 15 closed.

Thus, we explain stream computation using three terms, inled, outlel and nil,

The most characteristic feature of this stream computation model is that there is no re-
striction or constraint on the stream production order. The destination object toward which a
stream is being produced need not be created before the stream is produced. Before knovwing
which object a stream iz connected to, messages can be sent to the stream. The object may
he created after the stream has been produced. Also a stream can be produced from any part
and in any order. U'he part closer to the destination object may be created later than the part
further.

before after
send(X, m, "Y) - (:;H)-L -—-O-*-,-I,
close(X) -~ — ———f !
receive(™, m, ¥) .&_{}._. O =
m
1s_closed(%) 7 Ll

Figure 1.3: Basic operations

1.2.2 Joints

In order Lo build a stream tree, we defline two kinds of binary operations, called joints, as
depicted in Figure 1.4:

merge: merging messages from two streams, "X and "Y, in an indeterministic
arder, where the message order in stream X and that in stream Y are kepl.

append: appending messages from onc stream Y to any of the messages [rom

the other stream “X, where the message order in stream X and that in streamn
Y are kept.

The merge operation corresponds to a cardinal sum of pesets, and the append operation Lo
an ordinal sum of posets. In A'UAM, indeterminacy is contained only in the merge operation.

Hereafter, we refer to posets produced by joints as channels and chains as streams in a strict
sense.

6 CHAPTER 1. MODEL AND LANGUAGE OF A'lM

*
mergefﬁ'}(. My, ZH 4ﬂ : : "

DD - -
(@) - -
"L
append(%, ¥, L1 ®: @@ ! 00—

Figure 1.4: Joints

In case that one of the Lwo incoming streams (Y for example) is immediately closed for either
of the binary operations, merge and append, this means that the other incoming stream (X for
example) is connected o the oulgoing stream (Z for example).

connect: connecting an inlet ("X} to an outlet (Z);

connect(Z, "%} -— s

Figure 1.5: Stream connection

1.2.3 Messages

A message contains a message name and a tuple of stream terminals as its arguments, each of
which is cither an inlet or an outlet. Those messages which have only a message name but no
argument are called atomic messages; those which have some arguments are called compound
messages.

An individual message is identified by the message name, the number of the terminals,
and their directions from the receiver’s viewpoint. Even if the message names match, if either
the number of arguments or their directions are diffcrent, messages are recognized as being
differcnt,

Each message works as a stream connector which counects streams given as actual param-
eters in Lhe sender’s scope, with streams given as formal parameters in the receiver’s scope.
Since two streams can be connected when the inlet of one and the outlet of the other are given,
the sender and the receiver must specify complementary directions for each parameter.

For example, message m(X, “Y, Z) in Figure 1.6 has message name m and contains three
terminals: one inlet “Y and two outlets X and Z, so it is identified as m(-+-). The sender of
this message is expected to specify such as m("U, V, ~W) so that “U is connected to X, “Y to
V,and "Wto Z.

Ld OBJECT-ORIENTED ABSTRACTION

=1

Receiver's scope ™\ f/_ Sender's scope
m(X,,Z) mi U,V u

Figure 1.6: Message as a stream connector

1.3 Object-Oriented Abstraction

1.3.1 Objects

An object 1s the abstraction of iterative computation. When an object is created, it is given
one stream, called the interface stream, through which the object will recvive a message from
the oulside.

From the sender’s viewpoint, each stream toward an object can be looked upon as the object
itself. Making acquaintance with an object is obtaining a stream toward the object. Introducing
an acquaintance (A} to another (B) is splitting the stream toward A into two and passing one
of the two branch streams to B.

"Obj

interface stream

Figure 1.7: External view of an object

Creation of an object: When a message, new("0bj) is scul Lo a class, one instance object
of the class is created, which is called the 0-th generation of the object. The inlet of the interface
stream to this fresh object is given as ~0bj.

1.3.2 Generations

Each object repeals a cycle, called generation, which consists of the following two phases:

I. Passive phase: An object waits for an event on the interface stream, which is either
receiving a message from the siream or detecting that the stream is closed,

8 CHAPTER 1. MODEL AND LANGUAGE OF A"UM

2. Active phase: When an event is detected, the object is activated and takes some
actions according to the observed event. Among those actions are:

¢ zero or more actions of sending, closing, connection, merging, appending and creation
of primitive objects mentioned later, and

e one or fewer actions of generation descending.

Fach generation is a collection of stream terminals, including the inlet of the iuterface stream
from which it receives a message and other stream terminals which represent the internal states
of the objects.

1.3.2.1 Methods

A method is a seript that defines the behavior of one generation. Fach method consists of two
parts: a passive parf to specify what event should be observed, and an active part to specify
what actions should be taken according to the event.

1.3.2.2 Generation Descending

The action to create the next generation of an object is called generation descending. The
generation descending action may be executed in parallel with other actions. Since the current
generation and the next generation are related only by the causality of their interface streams,
it does not matter when the generation descending action is executed.

1.3.2.3 Self

L'ar each generation of an object, the object ifself means the next generation. Sending a
message to itself is simply sending a message to a stream (outlet) toward the next generation.
At generation descending, the rest of the interface stream follows the last of those messages
sent by the current generation to itself, as depicted in Figure 1.8.

n-th
"Hes

ldescend

‘“'Sglf
messages senl from Last
the n-th generation

(n+41)-th

Figure 1.8; Generation descending and Self

1.3. OBJECT-ORIENTED ABSTRACTION 0

Splitting of Self: If an object splits a stream toward itsell and gives one of the branch
streams to some other object, it will be able to receive messages sent by the other object in the
future.

1.3.2.4 Succession and Termination

Lach object descends its generations until it receives a termination message, $terminate, so
that the life of an object is a chain of gencrations as depicted in Figure 1.9.

object
0-th gen. ‘\
&/ A
|l descend
1st gen.
4
I
4
i
lldescend
last gen.)
el I $tdrminate

sink J/

Figure 1.9: Object as a chain of generations

When to send the termination message can be specified in the program. Without any
specification, it is regarded as when the closing of the interface stream is detected.

10 CHAPTER 1. MODEL AND LANGUAGE OF A'UM

Termination of an object: When an object receives a termination message, $terminate,
it completes all the stream Lerminals it holds. Siream completion is mentioned later more in

detail.

1.3.3 Stream Completion and Computation Termination

For a poset which is composed of chains, if Lhe least element under the ordering relation is
determined and the least upper bound is given to each of the chains, the poset is called a
complete poset {epo for short). Defining the least element of the entire set and the least upper
bounds of all the chains of a poset is called the completion of a posel.

The least element can be regarded as the initiation of computation, the entire set as the
computation process, and the least upper bound as the termination of computation on 'he
chain. Computation neither starts unless the least element is given, nor terminates unless all
the least upper bounds are given.

Globally loaking over a stream tree {formed toward an object, the object corresponds to the
least element of the entire stream tree, and the outlet of each branch stream to the least upper
bound. Microscopically at the level of a stream, the inlet corresponds to the least element,
and the outlet to the least upper bound. Therefore, missing either the mlet or the outlet of a
stream causes the following problems:

Missing an outlet: If the outlel of a stream is left open, since there may be some objecl
waiting for some eveni on the stream, a deadlock might occur.

Missing an inlet: If the inlet of a stream is left unconnected, at first, those messages coming
into the stream will be garbages.

In addition, the inlets and outlets carried by these messages will be left unconnected.
Those who sent these messages might be expecting the inlets to be connected to some
objects and the outlets to be closed after some messages sent, so deadlock might occur.

For stream computation, we refer to determining both the inlet and the outlet of a stream
as the completion of a stream. The missing inlet or outlet of an incomplete stream is processed
as {ollaws:

Discharging inlets: If there is an inlet which is left unconnected, it is connected to a sink
object which is mentioned below. The sink object is thought to be the lower bound of the
stream.

Closing outlets: If there is an outlet which is left open, it is closed. Nil is thought to be the
upper bound ol the stream.

As long as a message exists in a system, there may be some activity in that system. If there
is no message left in a system, this is when the system is terminated. As long as all strcams
existing in a system are finite chains of messages, completion of the streams gnaraniee that all
messages will be accepted by objects, so that a program will be terminated.

1.3. OBJECT-ORIENTED ABSTRACTION 11

1.32.3.1 Sink Objects

A sink object 15 an object which can interpret messages and works as a message disposer. In
each generation,

o if it receives a message from the interface stream. it completes all the arguments of the
received message. It connects the inlets to other sink objects and closes the outlets.

e il it detects that the interface stream is closed, it terminates its life as an object.

Jdescend

Figure 1.10: Sink object

1.3.4 Slois

An object may hold a set of slots, each of which holds a stream terminal associated with a
name. LThere are two kinds of slots, inlet slots and outle! slots, according to the direction of

the terminal that they hold.
Slot access is done by sending a particular message to the object itself. In the following, we
explain what action is taken for each slot access message.

1.3.4.1 Inlet Slots

Initiation: When an object is created, cach of its inlet slols holds nil.

Reference: When an inlet-slot-reference message get_inlet(Name, Slot) arrives at an ob-
ject, the current inlet slot is connected to the second argument of the message. The new

generation of the inlet slot holds nil.

12 CHAPTER 1. MODEL AND LANGUAGE OF A"UM

n-th
get_inlet(Name, Slot)

r— = =

{n41)-th

Figure 1.11: Heference to an inlet slot

Updating: When an mlet-sloi-updating message set_inlaet(Name, “Slot) arrives at an
object, the current inlet slot is connected to a sink object. The second argument of the
message is connected to the next generation of the inlet slot.

set.inlet{Name,"Slot)

— - =

Figure 1.12: Updating an inlet slot

Termination: When an object is terminated, each of its inlet slots & connected to a sink
object.

1.2.4.2 Qutlet Slots

Initiation: When an object is created, vach of its outlet slots is connected to a sink object.

Reference: When an outlet-slot-reference message get_outlet(Name, “Slot) arrives at an
object, the current outlet slot is split into two, one of the two branches is connected
from the second argument of the message, and the new generation of the outlet slot is
connected to the other branch.

1.3. OBJECT-ORIENTED ABSTRACTION 13

i-th get_outlet (Name,"Slot)

r— = =

(n+L)fLh

Figure 1.13: Referring to an ontlet slat

Updating: When an ontlet-slot-updating message set_outlet(Name, Slot) arrives at an
object, the current inlet slot is closed. The new generation of the outlet slot is connected
to the second argument of the message.

n-tl
' set.cutlet{Name, Slot)

— = =

(n+1}fth

Figurce 1.14: Updaling an outlet slot

Termination: When an ohject 1= terminated, each of its outlet slots is closed.

1.3.5 Primitive Objects

Those which are usually categorized into primitive data, such as integers (5 for example), atoms
{abe for example), booleans (“true for example) and strings ("hi" for example), are also objects
that communicate with one another by message-passing via streams as well as abstract objects.
These objects are called primitive objects. Classes, mentioned later, are among the primitive
objects.

