ICOT Technical Memorandum: TM-0811

TM-0811

Optimization of GHC Programs

by
K. Ueda & M. Morita

October, 1989

@©1989, 1COT

Mita Kokusai Bldg. 21F (030 456 3191- 5

H :O | 1-28 Mita 1-Chome Telex LCOT 132064
Minato-ku Tolkwvo 108 Japan

Institute for New Generation Computer Technology

Optimization of GHC Programs
{Extended Abstract)

Kazunori ITeda! and Masao Morita!

! Institute for New Generation Computer Technology
¥ Mitsubishi Research Institute

Septeraber 20, 1980

Abstract. Concurrent processes can be used both for programming computation and for
prosraniuing storage, Provioos ioplementaticns of (Flal) GHC, hewever, have been tuned
for computation-intensive programs, and perferm pootly for storage-intensive programs and
cdemand-driven programs. This paper proposes an optimization technique for programs in
which processes are almost always suspended. The technique @5 based on a mode sysien:
whiczh is powerful encupgh to aralyze bidirectional commmunication and streams of streams.
The proposed techinique is expected to expand the application areas of coneurrent logic
langnages,

1. Motivations

Guarded ITorn Clauses (CHC) [Ueda 1986] is a simple concurrent logic language born from the
research on parallelism in logie progeamming. Its subset, Flat GHC [Ueda and Furukawa 1988),
can be viewed naturally as a process description language in which the static property of a process,
namely the relationship between input and output information, s expressed in terms of its logical
reading and in which the dynamic property, namely the causality between pul and oulput inlorma-
ticm, is specified using the guard construci. Headers whe are unfamiliar with GIIC and copcurrent
logie programnung are referred Lo [Shapire 1987) and [eda 1980].

A prominent feature of Flat GIIC and other concurrent logic languages viewed as process de-
seiptic]htlglla[._:,’e.-.- is tlat they use wnilfication [Ur ibg restricled form, Jnalchfa;} for imnbkerprocess
communication. Exlernally, a process is viewed as an entity that chserves and generates substi-
tubions. loterpally, the behavior of a process is defined in terms of other processes using guarded
clanses A guanded cloose naking up a program can be regarded as a conditional rewrite rule of a
process, whose guard specifies what substitution should be observed belore perlorming Lhe rewriting.
A substitution is generated hy spawning a unification process whose behavior 1 language-defined.

Concurrent loge languages employ the notion of streams, implemented as lists, lor interprocess
fﬁ]nlnllﬂicﬂ t-l.*.'ll'l. L‘l‘l]]kl‘.‘ Il L'I'JIJL'LIIIL'II'.. lﬂjlgquUSI n 5E,‘l,lui:|].E!: U.I.‘ Il].{."ﬁﬁd.g{,"& {:Ulj][[luiljt’ﬁtt‘d iH .IIIJS-L
a data strecture mampulated by unification, and this contributes much to the simplicity and the
flexibility of the languages. Unidircctional (data-driven) communication, bidireetional {demand
driven) communication, and even a stream of streams can be programmed quite easily.

1t has been claimed, however, that unification is too inefficient for interprocess communication,
Upon unification, a straightforward implementation should determine the direction of dataflow and
also check against the possibility of failure. These operations are considered as overheads in that
they are not needed in other concurrent languages. The overheads should be more serious in parallei
implementations, Another argument against unification for interprocess conununication is that its
straightforward implementation performs dynanue memory allocation (cons), which necessitates
some sort of garbage collection. These considerations motivated us to cxplore the possibility of
static analysis of complex datallow.

Anollier motivation comes from ounr]ll.'l]_‘.lﬂ to P..x‘pﬂ.n-li t.hlﬁ El.ppllll:art.iﬂn areas of concurrent |ﬂgil:
languages. So far, concurrent logic languages have mainly been wsed for wriling computation-
intensive programs in which processes do not suspend frequently. However, those languages could

-1 -

nt_noda{[], . _. L.RY 1= true | L=[1, ®R=[].
nt_mode([search(¥, Vylcs],¥, V1,L,R)} := true | V=Vi, nt_node{Cs K, V1,L,R).
nt_nade{ [searchi¥,V)|Cel K1 ,V1,L,R) = H<Ki |

L=[search{¥,¥}IL1], nt_node(Cs Ki,V1,Li,R).
nt_nade{ [search(¥,v)|cs] ,KL,v1,L,R) - E>KL |