For example, specifying integer 5 in a program implies an outlet toward an integer object
5. If an addition message add(1, “Sum) is sent to this outlet, an integer object 6 is created as
the operation result ahead of Sum.

1.3.6 Classes

A class defines a template of its instances, which consists of the following:

» o sct of super classes,

14 CHAPTER 1. MODEL AND LANGUAGE OF A'liM

s a set of inlet and outlet slot names, and

s a set of methods.

Classes are primitive objects with stream interface. When a class receives an instance
creation message, it creates an instance according to its own template. There is no notion of a
meta-class which is a class of classes.

1.3.7 Inheritance

A UM supports multiple class inheritance for the purpose of minimizing the size of program
code. One class can inherit a set of methods from anv number of classes, Class inherilance
expands the set of applicable methods and the set of accessible slots, but docs not create a
extra instance for any of the super classes. Note that class inheritance is a matter orthogonal
to stream computation.

1.3.7.1 Inheritance Tree

For each class, its super class definition forms an inheritance tree. An inheritance list is gen-
crated by traversing this inheritance tree in left-to-right and depth-first order. If one class
appears on different paths in an inheritance tree, only the first oceurrence is talken and the rest
are ignored, so thal duplication of a class is eliminated.

AV AN
N

Figure 1.15: Inheritance tree

For example, as shown in Figure 1.15. let seven classes, a to g, keep an inheritance relation
such that a inherits b and ¢; b inherits d and e; ¢ inherits e and £.
For this inheritance tree, the following inheritance list is generated:

a + b —+d— e —¢c — f

To any generated inheritance list, we supplement two gencric classes: ertrasuper elass
{$cbject) at the top and infra class ($0BJECT) at the bottom as follows:

$OBJECT +»a - b - d - e — ¢ — f — $object

The resnlting list, called the complete inkerilance list, will be the entire space for searching
methods. Even if a class has no super class definition, it is supplemented by the extrasuper
class and the infra class, so any class inherits some class.

1.3.7.2 Extrasuper Class ($cbject)

The extrasuper class is positioned at the end of the inheritance list to define a set of common
methods which may be overwritten, snch as a method to terminate an object when its interface
stream is closed, and methods for error-handling.

1.4. BASIC GRAMMAR 15

1.3.7.3 Infra Class ($0BJECT)

The infra class is positioned at the beginning of the inheritance list to define a set of common
methods which cannot be overwritten, such as methods for slot access and a method for the
terminalion message, $terminate.

1.3.7.4 Method Search

Just after an object ohserves some event in the passive phase, it searches a method appropriate
for the event. and it then enters the active phase. Message senders can specify from which class
in the complete inheritance list the destination object shonld search a method. Without any
specification, method search iz done from the infra class,

1.4 Basic Grammar

Since a concurrent system 18 modeled as a posct of events, concurrent programming is drawing
a graph of events. Making it easy to draw a graph 1s the most important role of concurrent
programming languages. Although a graph representation itself may be one kind of langnage,
we define a symbolic language here, since it is easier.

First in this section, we define a basic grammar in which the abave compnutation model can
be represented in a straightforward way. Later in the next section, the grammar is extended
with several lingmistic supports, so that we can write safe and compact programs more easily.

1.4.1 Class Definition

A program consists of classes, Each class is defined by a class name, super classes, inlet and
outlet slot names, and methods.,

< ClassDefinition > 1=
class < ClassName >
| < SuperclassDefinition = “.7 |
[< InletSlotDefinition = “." |
| < QulletSlot Definition > “." |
[< Method > .)

won
'

wom

end

< SuperclassDefinition = ==

super < SuperClassName = { “,
< InletSlot Definition > =

in < SlotName = { *,"< SlotName > }
< CutletSiotDefinition = =

out < SlotName = { “,"< SlotName = }

" SuperClassName >}

1.4.2 Method Definition

A method consists of two parts: the passive part to define what event should be observed, and
the active part to define what actions should be taken for the cvent.

16 CHAPTER 1. MODEL AND LANGUAGE OF A" L{iM
< Methad = »= <« Event > “|" « AcHons > { “ e Aetions > }

< Actions > = < Nillzpression >

1.4.3 Stream Variables

The direction of a stream is specified as occurrences of a pair of stream variables defined as
follows:

Input variable: a variable name preceded by “*" (*X for example) denoting the
inlet,

Output variable: just a variable name (X for example) denoting the outlet.

1.4.4 Functional Grammar

The passive and active parts of a method are bhoth defined using functional expressions listed
in Table 1.1,

Table 1.1: Basic expressions

| refation _ CIPTESSION resull |

receive ("X ,m,Y) | “:" < Message > “=" < OQut> | < Nil>
m =Y

15_closed("X) s < Nil =

sand (X ,;n . ~Y) < Out > “:™ < Message > < (ut >
I:m ¥

close(X) < Qut> 4" < Nil =
X ::

merge ("X, Y,Z) | <Oui> “=" <Iu> < Out >
Z2="X H

append("X,"Y,Z) | < Out> “\" < In> < Out >
ZN X Y

descend ("X, 35) “gas o fns < Nil >
<== “X

Fach expression represents either an inlet, an outlet or a nil as its result; it is called either
an inlet erpression, an outlet expression, or a ni erpression according to the result. Any
complicated graph can be drawn gimply by constructing these expressions.

For example, C:up:up:up:show("U) 1s composed of message sending expressions. The first
C:up sends message up Lo outlet € and represents the outlet {C1) of the following stream as its
result, so the original expression is rewritten to C1:up:up:show("U). By repeating this, we see
that the outlet left after sending message show("U) he the result of the original expression.

Merge and append expressions are designed so that a stream tree can be written easily. For
example, A = "B = “C = ~D is composed of three merge expressions. For the first merging

1.4. BASIC GRAMMAR 17

juint, A = "B, A 1s the outlet of the outgoing stream, "B is the inlet of one of the two incoming
streams. and the expression represents the outlet of the other incoming stream, here temporarily
named W. L'hen the original expression is rewritten to W = “C = “D. By repeating this, the
original expression represents the outlet of one stream incoming to the last merging joint. One
may imagine thal there is a cable along the equal operators toward 4 and that three other lines
plugged into the cable and messages are Hlowing from each line toward A, Append expressions
are similar excepl that messages from a plug to the left How before any of those from a plug to
the right.

Since stream connection is a special case in that one of the incoming streams is closed for
either merge or append, il is represented as a combination of a merge (or append) expression
and a close expression. Por example,

Z = "X :: mecans connecting an inlet "X to an outlet Z, which will be simplified to Z = ~ " by
a linguistic suppert of nplicit comnpletion mentioned later,

1.4.4.1 Right-to-Left Principle

All the pictures in this manual are drawn in a manner that messages should flow from right lo
left toward the leftmost object. Changing the viewpoint to the arriving time of messages, the
manner can be taken as that time showld go by from left to right. Expressions are designed to
keep this manner, so that we can write a program like drawing a picture.

1.4.4.2 Derivation of Nils

To promote the completion of computation, the grammar prescribes the following two rules:

R1 (Pairing of stream variables): Each stream variable must make a pair,
that iz, an mlet variable cannot appear alone without its corresponding outlet
variable and vice versa.

K2 (Allowing only nil expressions at the top): [t allows only an nil erpres-
ston to be specified for each top-level expression in the < Action > ficld, so
that no ontlet be left open and no inlet be left unconnected.

In the extended grammar, described later, these rules will be abolished.

1.4.4.3 Primitive Objects

The occurrence of a lexicon corresponding to a primitive object denotes an outlet to the ohject.
For example, 5 means an outlet to an integer object, 5, and ##counter means an outlet to a
class object, counter.

1.4.4.4 Common Messages

There are several kinds of common messages which can be accepted by any objects including
primitive objects. For abstract objects, default methods for these common messages are defined

either in the extrasuper class or in the infra class. Here, we introduce the most characteristic
one among them.

15 CHAPTER 1. MODFEIL AND LANGUAGE OF A'UM

“Who are you?” message: who_are_you(Who) is a message to ask an object of its denofa-
tional image. When an object receives this message, the object will send back to the terminal,
Whe, 2 message representing its own denotational image. For the denotational image, anything
is good if it can be recognized as the object itsclf,

For example, an integer object, S, will send back a message, “57, to the terminal Who and
close the end. Note that the latter “5” is a message, not an object. For an abstract object like
a counter object, the default method is defined so that the object should send back a message
telling “I amn ", that is i_am("0bj) where “0bj is an inlet toward the object.

Example 1 (Counter)

Figure 1.16 shows a program of a counter written in Lhe basic grammar.

A counter is an object which increments or decrements its counting value every time it
receives a message, up or down. The counting valuc is updated or referred to by a message set
or show. We try two kinds of test using the counter: testM and testA. Both methods:

I. create an instance of class counter,
2. send message set (5) to the instance,
3. split into two the stream remaining lell after sending the set message,
4. send two up messages and one show("U) message in a row to one branch, and
5. send two down messages and one show("D) message in a row to the other branch.
The difference hetween the two methods is on the ordering of up and down messages as follows:

s In testh, the two branch streams, €1 and €2, are appended, so 1t 1s sure that the two up
messages from C1 arrive at the counter earlier than any of the two down messages from
C2. Therefore, counting result ~1U will be exactly 7 and "D be 5.

e In testM, messages [rom the two branches are merged, so it is indeterministic how many
up messages will arrive al Lhe counter earlier than down messages. Therefore, counting
result “U will be either 5, 6 or 7, and "D be either 3, 4 or &.

Figure 1.17 shows the situation that the first generation of the counter object received a
message set(5) and has just entered the active phase. Figure 1.18 shows the same program
written in the extended grammar, which will be described in the next section.

I.4. BASIC GRAMMAR

class counter.

ouT .
:up = Hest

:down = Rest

rset{ N}

:show (N}

end .

clacs test.
:test = Kast

ctestM{U, D)

‘testa{ll, T)

:nop(Result)

end .

It
o
o
o
o+

]
=
b
(]
ot

| == "Self,
Self:get_cutlet(n, ~
rzet_outletin, N1J
N:add{1, "N1)::
| ¢== “Salf,
Self:get_ocutlet(n, "N}
:set_outlet(n, N1J
Misub(1l, "Ni)::
| == "Self,
Self:set_ocutlet{n, N} = "Rest ::
| €¢== ~Self,
Self:get_outlet(n, “N)
| ¢== "3Self,
Self:'$terminte’::

“Hest ::,

“Hest .,

"Rast ::

| ¢== ~S5elf,
Self:testM(" Un, Dm):tasth{ Ua, Da)
:nop{“Result) = "REeat ::,

Resulth “Wim' “WDm' “WUa% “wWDa ::,
Um:who_are_youl(WUm)::,

Dm: who_are_you(Wim): -,
Uz:who_are_youl(Wlal::,
Da:who_are_you(WDa)::

Rest | <== "Rest,
Fdcounter new(Counter)::,
Counter:set(5) = “C 11,
Cliup:ep:show("U)::,
C2iup:upishew("Dl::,
C="C1= "C2

Rest | <== "Rest,
f##counternew(Counter).:,
Counter:set(b} = “C ::,
Clruprup:show("U): 0,
C2rup:up:show("D)::,

(o N 5 S Wl i+~ PR

Rest | <== "Hest,

f#sink :new! HResult)::.

Figure 1.16: Program of a counter in the basic grammar

19

20 CHAPTER 1. MODEL AND LANGUAGE O A" UM

1si pen.

2ud gen.

zink .
(8

o

set_outletin, N)

Figure 1.17: First generation of a counter

class countear .
out m.
up -» In + 1= ¥n, ¥ oE+Y =» 8 ; F:addly, 3)
idown -» !'n - 1 = 'n. YX-Y =» D i Z:isublY, D)
iset{"HN) -» N = in. Y o'n o=> $self:set_outletin,N)
:show(N) -> 'n = "N. % in =» $self:pet_ocutletin, N)
end .

class test.
rtest -> testM("Um, “Dm):testA{ Ua, ~“Da):nopl(Result),
Resultd$t = {Um?), Result$z = (Dm7},
Results3 = (Ua?), Result$4 = {(Da?}.

itestM(U, D) -»
#counter:set(8) = ~C, Crup:up:show(~U),
Cidown:dewn:show("D).
stesth(U, D) ->
#counter:set{5) = "C, C$il:up:up:show("U),
C$2:down:down:show("D}.
inop(Result) -» |
and .

Figure L.18: Program of a counter in the extended ETAMIMAr

1.5, EXTENDED GRAMMAR 2

1.5 Extended Grammar

Although the stream computation model can be directly represented in the basic grammar, in
arder to write large scale concurrent problems, simpler and more abstract description is needed.
For ease of programming, we introduce the following four main extensions:

o irnplicit completion of streams.
s introduction of macro expressions,

o extension of the meaning of a variable from a stream to a channel, and

s introduction of velatile objects.

1.5.1 Implicit Completion of Streams

Section 1.4.4.2 prescribed two rules to promote the termination of computation. Rule R1 is
abolished by the introduction of channel variables described later. For rule R2, it is laborious
for the programmer to carefully complete all the streams. and in particular to be sure to close
outlets. So we abolish rule R2 but instead extend the grammar as follows:

Allowing inlet and outlet expressions at the top: Inlet and outlet expres-
sions may be specified in the < Aetion > field, at the top level of a method.

Implicit completion: Non-nil expressions left alone are implicitly completed.
Outlet expressions are closed, and inlet expressions are discharged. Alse a
default method for termination 15 given.

1.5.1.1 Implicit Closing of Qutlets

Outlets lell open are inplicitly closed, Among those implicitly closed are results of outlet
expressions left at the < Aetion > field, missing outlets of channels, current outlet slots to be
updated, outlet slots at ternunation, and outiets of inlet slots at initiation.

1.5.1.2 TImplicit Discharging of Inlets

Inlets left unconnected are implicitly discharged. Among those implicitly discharged are results
of inlet expressions left at the < Action > field, missing inlets of channels, the interface stream

at lernmination, inlet slots at termination, and nlets of outlet slots at mitiation.

1.5.1.3 lmplicit Termination of Objects

Maost ohjects are supposed to terminate when closing of their interface stream is detected, but
we often forget to specily this termination. Therefore,

-2

is defined as a default method for termination, in the extrasuper class which is inherited by
any user-defined classes.

22 CHAPTER 1. MODEL AND LANGUAGE OF A'UM

1.5.2 Macro Expressions

Warions macro expressions are provided; they represent either an inlet, an outlet or a nil as

their result.

1.5.2.1 Arithmetical/Logical Operation Macros

Arithmetical and logical operation macros are provided to handle primitive objects easily. Each
macro of this kind represents the outlet of a stream toward the operation result, so that any
complicated operational expression can he represented simply by constructing these arithmeti-
cal and logical operation macros similar to basic expressions.

For example, expression 3 + § == 8 is expanded to

3 :add(5, "Sum), Sum:eq(8, “True),

and represents the outlel True of a stream loward a boclean object, “true.

1.5.2.2 Instance Creation Macro

[nstance creation macro sends an instance creation message to the specified class and represents
the outlet of a stream toward the newly created instance.
For example, #counter is expanded to

##counter new(Counter),
and represents the outlet, Counter, to the instance of class counter. Where ##counter denotes
the class counter which is a primilive object.
1.5.2.4 Slot Access Macro

For case of accessing to slots, macro “0”< SletName > is provided for inlet slot access, and
macro "< SloiName > for outlet slot access. Their meanings are context dependent.

The vullet slot access macro means slot-reference in the outlet position, and slot updating
i Lhe inlet position. For example,
'n = "N meaning outlet-slot-reference is expanded to:

$self:get_outlet(n, "Slet), Slot = “N
N = !n meaning outlet-slot-updating is expanded to:
$self:zet_outlet(n, Slot), W = “3lot

In contrast, the inlet slot access macro means slot reference in the inlet ficld, and slot-
updating in the outlet field. For example,
N = @n meaning inlet-slot-reference is expanded to:

$self:get_inlet(n, Slot), N = "Slot
@n = "N meaning inlet-slot-updating is expanded to:

$self:set_inlet(n, ~“Sleot), Slet = °N

1.5. EXTENDED GRAMMAR 23

1.5.2.4 Pseudo Variable $self

The object itself, that is a stream to its next gencration, is accessed by a pseudo variable $self,
whose meaning is also context dependent and similar Lo thal of the outlet slot macro as follows:

s $zalf appearing in the outlet position means referring to the ohject itself.

When the destination is emitted in message-sending, it is assumed that $self would have
been specified, so the message is sent to the object itself.

e $self appearing in the inlet position means updating the object itself

Causality on Self: Which generation the psendo variable $self denoies Is determined
in accordance with the order of occurrences of the psendo variable $self {and macros whose
expansions include $self). Causality on the object itself depends on the order of expanding
expressions, as lollows:

o Methods are expanded from the event to the actions.

o A set of actions, separated by commas, are expanded from left to right.

e Parameters of each message are expanded from left lo right.

e Macro expressions are expanded from left to right and from tnner fo outer.

For example,

:foolla, “X) ~» :fool(lb, 'c, ~Y)
fzalf:foo2lY, ~7)
X+ 2 =14,

$=elf,
tself,

is equivalent to the following method:

:foolA, “X) =-> $self:get_outlet(a, ~A)
:get_outlet(b, "B)
:get_outlet(c, "C)
:foo1(B, C, "Y)
:foa2{Y, "Z)
iset_outlet{d, "Sum) = fself,
¥iadd(Z, " 5um).

1.5.2.5 Generation Descending Macros

Vor ease of writing generation descending, the following two macros: succession macro and
termination macroe are provided.

< Method > 1= < DeseendingMacro > < Action> { *," < Action > }
< DeseendingMaero > 1= < Suceession > | < Termination >

< Succession > 1= < BventOnly > “->"

< Termination > 1= < EventOnly > “~|7

< EveniOnly > = “" < MessagePattern > | 27

24 CHAPTER 1. MODEL AND LANGUAGE OF A'UM

Succession macroe: Succession macro means descending a generation: connecting the inlet
of the interface stream following the received message to the latest outlet to the next generation.
For example, method :m => do. is expanded as follows:

‘m = Rest | <== "Self, Self:dec = "Hest.

Termination macro: Termination macro means descending a generation; sending a ter-
mination message, $terminate, to the object itself as the last message from this generation;
connecting the inlet of the interface stream following the received message to the outlet left
after the previous sending.

For cxample, method :m =] :do. is expanded as follows:

‘m = Rest | <== "Sglf, Self:do:'$terminate’ = "Hest.

1.5.2.6 Destination Updating Macro

For message-sending expressions whose destination is related to the object itself, such as slots
and $self, their destination is implicitly updated. For example,

:foo -2 la:m({"X).
is supplemented by the updating of an outlet slot named a as follows:
cfoo = la:m("X) = la.

Owing to this macro, the generations of an object and slots are kept in accordance with the
order of their occurrences, even if those self-related expressions are separated into pieces within
a context. For example,

:foo -» la:mi("X), ... {olher actions) .., 'a:m2,
15 expanded as follows:
‘foo -» la:mi{"%) = 'a, ... (other actions) ..., 'a:m2 = la.
so that the message m1 is sent to the outlet slot named a earlier than the message m2.

Note that the destination update macro is applied not only for self-related message-sending
cxpressions explicitly specified in the program, but also for some macro expressions which
should be expanded to self-related message sending expressions.

l'or example, 'n + 1 = In is expanded first to:

'm:add(1, "“Sum), Sum = In

then, by applying the destination updating macro, it becomes:

ln:add{1, “Sum) = !'n, Sum = 'n

1.5. EXTENDED GRAMMAR 25

1.5.3 Channel Variables

In the above sections, we used variables to represent streams that are chains of messages. Here,
we extend the meaning of a variable from a stream to a channel which is a siream tree, so
that a channel can be represented just by occurrences of variables, rather than by explicitly
specifying merge and append expressions.

A channel is represented by channel variables delined as follows:

One or fewer inlet variables: The occurrence of a variable name preceded by
“~7 (=¥ for example) denotes an inlet.

Zero or more non-ordered outlet variables: Theoccurrence of a variable name
only (X for example) denotes one of the outlets of a merge tree, whose root has
the above as its inlet.

Zero or more ordered outlet variables: The occurrence of a variable name
succeeded by “$” and an ordering number (X$1 for example) denotes an outlet
of an appending joint, where suffixes may be any positive numbers and do not
have to hegin with 1 such as X$1, nor to be continuous such as X$2, X$3, X$4.

Multiple occurrences of an ordered outlet variable with the same ordering num-
ber, such as two oceurrences of X$3, make a merge tree for themselves.

When non-ordered outlet variables and ordered outlet variables appear to-
gether, the siream tree formed by the ordered outlet variables is taken as a
subtree plugged into the entire merge tree.

For example, the occurrences of one inlet variable X, two non-ordered outlet variables Xs,
and four ordered outlet variables, X$1, X$2 and two X$3 represent a stream network expressed
by X = "P1 ="P2 \ "51 \"82 \"83, 53 = "331 = "332 as shown in Figure 1.19.

("P1)y

{("P2)x

Figure 1.19: Channel variables

(Ohwing to this extension, most of the stream programming features are hidden and we
can concentrate on what to do with objects rather than how to connect streams, so that the
programming paradigm of A'WM gels close to that of other object-oriented languages.

1.5.4 Volatile Objects

Each generation of an object (1) is activated by a certain event, then takes actions according
to the event, and (2) may descend to its next generation simultaneously. The former means
conditional sclection and the latter conditional repetition. As objecls are natively condition
testers, conditional selection and repetition can be written by defining a class for each condition.

26 CHAPTER 1. MODEL AND LANGUAGE OF A'UM

If there are a number of conditional selections and repetitions, however, many small classes will
have to he defined and the program context will be scattered into pieces. In addition, it must be
quite burdensome for the programmer to pass a variable environment to each condition tester.