R=[zearch(K,V}iRL], nt_node(Cs ¥1,Vi L R1).
nt_node({[update(¥,V}|Cs] K, _, L,R} :- true | nt_nede(Cs,K,V,L,R}.
nt_node([update(¥,V}|Csl Kt V1, L k) - K<K1 |

L=[update{¥,V)L1], nt_node(Cs,K1,V1,Li,R).
ntonode([update{K,V)|Cs] K1, ,V1,L) = KoE1 |

R=[update{k,V)IR1], nt_node(Cs Kl LV1,L,RL).

t_nodef [] J :i= trues | true.
t_node{ [search(_,V}|Cs]) :- true | V=undefined, t_node(Cs).
t_node{[update(X,V)|Cs]) :- true | nt_node(Cs,K,V,L,R), t_nede{L}, t_node(R).

Program 1. A program defining hinary trees of processes

be used also for programming storage such as dynamic data structures using processes as building
blocks. For instance, given Progeam 1, a process t_node{S} acis as a binary iree database that
accepis search and update commands,

I'roceszes in storage-intensive programs are almost always dormant and should respond quickly
Lo incoming wesspges which wmy not arrive successively. However, currently available imple-
mentations such as [Wimura and Chikayama 1987} and [Morita et al. 1087}, which are tuned for
compulation-intensive programs, perform poorly for storage-intensive programs because of their
Lisawy process switching overhead, New hmplenwntation tecliniques that optimize the latency rather
thaw the throughpot of nlerprocess communication are badly needed for executing those programs
efliziently, '

2. Mode System and Mode Analysis

The firzt step towards the optimization of interprocess communication is to analyze what forms
of conmmunication will take place when a program is execoted. This section presents a mode system
that generalizes our previous system [Morita and Ueda 1989] (Lhat classifies Lhe arguments of a
predicate simply into input and eutpul) to handle complex dataflow.

The basic idea is as follows. We assume that interprocess communication in Flat GHC is
cooperative rather than competitive; that is, we assume that when several occurrences of the same
variable {each coonrring in some goal) have heen generated in the course of execution, exactly one of
ther is an output cceurrence which can determine its top-level function symbol and all the others
Hre dnpud oUciurrences, We also assiine that the mode of an occurrence p of a variable in a g-:ral a can
depend on and only on the predicate symbol of a and the principal function symbols of all terins in
whicl p cecurs. For exaunple, consider eommands ‘search(Key,Value)' and ‘update{Key, Value)’
uzed in Program 1. The mode of the second argument of a command can depend (and actually
depends) on the copppund pame, but cannot on the value of the first argument Key. Most GHO
programs written so [ar are written, or can be easily rewritten, on these assumptions.

2.1 Mode Systcin

Let Pred be a set of predicate symbols, Fun a set of function symbols (we do not distingnish
between constant aud function symibols), Atem a set of atoms, and Term a set of terms. For each
p€ Pred with the arity ny, let N, be the set {1,...,n,}. Ny is defined similarly for each f € Fun.
Furthermore, we deline the set of paths #; (for terms) and F, (for atoms) as follows:

Pe=(5 Ny, Pa=(Y N)x A

JE Fun pEPred

—a_

An element of 1% cap be denoted (f1, 1) . (fu. Jo) 2nd an element of P, can be denoted (p,i)p,
where p'€ Py They are totended to specily a subterm of a term or an atom, respectively, That is,
with cacl termy § we associate a function 7: M — Term {or obtaining itz subterms, whizh is defined
as Tollows: B
el =1
l TF) = {?{;ﬂ']. if t iz of the form fity,... 1.

i, otherwise.
A function for obtaining a subterm of an atom 15 defined similarly.

Finally, we define the set of modes A as
M= P, — {in,out},

where we assumne in # out for the codomamm. Let m £ M be a mode, o € diom a goal at some
stage of computation, and pe % a path such that @p) is a vaniable. Informally, m(p) = out means
that the principal function symbel of @(p) is determined oniy by the goal a through this occurrence,
and vrr[p] = i means Lhat the p:iuci;}al Tunetion !i:f'IJI.I.HJ] of E{p} is nob determined t-]H‘L‘rngil this

CCCUTTENCe.
Ohar mode systerm iz based on the assumption that pregrammers obey the following conventions:

[|fl A TPTOETArm can b ,t';i‘-'m'l a mnde e This means that the muoale of an urgunsenl of 1 I,Il'l..!l.li.l..'il.l.l..'
15 unigquely given, but the mode of an argument of a funciion can depend on the context in
wlhich e srgunient aeeurs, The exeeption is the predefined predicate =" for unification, whose
different cccurrences [calls] in a program can have different, modes.