Here, we introduce the notion of a velatile object which is provided as a linguistic support
so that conditional selection and repetition can be programined casily.

Volatile classes: A wvolatile closs 15 defined within a method. There is no distinction between
external classes, such as class counter, and volatile classes except for the following points:

e External classes have their own class names, so any other classes including volatile classes
can access and inherit them by specifying their names.

» Volatile classes do not have their own class names, so they cannot be referred to or
inherited from anywhere,

Any number of volatile classes can be deflined within a method and they can be nested.
Volatile classes are advantageous not only for making programming easy, but also for giving
more chances of optimization in the implementation, since they are not accessed in public.

Volatile objects: A volatile object is an instance of a volatile class.

Creator ohjects: An ohject which creates a volatile object (calls for execution of a method
defining the volatile class) is called a creator object. When definitions of velatile classes make a
nest, every volatile object will be the creator of its inner volatile objects, if any. Each volatile
object can access its creator object via a stream nained $creator.

Causality on creator: Section 1.5.2.4 ruled that the causality on the generation of an
object should be kepl In accordance with the order of occurrences of seli-related actions. When
volatile object crealion expressions are contained, the causality on the creator’s generation is
kept as follows:

s When a volatile object is created, a stream to the ohject itself 18 split into two to make
an append joint; one branch is given to the volatile object and accessed by the name,
$creator; the other branch is given to the creator object.

» When the volatile object is terminated, it closes the stream, $creator, as well as other
slots it may haold.

Thus, messages which the volatile object sends to $ereator will arrive at the ereator ahject
earlier than any of those which the creator sends to itself syntactically after the volatile object
creation expression.

There are two kinds of volatile objects: immutable volatile objects, nsed mainly for condi-
tional sclection like an IF statement, and mutable volatile objects, used mainly for conditional
repetition like a LOOP statement. Before going into detail, we explain how to define volatile
classes, as this is common to both kinds.

1.5. EXTENDED GRAMMAR 27

1.5.4.1 Creation of Volatile Objects

Volatile creation expression consists of the specification of the interface stream of a volatile
ohiect and the definition of a volatile class. This expression is a nil expression.

= VolatileQbjectCreation > =

< Immutable Volatile ObjectCreation > | < Mutable Velatile Object Creation >
< Immutable Volatile ObjectCreation > 2=

< Interface > “77 < Immutable Volatile Class De finition >
< Mutable Volatile Object Creation > =

< Interface> “=3" <« Mutable VolatileClassDe finition >

< Interface > == < InletFErpression = | < OQutlet Expression >

< fmmutable VolatileClass Definition > 1=
“(7 [« SuperclassDefinition > ;7
< Method > { %37 < Method > } *)7
< Mutable Volatile Class Definition > =
“(" [< Supercluss Definition> ;7 |
[< InletSlot Definition > “;7]
[< OutletSlot Definition = %" |
< Method > { ;< Method > })"

Basic: (Inlet as the interface) If an inlet is specificd in the < Interface > field, the volatile
object takes the inlet as s interface stream.
For example, a volatile immutable object created by

"Hunger 7 (: ‘true -> :eat ;
‘false -> :sleep)

receives a message, ‘true or ‘false, [tom inlet “Hunger, and correspondingly sends a message,
eat or sleep Lo the creator,

Extension: (“Who are you?” to Qutlet) Most macros, especially arithmetical and
logical operation wacros, represent an outlet as their result, and most conditional selections
are written for arithmetical or logical operation results. Therefore, the above rule is extended
for case of writing conditional selection as follows:

If an outlel is specified in the < fnterface > field, the message who_are_you(Whe) 1s im-
plicitly sent to the outlet and the volatile object takes inlet “Whe as its interface stream. For
example,

(X >¥) 7 { :ftroe -» X = "Max ;
cifalse -» ¥ = “Max)

is for getting the maximum of X and ¥. For the companison, X > ¥, a hoolean object, either
“true or ‘false, is produced, which is asked “Who are you?” as follows:

(¥ > Y):who_are_you(Who),
“Who 7 { :'true -> X = "Max ;
:‘false -> ¥ = "Max)

28 CHAPTER 1. MODEL AND LANGUAGE OF A'l{M

crealor object

n-th

Jdescend IV object

{n+1)-th \U-th A
‘ 9
Messages seﬂ"'{}“ T "_J tk‘ @

hefore those Messages sent

fram IV abject after those
! from IV object

Messages sent
from [V object

Fignre 1.20: Tmmutable volatile object and its creator object

1.5.4.2 Tmmutable Volatile Objects

As shown in Yigure 1.20, an immutable volatile object (1V object for short) is an object which
has a single generation and shares the same name scope of variables with its creator ohject.

Single generation: An IV object lerminaies its own life after being activated by
an event on the interface stream. The rest of the interface stream is connected
to a sink object.

Trasparent scope: For an IV object, the name scope of variables is the same as
that for its creator object. The same variable names appearing both in an IV
object and in its creator object represent an identical stream or channel.

Creator as itself: In addition, the creator object seems to be identical to the TV
object sself Pseudo variables, $self and $creator, are used for the same
meaning; those messages which an IV object sends to iteelf are sent to its
creator; slots which an IV object regards as its own are those of its creator
object.

1.5.4.3 Mutable Volatile Objects

As Figure 1.21 shows, a mutable volatile object {MV object {or short}) 1s an object which may
have multiple generations for it own and has its own scope. MV objects are alinost the same
as external objects except that their classes do not have their own class names.

Multiple generations: An MV object has its own life, which may consist of
mulitiple generations.

1.5. EXTENDED GRAMMAR

creator object

O

lldeseend

-

MY object

{n-+1)-th
-1—01-‘- - =
hessages send

before those
from MV object

0-th

o

Messages sent
after those
from MV ohject

Messages sent
from MV object

e)

$terminate

Messages sent
from MV object

last

Figure 1.21: Mutable volatile object and its creator object

29

30 CHAFPTER 1. MODEL AND LANGUAGE OF A"UM

:sum(Ns, Sum) =->
Loop:initialize("Sum) = “Ns,
"Loep =» (in sum; out temp;
:initialize(Sum) -» @sum = “Sum, 0 = !'temp ;
:n("N) -> 'temp + N = !temp ;
i: -» ltemp = @sum).

R e R pTopr
=i 0 B - LI S R

Figure 1.22: An example of an MV object

Independent scope: An MV object has its own scope, which is independent of

that of the creator object. Even if the same variable names appear inside and
outside of the MV object definition, they denote different channels.
It is easy to see why the mame scope of an MV object 15 independent by
remembering how an external object 15 defined. The same variable names
appearing in different methods have no relation, since variable names are valid
only in one generation and each method implies an independent generalion.

Creator as a slot: An MV object can hold a set of slots for its own. For an MV
object, the creator object is an outlet slot among these slots, and is associated
with the pseudo variable name, $creator. The pscudo variable, $self, denotes
the MV object itself Therefore, $creator and $self give different meanings.

For example, Figure 1.22 shows a method to sum up all numbers received from Ns, to
Result. The MV object (lines 3 to 6) has one inlet, sum, which is thought of as the Lotal
sum, and one outlet, temp, which keeps a temporary sum during computation. The MV object
first receives a message, initialize, to initialize these slots, and then receives one number
(¥ contained in a message n("X)) after another until no more message is coming, when the
temporary sum. temp, is the desired total sum, sum.

1.5, EXTENDED GRAMMAR 31

Example 2 (Prime Number Generator)

Figure 1.23 shows a program using volatile objects which generates prime numbers up to the
siven maximum number according to the following algorithm:

1. Send 2 as the first prime, then generate a sequence of odd numbers starting wi th 3. What
is obtained by passing this sequence through & pipeline of sieves is the prime numbers,

2. Fverv time a new prime number is found, one sieve for the prime number is created and
apnended Lo the pipeline. At first, a sieve for 3 is created.

3. Every sieve tries to divide cach incoming number by its own prime number.

¢ If the incoming number is a multiple of the prime number, do nothing.
e If notl, check if the sieve’s prime number is the biggest at the moment.

— If so, the incoming number is found to be a prime number. Create a sieve for
this number and take it as the next sieve.

I{ not, pass the incoming number {0 the next sieve.

Repeal until there is no more incoming number.

A MV object, temporarily named M1, is defined between line 4 and line 20 of class sift.
luside, an 1V objeet, temporarily named [1, is defined between line 9 and line 19. Further inside,
another IV object, temporarily named J2, is defined between line 12 and line 18. Variables V,
Ns, Ps appearing between line 2 and line 3 outside M1 are independent of these appearing
between line 4 and line 20 inside M1, so they arc passed to the inside via message initialize.
Slot accesses at lines 7, 9, 14, 15 and 17 are on the slots of the outermost object sharing the
scope: the MV object, M1,

32 CHAPTER 1. MODEIL AND LANGUAGE OF A"i{M

class prime. Y
primes{"Max, "Ps) -» 2
3 ="K, %3
generate(X, Max, Ns), 44
#zift:de(Y, "Nz, Ps:n(2):n(X)). %5
:generate("L, "Max, "Ns) -> L6
{ (X+2 = "NewX} < Max)} 7 (hT
‘true => L8
:generate(NewX, Max, Ns:n(NewX)) ; s
: ‘false -2 %oend 1o
3. f11
end. iz
class sift. |
cdo{”"V, N=, "Ps)} -» 12
S:imnitialize(V, Ps} = “Ns, 3

"5 = o4 (M1
out me, nexXt, To_next, primes ; %5
sinitialize("V, "Ps) -» 16
V=1Ime, 0= 'next, Fe = !primes ; T
iRy =2 18

{ (X mod 'me) == 0 3 7 (%9 {I1
"trus ->» w10
‘false -» w11

{ 'mext == 0)} T { iz: (Iz
frrue - *i3
X = 'next, Ns = !to_nmeaxt, f1d
#sift:do(X, "Ns, 'primes:n{X)); 1B
ifalse -» N6
'to_next:n{X) T

3 his: I2)

} wiz: I

7. Y20: M1)
end . 21

class test.
itest -» #prime:primes(20, Ps), :nop("Res}.
:noplRes) -»

and .

Figure 1.23: Program of a prime number generator

[.5. EXTENDED GRAMMAR 33

Figure 1.24 shows the state immediately after a sicve for prime number & has becn created.

*
I— 7
0 . ot M S1eve
primas] by 3
@_‘_Ep_ntxt
sleve

by 5

Figure 1.24: Sieves generating prime numbers

B

CHAFTER 1.

MODEL AND LANGUAGE OF A'UM

Chapter 2

Experimental A'{M System: VAS

2.1 Introduction

XAS is an experimental system developed to to execute A'IL{M programs on top of PDSS
(PIMOS Development Support System){PDSS89] which 1s a KI.1 system installed onto various
UNTX! systems.

As Figure 2.1 shows, X AS consists of the following facilities:

¢ Tiny shell: provides commands to set up a dircctory environment and to compile and
execute A'UM programs.