(2} Lot ow bew gool at some stape of compuotation, and pe P, a path such that &{p) is a variable and
mip) = n. Then the variable & p) will ot be rewritien to another term Chrough Uhis occurrence,

i3]} Let a be a goal at some stage of computation, and pe Py a path snch that @(p) is a variable and
m{p] = cut. Then the goal a will not suspend on @) because of this occurrence,

(4] A umification body goal is eflectively an assignment to an uninstantiated variable.

(5) Of all occurrences of a varable generated in the course of execution, only one of them tries to
determine its top-level function aymbal,

2.2 Mode Analysis

The purpese of mode analysis is to find a feasible mode of a program. A feasible mode of a
program is a mode that satisfies all the mode constraints imposed by the program. A program for
which the mode analvsis suceeeds is gnaranteed to enjoy the properties listed in Section 2.1.

To sinplify the apalysis, we first normalize the program using the method described in [Ucda
and Furukawa 1958], The obtained program has the following properties:
(1} Mo unification goals exist in guards,
(2} The set of unification goals in the body of a clause is of the form vy =4y, ..., v =t,, where
s v;'s are distinet variables eccurring in the head of the clause,
® Uy,....Uy do not occur inty,..., ¢, or other goals in the body, and

o if some {; 18 a variable, it oceurs in the head.

For instance, Program 1 is in a normal form Furthermore, to cope with the overloading of the
pradicate ‘=" in a monomerphic system, we asaume that all its occurrences in a program are virtually

indexed as ‘="', ‘=", ...,

- 3-

The consteaints on the mode m of & program are as follows:
(1) If a predicate ¢ examines a path p, m(p) = in. Here, a predicate g is said Lo eraming p il
(1a) thers 15 a clause head ' such that FI:.I_.}_'J:I 15 & noo-variable,
{1h) there is & clause head h and a prefix p' of p such that fi{p") is a variable vecurring more
than ouce in &, or
{1c) there is a clause head & and a prefix p' of p such that R(p') is a variable ocourring in a
guard goal (Conditizn (1c) can be weakened depending on the guard goal)

(2% The two arguments of a unification body goal #;=42 has inverse modes, that is,

Ype Fimi{=:, 1}p) £ mil=e. 2)p)).

40 I a subterm &(p) of a body goal a 15 a non-variable, mp) = in.

[4) Let v be a variable occurring = times in some clause, where we do not count the second and
the subsequent ocourrences in the head and all the occurrences in guard goals. Let the (< n}th
seeurrence e at the path py of an atom a; (head or bady goal) with the predicate symbel 4,.
For el i< o), we deling my € A as follows:

Ve Py (map) = m(p)), ey is a body goal;
Vpe F{miip) £ m(p)), 1l a; is the clause head;

Then. we impose the constraint
Yp€ B3 < nimy(pp) = out A V) < nj # 1 — my{p;p) = in)}.

Intuitively, this says that each function symbel in a possible Instance of v will be determined
by exactly one of the ccourrences of v. Note Lhal @ can depend on poin Lhe aliove constraint.
Thie reasan why we introduce m, s 18 that it enables us to treat all the oceurrences of & variable
in a wwiform way, an input oceurrence of o variable i a elavse head considersd a source of
information from inside the elavse.

For example, consider Prograum 20 Let G{p) denote mi{teat, @}p) and s(p) denote mf{stack,
iy, for e = 1,20 Let .7 denete the function symbol of & non-empty list. Constraints we can obtain
frowm Lhe predicate test include

1‘|_|:+'.:I =in ?'::;'r": = ol .'d'll i l}j = wul,

Ea(2] = oul, L0020, 10 = out,

Ve P00, 2) (. 24p) = tu(p)),

taf (., IM{push, 1}) = out, ta({., 2}{.,)ipop, 1)) = in,

and those we ean obiain (rom stack include

wi(¥) = i, sy (1) = in, YpEP (s, 2)p) = 51 (1),
g2(€) = in, Vpe Mls2({. 2)p) = s2(p)),

¥pe Pysa((., L) = s1((., 1}{push, 1)p}),

Wpe Pis2({, 1)p) # sa((., 1){pop, L}p)).