¢ Compiler: compiles A'UM programs through KL1-C code into KLE-B code and loads
the generated KL1-B code into memory.

s Program executer: executes an AWM program.

¢ Runtime environment: provides a runtime environment necessary to execule A'4M
programs, including A M primitive classes.

s PDSS interface: transfers PDSS commands issued from X AS Lo PDSS.

XAS is entirely written in KL1, runs on top of PDSS, and uses for its 1/O functions those
1/0 facilities provided by PDSS.

VAS has no debugging environment for its own yet. Debugging is available only at the level
of KL1 by using the KL1 debugger provided by PDSS.

IUNIX is a trademark of Bell Laboratories,

35

36

CHAPTER 2. EXPERIMENTAL A'UM SYSTEM: XYAS

A'UM source programs

- E executer runtime
tiny shell = environment
compiler
PDSS interface E
[) i XAS
kLA ted cod
generaled codae Hl_'l prﬂgrams

PDSS

Figure 2.1: X AS confliguration

2.2, INSTALLATION 37

2.2 Installation

YAS is distributed as a package of KL1 source programs stored in tree-structured directories
whose top level directory contains the following files and directories:

1. Files:
MYPDES csh command file to invoke stand alone PDSS for A4S
Install csh command file to install Y AS
Startup PDSS command file to load up AAS onto I'DSS

IPL PDSS command file to initiate XAS
2. Directories:

shell modules for the tiny shell

cmp modules for the compiler

kernel modules for the program executer

primitiva modules for the runtime environment (primitive classes cte.)
Bsample A'UM sample programs

XAS can be installed as follows:
1. Check if PIISS has been alrcady installed on your machine.

2. Restore Lthe distributed tape into your desired directory which is called XASDIR hereafier
for convenience.

3. Set the current directory Lo XAEDIR and execute Tnstall as follows:

% cd XASDIR return
% Install refurn

Now, AAS is ready to run on top of PDSS.

38 CHAPTER 2. EXPERIMENTAL A'UM SYSTEM: YAS

2.3 Imitiation

2.3.1 Initiation of PDSS
AAS Version 1.0 runs on top of PDSS Version 2.51 with 500 Kword heap area and | Mbyte

code area.

NCaution!! The entire A4S svstem cannot be loaded up if the code area is less than 1
Mbyte, Since the default size of code area is much less than 1 Mbyte, PDSS must be invoked

with these options modified.
Although PDSS can be invoked both from GNU-Emacs and directly from top-level shell,
but the tormer is preferable since all PDSS functions are available under GNU-Emacs.

2.3.1.1 Initiation of PDSS under GNU-Emacs
From GNU-Emacs, PDSS is initiated by the following command:

C-U M=-X pdss return

Since a prompt “PDSS Option?:" appears in the GNU-Emacs cchio area, set the sizes of heap
area and code area as follows:

FDSS Option?: -h2000000 -c2000000. refurn

2.2.1.2 Initiation of Stand-Alone PSS

To initiate stand-alone PDSS with the above options, a csh command file, MYPDSS, is prepared
under XASDIR . With this csh command file, stand-alone PDSS can be invoked from any level
of shell as follows:

W MYPIISS veiurn

For more detail about PDSS options, see [PDSS89).

2.3.2 Initiation of VAS

When PD5S is invoked, a couple of windows are created:
e PDSS-SHELL window: (o accept PDSS commands

*» PDSS-CONSOLE window: to display system messages and allow interactions to
trace KL1 programs.

Now you are in a PDSS-SHELL window.

I. Change the current directory to the top-level dircctory, XASDIR |, as follows:

:= cd(XASDIR). refurn

2.3.

INITIATION 39

. Load up XAS as follows:

.= take("Startup”). return

Note that Lhis procedure is required only for the first time you invoke AAS in a PDSS
SESE10M.

Fnter A" LA shell as follows:

.- take(VIPL"”). return

T'hen the following A'UM-SHELL window appears:

T ————————————— R P R R L L R

* Welcome to A'UM Werld! *
x &
® A'UM Shell: Version 1.0 (01/03/89) *
* A'UM Compiler: Version 1.0 (g1/08/89) *

s e o o ok s o 0 3K T oo ok oK ok o8 Sk oS e ke ol o ke e o o ok ok ok g ok o o ok ok sk e o o ok o ok ke ol e sl ok o e o ok ok

Yeou are now in A WA shell.

40 CHAPTER 2. EXPERIMENTAL A'UM SYSTEM: XAS

2.4 A'UM Shell

(Once vou enter A’ UM=SHELL vou don’t need to go back and forth between A’ UM-SHELL, PDSS-SHELL

and *shell* windows. All the operations necessary to execute yvour A' WM program can be is-

sued from the A’ UM-SHELL window. For example, il you compile your A'L{M pragram, it will be

compiled through KL1-C to KLI-B and loaded into the underlying PDSS system automatically.
Table 2.1 shows the commands available in A UM-SHELL for now.

Table 2.1: A"l{AM-chell commands

Directory Commands

cd{DirNameStr) change directory
cd_home go back to home directory (XASDIR)
pwd show current directory
1s listing all
1=(W1ldCardStr) listing files

" ATUM Support Commands B -
aumemp (ListOfAumFileNameStrs) compile and load A'{M programs
load class(List0fAumClassNameStrs) | load already compiled A' UM classes
trace_class(ListOfAumClassNamas) turn on trace-switches of A2/ classes
notrace.class(ListOfAumClassNames) | turn off trace-switches of A'UM classes
start | invake the program executer
KL1 Support Commands T
kllemp(ListOfKL1FileNamaStrs) compile KL1 programs o
load k11(ListOfKL1FileNames) load KTL.1 modules
trace kli(ListOfKL1Modul eNames) turn on trace-switches of KL1 modules

notrance kl1{List0fKL1McduleNames) turn off trace-switches of KL1 modueles

Others
halt

halt A"UM-SHELL and go back to PDSS-SHELL

2.5. COMPILATION AND EXECUTION OF A'tUM PROGRAMS 41
2.5 Compilation and Execution of 4'AM programs

2.5.1 Compilation

The A LM compiler compiles A' M programs through KL1-C code 10 KL1-B code, and then
loads the generated KL1-B code into memory. Here, let us compile sample programs shipped
m the Y AS package.

1. Just alter you enter the A'UM-SHELL, yvou are in the home directory, XASDIR . You can

check where you are as [ollows:
- pwd. refurn

Then the full path name of the current directory 15 displaved as fallows:
world = /legin/elive/aum

In case that vou were moving around different directories, vou can go back to the home
directory as follows:

:= cdhome. return

2. Enter directory @sample/counter.
1= cd{ "@sample/counter”). return

Then you Liave moved to:
world = flogin/olive/aum/@sample/countear
3. Compile the counter program, shown in Example 1, as follows:

:- aumemp(["counter.aum”, "test.counter™] }. refurn

Then the following sequence of messages will be displayed:

... compiling A4'UM {/legin/eolive/aum/@sample/counter/counter.aum)

<<< compiled to KL1-C (/legin/olive/aum/@sample/counter/@counter.kli) »>>
<<< compiled to KL1-B {(/login/olive/aum/@sample/counter/Q@counter.asm) >>>
£<{ done »>»>

... cempiling A'UM (/legin/olive/aum/@sample/counter/test.counter)

<<< compiled to KL1-C (/login/olive/aum/@sample/counter/@test.kl1) >>>
<<< compiled to KL1-B {(/login/folive/aum/@sample/counter/@test.asm) >>>
<44 done >>>

42 CHAPTER 2. EXPERIMENTAL A'UM SYSTEM: XY AS

The last message “<<< done >>>” means that the compilation and loading of each class
has heen successfully done.

If there is no file for the specified file name, the following error message
777 Tllegal File Name 777

will be displayed. Fix the file name and try again.

Generated Files

For a given A"lIM source file, the A'L{AM compiler produces a set of files for each of the
classes contained in the source file. Each file has a name starting with @ and followed by their
corresponding class name and some extention representing the kind of the file as follows:

@ClassName.k11l KLI-C text file
@ClassName.cls class information file
@ClassName.asm KL1-B text file
@ClassName.sav KL1-B binary file

Fur example, the above counter.aum file contains a definition of class countear, so files
named @counter.kll, @counter.cls, @class.asm and @counter are created.

2.5.2 Loading

To execute those A'1{M classes which were already compiled in the past, just loading should
be done as follows:

For example, in the above, the counter program has been compiled. For the second time or
later you test it, move to the directory, @sample, in the same way and just load it as follows:

:= load_class([counter, test]). reiurn

2.5.3 Execution

A'UM programs can be executed via the 4'M program executer by issueing an A'4M command,
start. The A"UM program executer, class top, is invoked by the start command, creates
an nstance of class test and then sends a message test to the instance. To execute any
A"UM program, class test with a method for message test must be prepared for that.

Let us execute the counter program which were compiled and loaded in the above.

1. Set trace switches of Lhe two classes.

:- trace. class([counter, test]). reiumn

2. Invoke the A'L{M program executer.
:= start. redumn

Now the method test of the class test is being traced.

2.5. COMPILATION AND EXECUTION OF A'UM PROGRAMS 43

4. There is no debugger prepared for A'LUM yet. Move to the PDSS-CONSOLLE window
and see there what will happen at the K1l level.

4

CHAPTER 2. EXPERIMENTAL A'UM SYSTEM: XAS

Appendix A

Language Specification

A.1 Syntax

The whole svitax of language A" 4M is shown below:

Table A1: Svntax

< (lassDefindtion » ==
class < ClassName =
[< SuperclassDefinition >
[< InietSlot Definition > *.7]
[« OutletSlotDefinilion > .7]
{ < Methad> ».7 }
end “.7

oo
.