There sre wany feasible modes for Program 2 which differ at paths of no interest; the above con-
straints are what all feasible modes satisfy.

Note that the concrete values of s{(., 1}{push, 1)), s/ ((., 1}{pep.1}), and sz({.,1}) cannot be
determined solely by stack; they are determined only by supplying a context in which the predicate

-4 -

=[]

test{N,5) :- M=:- .
push(M),pop(N)|S1], W1:=N-1, test{N1,51).

0] s:
test(H,5) :- M=\=0 | 5=

Los]
!
—

stack([], _ 1 oi= true | true.
stack{ [push(¥)15],D) o:i= true | stack(s,[XID]3.
stack{[pop(X)15], [¥IDt]) := true | X=Y, stack(s,Di).

Progeam 2, A stack program and its driver

stazk is used., For example, if Uhie goal test{10,5) is used for driving the goal stack{s,[1), a1(1.,
Lpush, 1)} and s2(({., 1)) are constrained ta ‘i’ and s((., 1) {push, 1}} is constrained to ‘out’.

3. P'rocess- ve, Message-Oriented Scheduling

The mode analysis technique in Section 2 has two major applications: Oune is the optimization
of conventional lmplementations based on what we call precesseoriented scheduling, and the other is
i new implementation scheme based on message-oriented scheduling [Morita and Ueda [0ES]. This
paper deals with the latter. Although we focus on multiprocessing within one processar, we beljsyve
that our teclnique can be utilized also in parallel implementations.

In conventional, process-oriented scheduling, a scheduler tries to reduce the number of Process
switching. Once a process starls or resimes execution, it rins as long as possible {unless it is swapped
ont}) Lefore another process in a process quene gains control. A stream counecting processes act as
a buifer whose conlents are processed at once whenever possible. Process-ariented scheduling can
be rephrased as throughpui-orienicd scheduling.

Message-oriented scheduling is at the other extreme. Whenever a process sends a [essage
tov anwther, 1t does not buffer the message but transfers control to the roceiver process so that the
receiver may cousume the message immediatcly. (For simplicity, suppose for o while that interprocess
commuiication is one-to-one, which is the case with Program 1.) The receiver process should be
ready Lo receive and landle the message immediately. To this end, message-oriented scheduling
always makes the consminer of & stream run aliead of i producer and makes the former suspend,
while process-oriented scheduling would run the producer ahead of the consumer. “I'he made analysis
enaliles the identilication of the producer and the consumer of a stream. M essage-oricnted scheduling
can be replirased as response-eriented schednling, because quicker responses can Le expecied in
bidireetional conumunication,

For example, consider a process that simply copies the contents of the input stream to the
sutput stream:

pllalx1l,¥) - true | ¥=[AlY1), p(xi,v1).

Of Lhe two body goals, process-oriented scheduling fiest buffers the datum & by executing Y=[A|¥1]
and then executes p(X1,Y1) efficiently with the aid of last-call aptimization. In contrast, message-
oriented schednling first exceutes p(X1,¥1), thus restoring the dormant state of the process, and then
cxecutes Y=[AIY1) as message passing. ‘Uhe possible source of efficiency is the efficient transfer of
control and data which does not use a process queue or a data buffer. To achieve this, we implement
a stream not as a list but as a special cell (called a communication cell) pointing to the code and
the cnvironment (ie., the process record) of the consumer process. A message to be transforred is
placed on A bardware register called a communication register,

A process-oriented implementation often caches (part of) a process record on hardware registers,
bt this should not be done in a message-oriented implementation in which process switching takes

place frequently.

Two questions arise here. One is how a compiler can distinguish between variables representing
streams and those represcating ordinary data; and the other is how to cope with communication

-5 =

that is not one-to-cne. Due to space limitations, regarding the first question we only note that a
type systemn similar to the mode system in Section 2 can be employed to determine whether each
path of interest iz used as a stream or noi

How to cope with varicus forms of communication is more intriguing. First, a stream may have
two or mare consumers of no consumer at all. Sccond, a process may consume two or more streams
11 VATIOWUS WAYE

The euslest way to implement stream communication with two or more consumers or with ne
consumer s o transferm it into one-to-one communication. For example, when a process commits
to the Tollowing clause,

sonsumer{ [kill %]} :- true | Llrue.

a durmnmy stream is created which eats up the rest of the messages in X. When there are two or more
consumers initially or when a single consumer splits into two or more, a process for distributing
messages is created. There should be more efficient ways of handling these cases; Lowever, our
primary concern here is to implement one-to-one communication as efficiently as possible. 1f message-
oriented scheduling turns cut to be inefficient for one-to-many communication, we could just use an
ordinary implementation of lists for that,

Implementation of many to one communication seems more important, since it 15 ubiguitous

in concurrent pregramming in (IO, We should consider two cases: non-selective message receiving
-i.”l.r.l. Hr'fr-i.‘h:t'l‘t 1”?-“.\!'1.'}?' T'fl':r-l'i"‘;.ln'-.li".