H.‘!ﬂ]

< SuperclassDefinition 3 n= super < SuperClassName = { "< SuperClassName > }
< InletSlotDefinition > o= in < SlotName > { “," < SlotName = }
< QutleiSlot Definition = 2= out < SlotNarne » { *," < SleiName > }

< ClassName = = < Name >
< SuperClazsName > = < ClazssName >
< SlotNVame > 1= < Slol¥ame >

a1

< Method > = < Fvent > “|” « Actions > { “," < Actions> }

< Fuent = = o Neceive s |< IsClosed =

< Movetwe > o= " < Message Patiern > *=" < Unordered Outlet >
< falloged > o= 27

< Actinn > == < Nilllzpression =

46 APPENDIX A. LANGUAGE SPECIFICATION

< NilEzpression> = < StreamClosing > | < Velatile Object Creation >
< Stream Closing > = < OutletEzpression> “: "

< Cutlet Expression > 1=
< Outlet > |< PrimitiveObjectCreation > |
< MessageSending > |< SireamMerging > |< OutletMacroExpresion >

< Oulblet > == < UnorderedQutlet > |< Ordered(hutlet

< UnorderedQutlet > = < JomiName >

< OrderedCutlet > o= < JointName > “$" < Number >

< MessageSending > = < Outlet Expression> “:" < Messaage Patfern >
< StreamMerging > = < QutletExpression > “=” « Inlei Expression >

< InletErpression > 1=
< Inlet > |< StreamAppending > |< InletMacroEzpression >

<Inlet> = *" < JointName >
< StreamAppending > = < InletErpression > “\" < InletExpression >

< VaolatileObjectCreation > =

< Immutable Volatile ObjectCreation > |< Mutable VolutileObjectCreation >
< Tmmuiadie Velalie GbjectCreaiion » =

< Interface > “7" < Immutable Volatile Class Definition >
< Mutable VolulileObject Creation > =

< Interface > “=>" < Mutable Volatile ClussDefinilion >

< Interface > = < InletEzpression> |< QutlelExpression >

< Immutable VolatileC lazaDefinition > o=
(" [< SuperclassDefinition> “;7 |
< Method > { %;"< Method > } “)”
< Muluble VolalileClass Definition > =
“" [Superclass Definition > “; |
[< InletSlot Definition > “;™ |
[< OutletSlot Definition > “;" |
< Method > { %;"< Method > } *)"

Al SYNTAX 4T

Table A.2: Lexicon

< Lexpcon > o=

< Name > |< Number > |« CharacterString > |< Vartable > |< Delimiter >

< Name > 1= < NormalName > |< SpeciaiName > |« QuotedName >
< NormalName > ;1= < Lowercascletter > | < TrailingLetter > }

< SpecialName > = < .ﬁxrerrm.’{‘-‘mrm‘rﬂ { < SpecialCharacter > }
< QuotedName > = “*" | < NameStringCharacter = } *77

< Numher = =
< Digit > { < Digat> }

< CharacterSiring » =
“in L StringCharacter > } 27

< Variable = ==
< UppercaseLetior > { < TrilingLetter >}
< TrailingLetter > = < Lefter > |< Digit > [<_7

FTTES 2
LR L] LY T

< StringCharacter = = < NameStringCharacter = |
< NameStringCharaeter > 0= & Character> < %07

< Character > = < SpecialCharacter > |« Delimater > |< Letter > |< Digit >
< b;wnfdf'hm‘autt*r e

!u ._ | $
| ? |“lﬁ,l II.I."lll

-
| | |u._h EE |I:'.f!" ||.|.I!' I:I.{M' l-;’;"'

| ™ ||.|“ ||.. "

< Delimiter » 1=

shpp ||:|::E:“' |u|.;:‘ |v’.{""

H] w |I:i.|:“ |IH.{:|"' |I:I:}"'."

{-\'.]"" !ti??' I..:!" ||.I'.['!"‘

< Lhgit -
HGH ||.|.1'!-' ||A2!1 23'.' ;Hq__“ IHEH ;4.6“ IL‘.?'.! |25'."I |l.'.9!

< Letler » = < [ppercaseLetior » | < Loworcase Lotler >

< UppercaseLetler » o=
u.ﬁ” |u.En !u;.':!" ig.Dl:n I.;.-.E'n |;.F“ ||.I.G1" IuH“ u.I'n |1.'.Jr'
||||.Ki": |“L11 |(1HJ:‘ iﬂ.N:ﬁ |‘I.ﬂﬂ ||||.P"" I‘I:'-q'-* :-HH'“ |1‘S‘-1]“T“
| I:I:[]‘r |“v":‘ {h“'? ! ﬂx”‘ | II:TF? |||||3"'-

< Lowercase Letter > =
1“ lﬂ.b:“ | (14 :l:l | il:d!"' ll!hll'\l |il:i:|:| I“ 3]
I{Jk“ |£|.l'\l‘ [I:I.m‘.ﬂ ||fr|. " |H. T | |u] |i.|. ” ||.|: 1" I“ !!
I il:u" hl.‘.r!'l‘ [u“n | u.x:" | M.FM | uiz"

il. n |I:|.f:|'|‘ ||:I. T

48 APPENDIX A. LANGUACE SPECIFICATION

A.2 Operator Precedence

The lexical analysis on A'l{M programs is based on an operator precedence grammar. The
precedences and types of each operator are shown below:

Tahle A.3: Operator Precedence

operator | (precedence, type)
-3 {1080, xfx), (1080, x=£f)
-1 (1080, xfx), (1050, xI)
| (1010, xfx)
. (1000, xfy)
? (1000, =xfx), (500, xf)
= (700, yfx) |
\ (700, yfx)
== (800, yfx)
\= (600, yfx)
<
>

(600, yfx)
(600, yfx)
- (Too, =fx)
+ (500, fx), (500, yfx)
- (500, fx), (500, yfx)
not (500, yfx)
A (600, yfx)
RV (500, yfx)
' (400, yfx)
/ (400, yfx)
>> (400, yfx)
' (400, yfx)
mod (300, yfx)
: (200, fx)
e (210, xf)
] (100,1fx)
{100, fx)
- (100, fx)
(100, fx)
i3 (90, fx), (20, xfx)
' (10, fx)

A3, PRIMITIVE CLASSES

A.3 Primitive Classes

Table A4 shows primitive classes provided in X AS .

Table A.d: Primitive Classes

claas _Liﬂlﬂgﬁ] accepiable messages

| atom a symbol(String)

boolean | "true not (Negated)

and("Y, LogicalProduct)
or("Y, LogicalSum)

xor (Y, LogicaXsum)

mteger | 1 plus{Itself)

minus (Complement)
add(”Y, Sum)

sub(“Y, Dif)

mul{"Y, Product)
div("Y, Quotient)
mod{"Y, Residue)
sht1("Y, LeftShifted)
shtr(°Y, RightShifted)
1t({"Y, TorF)

nlt{"Y, TorF)

gt ("Y, TorF)

ngt("Y, TorF)

and{"Y, BitwizseProduct)
or{"Y, BitwiseSum)
xor{"Y, BitwiseXsum)

string Thit size(Si1zea)
alement_size(ElementSize)
make_aton(Atom)

element ("FPosition, Element)
set_element(Position, Element)
make_symbol (Atom)

Class ##stack | new(0Obj)

COTRTROT eq("Y, TorF)
na(”Y, TorF)

44

50 APPENDIX A. LANGUAGE SPECIFICATION

A.4 Built-in Classes

Table Ad shows built-in classes provided in A AS |

Table A.5: Built-in Classes

| elass [image | acceptable messages
list [alb] car{Car)
cdr{Cdr)

set_car(“Car)

set_cdr{"Cdr)

vector | {a,bl} size(Size)

element {"Position, Element)
set_element{ "Position, "Element)

window | i_am(W) | show
hide
clear
beep
prompt (01dPrompt, “NewPrompt)
flush
file i_am(“F) | open("FileName, Mode)
open{ FileName, Mode, Status)
I/0 commaon put {“Anything)
putc{"Char)
putl{~String)

putb{"String)

get(Anything)

getc(Integer)

getl(String)

getb(String)

nl

tab("N)

AS. ARITHMETICAL/LOGICAL OPERATION MACROS

A.5

Arithmetical /Logical Operation Macros

Table A6 shows arithmentical and logical operation macros provided in X AS .

Table A.6: Arithmetical and logical operation macros

macro expression | mode | resulf

]— frpansion

L]

+ X < Oul> | Itself X:plus(~Ttself) : :
- X < (Jut > | Complement | X:minus(Complement) : :
A+ Y < {ut = | Sum ¥:add(¥, "Sum)::
r-v < Chut = | Difference | X:sub(Y, "Difference)::
=y < (Jut = | Product X:mul(Y, “Product)::
/Y < (ul > | Quotient X:div(Y, "Quotient)::
X mod ¥ < {(ut > | Residue L:mod (Y, “Residue)::
X > Y < (Jut> | Shifted X:shtr(Y, "Shifted)::
X <<y < (Jut > | Shifted X:shtl(Y, "“Shifted)::
not X <= (Jut = | TorF X:not("TorF)::
/Y < (Jut > | Product X:rand(Y, “Product)::
ENY < (Oul > | Sum Lror(Y, ~“Sum)::
X xor ¥ < Out > | Xsum K:xor{‘!‘,_“!(sum) ¥
[X1¥] < (Oul > | List ##list;ﬁw["L}::,
| L:set_car(¥):set_cdr(¥Y)= "List::
car X <= (Jul = | Car Xicar(X, “Car)::
cdr X < Cut > | Cdr Xiedr{X, ~Cdr)::
{X,Y} < Out > | Vector ##vector new(V) : . ,
V:set_element (1, X)
. rset_element (2, Y)= “Vector::
X ==y < Out = | TorF X:eq(Y, “TorF)::
TA= Y < Out > | TorF X:neq(Y, "“TorF)::
ey < (Ol = | TorF Yo1tlY, “TorF)::
>y = (il = | TerF X:gt(Y, "TorF)::
class_of X < (hut> | Class X:class(Class)::
X 7 | <in> | “Who X:who_are_you(Who)::

02

APPENDIX A. LANGUAGE SPECIFICATION

Appendix B

Implementation Specification

B.1 KL1 Object Code

The A"UM compiler generates a2 KL1-C program (*.k11) from an A'UM class definition.
The generated KL1-C program is compiled Lo a K1.1-B assemble program (*.asm) by the KL1
compiler ernbedded in PTISS.

B.1.1 Code Generation

For an A"UM class definition, a KLI1-C program is generated according Lo the following rules:

Classes:

o External classes: Bach external class is represented as a KL1 module named “@"
followed by the class name. The module name is the internal class name of the
exlernal class.

For example, a module @sift is created for the class sift.

o Volatile classes: Each volatile class is represented as a part of the module of its
external class, and is given an internal class pame which consists of the module
narme of the external class and the occurrence level

For example, the mutable volatile class appearing in the class sift is given an
internal class name @sift_10m1.

Objects: Tach object is represented as a sequence of tail recursive goals which has a pred-
icate name of the internal class name and five arguments as follows:

'"@sift’(Interface, Slotlnfo, Global, CreaterAndScope, ClassInfo)

External objects and volatile objects are of the same form.

Primitive Objects: Each primitive object is implemented as an instance object of the
primitive class in the same way as the above general ohjects are,

Basic Stream Operations: Each stream is represented as a list structure and stream
operations are implemented as unification of list structures as follows:

53

54 APPENDIX B. IMPLEMENTATION SPECIFICATION

send(X, m, ¥} Body unilication X = [mlY]
close(X) Hody unification X = [J
connect (X, ~Y) Body unification X = ¥
receive("X, m, ¥) Guard unification X = [m]|Y]
is_closed("X} Guard unification X = []

Joints:

o Merge joints: Hach intermediate merge joint which is on the way to an object, such
as merge(~X, "Y, W), is implemented as construction of a vector consisting of the
two incoming streams, W = {X, Y}

At the entrance of the interface stream of each ohject, a KL built-in predicate
merge(W, Z) is= inserted. The merge(W, Z) predicate i= a process which interprets
each incoming vector and generates a stream.

e Append joints: Each append joint, such as append(X, Y, 2),invokes an A'2{M buill-
in predicate, '$blt’ :append(X, Y, Z)

Messages:

» Fach message is given a message tag which represents whether the message is an
atomic message or a compound message.
Tags i, a, b, 5, 1 and v denotes an integer message, atom message, boolean message,
string message and vector message. Tag ¢ denotes a compound message.

¢ Fach argument of a compound message is given an argument tag, either i, o or m,
to represent whether the argument is an inlet, an outlel or a primitive ohject.

Class Inheritance: The fifth argument of an object contams information of class inheri-
tance,

B.1. KLI OBJECT CODE 55

B.1.2 Examples of KL1-C Generated Code

For those sample programs given in Example 1 and Example 2 of Chapter 1, the A"LM compiler
generates the following KL1-C code.

- moedule '@counter’
t= public ‘Qeceunter'fl L' '@counter’ /5 |

"Quounter’ (A} - true |
"ROBJECT %' :new($ ('@counter’,’@counter’,[’Qcounter’],
E’@cauntar!n’].E[c{shnu({u})),c{sntf{i}}i.a(downj,a{upJ]J.[njj,k} .

"@counter’ {lafup) fH] ,B,C,8(D,E),F} - true |
G={c("$get_outlet_slot'(m(o)),{a(’@counter'n’) ,M}}|L] ,
'Rinteger’ new(i{1) {N,C,0}) ,

M=[cladd(ile)d,{N,P}}IQ] ,

L=[c($set_outlet_slot’ (m(i)),{a('@counter'n’) ,Q})IR] ,
R=[c('$set_outlet_siot'(m(i)),{a(’@counter!n’) F})|H]
'"$0BJECT’ :descend(G,B,0,%$(D,E),F)

‘Gcounter’ {[a{down) |H] ,B,C,$(D,E),F} :- true |
G=[c{'$get_outlet_slot'{(m{o}) ,{a{*Bcounterin’) M} |L]
'"Qinteger’ inew(1{1) ,{N,C,0}) ,

M=[c(sub(i(e)) {N.P}}IQ] ,

L=[ci{ $set_ocutlet_slot’ (m(i)),{al’Bcounter'n®},q}) |R]]
R=[c('$set_outlet_slot’(m(i)),{a(’@countartn’) ,P})|H] ,
"$0BJECT :descend(G,B,0,$(D ,E),F} .

"@counter’{[clset ({1}),{L})IH],B,C,$(D,E}),F) :- true |
ﬂ=[¢(’$set_nutlet_slot’fm{i}}.{a('@counter!n‘],L}}|H]
"$0BJECT’ :descend(G,B,C,$(D,E),F) .

"@counter’ {[c({show({o}},{L}}IH] ,BE,C.$(D,E),F) :- true |

G=lc("$get_outlet_slot’ (m(o)),{a(’@countertn’) L})[H] ,
'$0BJECT’ :descend(G,B,C,$(D,E},F)

Figure B.1: KLi-C code generated for class counter

56 APPENDIX B. IMPLEMENTATION SPECIFICATION

i= module ‘@test’
i public '@test’/1 .’ ‘@test’/H |

‘ftest’ (L) - true |
'SOBJECT x"tnew($(@test', '@test’, ["€test’], [,
[[elnop({e})),c(testAfo(a))), c(testMiala))) altest))], 0]}, 4) .

'@test’ ([a(test) |H],B,C,$(D,E),F} :- true |
M=[c(testM(o{ol),{N,0})]F]
P=[ci{testA(c(a)},{5,.T})IU]
U=Lc(nop({a}} . {Z})IH] ,
N=lel{who_are_you({i}) ,{BD})] ,
O={c{who_are_ you({il}},{BI})] ,
S=lc(who_are_you({i}) ,{BN})]
T=[c(who_are_you({i}),{B5}))

"$bit’: *@append’ (BN,B5,C5) ,
"$blt’: *Qappend’ (BI ,CGC,CF)

"$b1t° - *Qappend’ (BD,CF,X) ,
'S0BJECT' :descand (M,B,C,$(D,E) . F} .

"@test’ {[c(testM{clo)),{L ,N}}|H],B,C,5(D,E),F) := true |
‘fclass " inew(mia(counter’) ,{P,C,0}) ,
FP=[cinew({o}) ,{R})] ,

'@integer’ :new(i(5) ,{T,Q,U}) ,
Refe{set({i}) ,{T})IV] ,

Y=[alup}|Z] ,

Z=[alup) |BA] ,

BA=[c(show({o}) ,{L})] ,
EC=[a(down) | BD]

ED={aldown) |BE] .,

BE=[c(show({oc}) ,{N})] ,
merge_in(BC,Y,V) ,

'$0BJECT’ :descend(H,B,U,$(D,E) ,F) .

'Otest’ ([c{testdic({e)) ,{L,N})IH},BE,C,8(D,E},F) :- true |
"@class':new(m(acounter)),{P,c,Q}) ,
P=lelnew({c}} . {R})]

'"Pinteger’ :newl{i{5) ,{T,Q,U}) ,
R=lcisec{{i}) ,{T}2iV]

Y=lalup) 2] ,

Z=[alup) |BA]

BA=[c(show({o}),{L})]
BC=[al(down) |ED]

BD=[a(dewn) |BE] ,

BE=[c(show({o}) ,{N})]
"$blt’:’@append’ (Y,BC,V) ,
*$0BJECT’ :descend (H,B,U,$(D ,E) ,F) .

‘@test’ ([c(nop({o0}) ,{L})IH] ,B,C,$(D,E),F) :- true |
*$¥sink’ new({L N, [1}) ,
merge_in(N,I,C) ,
*$0BJECT’ :descend (H,B,I,$(D,E) F) .

Figure B.2: KL1-C code generated for class test for the counter

B.1. KLI OBJECT CODE

t- module '@prime’
i- public "@prime’/1 ',' '@prime’/5 ',
"@prime_2€11°/1 .’ ’@prime_2€i1'/5 .

"@prime’ (4) :- true |
*$OBJECT _x’ :new($('@prime’, ' @prime’, ['@prime’],[],
[[c(generate(i(i,i))) ,elprimes(i(i)))]11,[nl),4)
"@prime’ ([c(primes{i{i)),{L . M})IH],B,C,8(D,E},F} :- true |
'Pinteger’ :new(i(3) ,{N,C,0}) ,
S=[c(generate(i(i,i)) {T,.L v} IH] ,
‘@class’ inew(m(alsife)) , {BA,0,BB})
Ba=[c{new({o}) ,{BC}H)]
"@integer’ :new(i(2) ,{BG,BE,BH}) ,
M=[c(n{{i}),{BG})IBI] ,
BI=[c(n({i}) {BI3)IBK] .,
BC={¢{de{il(e,1)) ,{BE,V,BK})] ,
merge_in{BE,T,RU) ,
merge_in(BJ,BU,N)
"$0RJECT :descend{S,B,BH,$(D,E) ,F)
‘Bprime’ {[c{generate(i(i,i)) ,{L M N}}[H] ,B,C,${D,E) . F) :- true |
"Ainteger ' new(i{2) {P,C, 0%
L=[cl{add(i(o)) ,{P,R}}] ,
T=[e{it(ilold) LV Wi)]
W=[c(who_are_youl({i}},{Y})] ,
BC=[c{'$get_inlet_var’(m(i)) ,{fa(’'Max’),M})|BI] ,
BI=[c{'$pget_moutlet_var'(m(o)),{al Max’) V})|B]]
BI=[c('$get_inlet_var’(m(i)),{a('Ns’),N})|BN] ,
BN=[c("$pet_inlet_var'(m(i)) . {al’NewX’),TH] ,
"$3=cope’ :new({"@prime_2",['Max’,'Ns’, 'NewX’]1,[[J.01,001}.{K.BD}}
merge_in{BD,I,BE) ,
merge_in(T,U,R) ,
"@prime_20i1° ({V,$(Q,BR),$(C K} ,$(K,BC)}) ,
$0BJECT :descend (G,B,I,§(D,E),F) .

'eprime_20@i1°(A) - true |
"$OBJECT_i’:new(§(’Oprime’,’'@prime_29i1’,['@prime_20i1'],[],
[[bifalse) . bltrue)l],[ni), &} .

"Oprime_Z0il' ([bltrue) [G] ,B,C,$(D,E) F) = true |
Lefeln({i}) . {N})IF]
D=lclgenerata(i(i,i}),{U, v, P} Y] ,
E=[c('$get_moutlet_var’(m(c)),{a('Max’},V}}|BF] ,
EF=[c{'$get_moutlet_var’{(m{o)),{a{’Ns’),L}) IBI]
Bl=[c{ $get_moutlet_var’(m(a)),{a('NewX') ,BO})]
merge_in(U,N,BO) ,

*$0BJECT? :terminata(G,B,C,5(Y,.[1},F)

'Oprime_2@i1'{[b{false) |G],B,C,$(0,E),F) :- true |
E=[]

"$0BJECT' :terminate(d B, 0 R, O, F

Figure B.3: KL1-C code generated for class prime

¥

58 APPENDIX B. IMPLEMENTATION SPECIFICATION

c= module ‘@sift’ .

:= public ’@sift*/1 *,7 ‘@sift’f5 .’
‘Peift_1@m1° /1 *,* *@zift_1@mi*/5 *,!
"Qeift_l@ml_20i1°'/1 ', *@sift_1émi_2Qi1'/5 7 ¢
"Asift_1€mi1_29i1_2@i1°/1 ', ‘d@sift_1@ml_20ii_20i1'/5 .

‘Beift’ (A} :- true |
PSOBJECT x':new(${'@siftv’, "@=sifv’, [*@=zift’],],
[[c{do(i(o,1))21],[n1),A) .

‘@sift’ ([c(do{i(e,1)) ,{L,M,01} [H],B,C,$(D,E},F) :- true |
P=[e(initialize(i(i)) ,{L,0}) 1] ,
"@sift_1@ml’ ({P,$(C,W),$(G,M}) ,
"$0BJECT’ :descend(G,B,W,$(D,E},F) .

"@esift_1®m1°{A) - true |
'$OBJECT m':new($("Q=ift’, 'Osift_10m1’, ["@sift_10m1'],
L’msift_iﬁml!me’,‘MSiIt_lﬁmI!naxt’.'ﬂsift_i@mi!to_naxt’,
‘feifr_loml!primes’], [[c{n({i})),c(initialize(i(i)))]1], [n]},4)

"@sift_t@mi’([clinitialize(i(i)),{L,M})1J],B,C,$(D,E),F) :- true |
G=[c('$set_outlet_slot’(m(i)),{a(’@sift_1@mi'me’),L}) 0]
'"finteger’ new(i(0) ,{R,.C.5}} ,
O=[c(’$set_outlat_slot’'(m(i)),{a(’@sift_18mi'next’),R})IT] ,
T=lcl'$set_outlet_slot’(m(i)),{a('@=ift_1@mi'primes’) M}}|JI] ,
"$0BJECT? :descend(G,B,5,8(D,E),.F)

"esifr_1@m1’ ([c(n({i}},{L})1J],B,C,$(D,E},F)} :- true |
G=[c(’'$get_outlet_slot’ (m(o)) ,{a(’@sift_i0ml'me’),0})|N] ,
M={cimod{i(e)} ,{0,F}] ,

*@integer’ :new(i{0) . {R,C,5})

P=[c(eq(i(o)) ,{R,T})]

T={e(vho_are_you({i}) ,{Vv})] ,
Z=[c(*$get_inlet_var'(m(i)) ,{aC’X*),L}) IBF] ,
BF=[c('$get_moutlet_var’(m{o)},{a(’ %) ,MP)] ,
"$¥scope’ inew({"@sift_1@mi_2",['%°1,[[J1}.{K,BA}) ,
merge_in{B4 H.Y) ,

*@sift_1€ml_20i1' ({V.$(5,Y),$(N,1),.$(K.2)}) .
"$0BJECT ' :descend(G,B,H,$(D,E},F) .

Figure 1.4: KL1-C code generated for class sift (to be continued)

Bl KL1 OBJECT CODE

"Reift_1@ml_2011°(4) :- true |
tnaJEcT_i’:naw{${=asitt’,'usift_1@m1_2mi1,[*@sift_immi_zaii*],[],
[[e(false),b(true)ll.[n]),a) .

Rsift_teml_ 2831 ([b{true}|G],B.C.$(D,E},F)} :- true
E=[] ,
'$0BJECT' : terminate(G,B,C,$(D,[1),F)

‘@sift_lomi_20i1'([b(false)IG]1,B,C,$(D,E),F} :- true |
D=[c{'$get_outlet_slot’ (m(c)),{fa(*@sift_18mlinext’) ,M})|L] »
'Cinteger’ inew(i{0},{N,C,0}) ,

M=lcleq(ifo)) ,{N,P})IQ] ,
L=[C{‘St_uutlet_slﬂt'{mEiJJ,{a(’ﬁsift_lﬂml!nazt*J,Q})|R] .
P={ciwho_are_you({i}) ,{U}}]

‘sift_10mi_29i1_20i1° ({U,$(0,X),.$(R.W),8(E, [P

"$0BJECT! sterminate(G B, X, $(W, [13,F) .

"05ift_19m1_2Qil_20i1°(A) :- true |
‘$DBJECT_1’:newf&[’ﬂsift’.’ﬂuift,lﬂml_?@il_?@il’.
[’ﬁsif:_i&mi_iﬂii_:ﬂil'},[],LLb{falﬁsJ,b{true}]J,[n]}.A} .

‘@it 10m1_20i1_2€i1° ([b(true)|G],B,C,$(D,E).F) :- true |
D=[c{’$set_nutlet_slot’(m{ijj1{af’msift_lﬂm1!nExt‘J.U}J|H] '
=[c(’$set_outlet_slot’ (m(i)),{a(’Beift_10ml!to_next’) ,T})|S) .
"@class’ new{m{alsift)) ,{v,C,W}) ,

V=lclnewi({a}},{X})] ,
S=[c{’$gat_nutlat_ﬂlnt‘Em{o}J,{a('ﬂsift_iﬂmirprimas’},EB}}JBﬁ] ,
BB=[c(n({i}),{BC}) |BD] ,

BA=[c(’$set_outlet_slot’ (m(i)),{a(’@sift_10ml1'primes’),BE}) |BE]
X=[c{de(i(o,i}),{2,T,BG})] ,
E=[c("$get_moutlet_var’(m(e)),{a('X’),BQ})]

merge_in(Z,0,B0)

merge_in(BC,BO,BOY

merge_in{BEF,BG,BD)

"$0BJECT' :terminate(G,B,W,$(BE,[]),F)

'sift_1€m1_20i1_2@i1’ ([b(false)|G],B,C,$(D,E),F) :- true |
D=lc('$get_outlet_slot' (m(o)),{a(’@sift_1€mi'to_naext’) JMEVILD
M=(e{n({i}) {0} 1F] ,
L-[c(=$set_autlat,slot=tm(iJ),{atfmsift_iﬂmirto_nexn*}.P}Jlu] '
E=[c("$get_moutlet_var’ (m(o)),{al*'X') N3] ,

'$0BJECT' : terminata(G,R,C,$(Q,[1).F) .

Figure B.5: KLI-C code generated for class sift

0 APPENDIX B. IMPLEMENTATION SPECIFICATION

- module ‘@Qtemt’ |
:= public "@test’S1 ', 'Qtest?f5 7
'@test_1€mi1*/f1 ' ,° ‘'Btest_18ml'/5 .

*@test? (4) :- true |
$0BIECT_x ' :mew(${@test’, 'Qtest’, ["Qtest?’] ,[],
[[cinop({a})),altest)]],n]).4) .

"@test’ ([altest) |H],B,C,8(D,E),F) - true |
‘Bclass’ inew(m{alprime)), {L,C,M}) ,
L=[c(new({o}) ,{N}}] ,

*Qinteger’ :new(i(20) ,{F,M.Q}) ,
N=[{c(primes{(i{i)) ,{F,R}}] ,
V=[c(nop({o}) ,{WF}IX] ,
BA=[c({initializel{i}) {W}IIR] ,
"@test_10mi1’({BA,$(0Q,BC) $(X,H)}) ,
"$0BJECT :descend{V,B,BG,$(D,E) ,F} .

*@test’ { [c{nop({o}) ,{L}}[H] ,B,C,$(D,E} ,F) :- true
"$$aink’ inew({L,N,[1}) ,
merge_in(N,I,C) .
'$0BJECT’ :descend (H,E,I,%(D,E}),F) .

"Otest_10mi1*(4) :- trus |
"$O0BJECT m’ inew($({'@test’, "Stest_18m1',[*@test_18mi1*],
['gtest_l0ml'result’], [[e(n({i}}),clinitialize ({13311, [n1},A) .

‘@rest_1@ml’ ([c(initialize({i}) ,{L}}|J],B.C . $(D.E},F) :- true |
G=[c{'$set_outlet_slot' {m(i}},{a("@test_18ml'result*) L})1I] .,
'$0BJECT' :descend(G,B,C,$(0,E},F) .

"@test_1@ml' ([eln({i}) ,{L}}IJ].B.C,8(D,E},F} :- true |
G=[c('$get_outlet_slot’ (m(e}},{a('@test_1@mi'result’) N})|M] ,
L=[ciwho_ara_youl{{i}) ,{P}}]1 ,

M=[c('$set_outlet_slot’ (m(i)},{a('Qtest_10mi'result?), TH)IF] ,
*$blt’: *Rappend’ (P,T.N) ,
*$DBJECT’ :descend (G,B,C,${D,E) ,F) .

Figurr-* B.6: Kl1-C code generated for class test for the prime number generator

Appendix C

Sample Programs

AXAS s distributed with several sample programs to introduce the taste of A’ LM . The sample

programs are stored in subdirectories under the diretory, @sample

| subdireetory | source progra m files

| .asm files to he loaded |

counter tast.countar Btest.asm
counter.aum Qcounter . asm

stack test.stack Otest.asm
stack.aum @stack.asm
elament.aum @element . asm

! bottom. aum Rbottom.asm

reverse test . reverse @test.asm
reversae. aum @reverse.asm

prime Lest .prime Qtest.asm
pPrime.aum @prime.asm
sift . aum R=ift.asm

dp test.dp Otest.asm
@dpmain. aum @dpmain.asm
@dpmatch.aum @dpmatch.asm
Obrownia. aum fbrownie.asm
Ocm.kll (KL1-C program) Qcm.asm

C.1 Counter

The counter program 1s the one which was given as Example 1 and shown in Figure 1.18.

1. Change the directory to counter

= cd counter. return

2. Load classes and execute.

:~ load_class([test, counter]). return
:= start. refurn

fil

62 APPENDIX C. SAMPLE PROGRAMS

Then four counter values, Um, Dm, Ua and Da, will be displaved.

C.2 Stack

The stack program is to simulate a stack ohject which receives messages: push("Data),
pop{Data), read(Data).

l. Change the directory Lo counter

:~= cd counter. refurn

2. Load classes and execute.

:= load_class([test, counter]). refurn
:— start. refurn

3. For the prompt, “Command ?= ", input either “push.refurn”. “pop_return”, “read. return”,
or “end.refurn’.

n

e For command push, another prompt “Data ?= " appears, Input any tvpe of data.

Then the top element of the stack i1z displaved.

For commands pop and read, the obtained data and the new top of the stack will
be displaved.

e The command end terminates the execution,

C.3 Tree Reverse

The tree-reverse program is o reverse a given binary-tree vector.

1. Change the current directory to reverse.

= cd reverse. refurn

o

Load classes and execute,

:- load_class([test, reverse]). return
:= start. refurn

3. A window will appear. I'or the prompt. “Original Tree ?= 7 input a binary-tree vec
tor. Preceeded by a sequence of acknowledgements from the leaf elements contained in
the vector, informing that they have just been reached, a generated reverse vector is

displayed.

4. PRIME NUMBER GENERATOR 63

C.4 Prime Number Generator

The prime number generator program is the one which was given as Example 2 in Figure 1.23.

1. Change the current dircctory to reverse,

:= eod dp. refurn

2. Load classes and execule.

;- load_class([test, primme, sift]). relurm
= start. refurn

J. A window will appear. For the prompt, “Max ?= " input a positive integer. Then a
sequence of prime numbers less than the given maximum number will be displayed.

C.5 DP Matching

The DP-matching program is to analyze the homology of two given protein sequences. Each
protein sequence is represented as a vector of characters each of which means one of the following
twenty kinds of amine acid:

g glycine d aspartic acid | k lvsine

a alanine I asparagine I arginine
s serine e glutamic acid | 1 histidine
t threonine |q glulamine

P proline

h

1 leucine phenyialanine | ¢ cysteine
1 soleucine ¥y tyrosine
m methionine | w tryptophan
v

valine

Homology analysis is done assuming ihe mutation of amino acid. One kind of amino acid
iy mutate to another kind. Mutability between twenty kinds of amino acid is given as a cost
matrix. I the mutability between two kinds of amino acid is over some standard value, they
are thought to be matched. Also insertion and deletion are assumed.

1. Change the current directory to dp.

1= cd dp. return

2. Load classes and execyte,

:= load_class([test, dpmain, dpmatch, brownie, em]). refurn
:= start. return

64 APPENDIX C. SAMPLE PROGRAMS

3. For the prompt, “Sequence A 7= ", input a sequence such as {v,e,d,q,k,1,t,s,k,c}.
Similarly, for the prompt, “Sequence B 7= ", input another sequence such as
{v,e,n,k,1,t,r,p,k,ct. Ina minute or so, a homology matrix will appear, which shows
how much the given two scquences are homologous.

Bibliography

Voshidas®] K. Yoshida and T. Chikayama: A'UM — A Stream-Based Concurrent Object-
Oriented Languoge —, Proc. of the International Conference of Fifth Generation Computer
Swystems 58, [COT. November 1988,

[PDSS89] PDSS Manual (Version 2.51), ICOT, August 1989.

65