By noun-seleciive message receiving we mean message receiving fonnd in & nondeterministic
IMETEE PrOgTLn

merge({[A|X1]1,Y,2) :- trues | Z=[A|Z1], merge(X1,Y,Z1).
merge(X, [A|¥1] ,2) = true | Z=[A]21], mergelX ¥1,21].

Non-zelective message receiving can be implemented exactly in the same way as one-lo-one commu-
nication. The communication cells of different input streams point to different codes for processing
wcoming messages, and messages in one input stream are processed independently of the other input
stream.

Dy selective message receiving we mean message retui\-‘il:g found i order»pmscrving merge of
two streams of inlegers:

merge([4|X1],[B|Tt],2) :- A< B | Z=TAlZ1], merge(X1i,[Bl¥1],21).
mergel([4|X1],[(B|¥2],2) :- A»=B | Z=[BlZ1], merge(LAlX1],¥1,21).

Two numbers, one from esach input stream, are necessary [or the first commitment. Suppose the
first nuember arvives at the first stream. Then the process records it and waits for another number
to arrive at the second stream. However, the second number may arrive at the first stream again.
Iy thal event, the process should buffer that number for later use,

Another example that requires buffering is the append program:

apnend([], ¥,2) :- trua | 2=Y.
append({ [A|X1],Y,2) :- true | Z=[A|Z1], append(X1,Y,Z1}.

Messages arriving at the second imput stream must be buffered until the first input stream 1s closed.
In either example, it is the responsibility of a process, rather than of a siream, to buffer messages
that cannot be processed immediately.

In general, there are two cases where a process must buffer incoming messages. Ohiie case arises
with selective message receiving as discussed above. ‘L'he other case arises even without many-to-one
communication. Consider the following elause:

-f -

pilalX1],¥,Z} := true | Y=[b|Y1]l, Z=[e|21], p{X1,T1,21).

This clavse savs that & process p{A,B,€) may send two messages (say b and) in response to an
incoming message (say aq). Sending by may cause another message (say a2) Lo arrive at this process
before) 15 sent. In this case, the message az should be buffered and processed afier o) is senl,
because otherwise the order of messages on the streamn € would be reversed.,

Fortunately, when only one message is sent in response to an incoming message, there is no need
of buffering after commitment. To generalize, suppose a process should send n messages i response
to an incoming message and hasn't received another message in response to the first n— 1 messages,
Then. the last message can he sent without preparing for buffering, and moreaver, the control need
net be returned to the process after the message has been bandled by the receiver. This could
be colled lostesend optimization, which is analogous to the last-call aptimization of Prolog [Warren
10801

4. Preliminary Evaluation

We ate designing an abslract machine instruction set for message-orientod scheduling [Morita
aud Ueda 1080]. Initial performance evaluation using hand-compiled intermediate codes {which were
translated lule vative codes of VAX11/780) was quile cncouraging. Using Program 1, we mensured
the processing time of 800 search commands given to a binary process tree with 800 nonterminal
imbes, and compared the result with the numbers on a native-code, process-oviente] implementation
an VAXI/TAN, GUC/V [Morita et al. 1987):

Message-oriented: 0.75 aec.
Process-oriented, batcls L.04 sue.
Trocess-oriented, interactive: 209 sec,

‘Hatel’ mwans that 800 commands were given at a time and ‘interactive’ means that each command
was issued after receiving the result of the previous command. The way commands were given made
ter difference in message oriented scheduling.

For Lhis program, message-oriented scheduling was more efficient than process oriented schedul-
g even when all the commands were given at a time. In addition, message-oriented scheduling does
uol perform cons upon message seneding, It is noteworthy that a binary tree programn in C using
records and pointers took U.31 sec. for the same data on the same maehine.

Wealso ohserved that message-oriented scheduling much inproved the performance of a demand-
driven program. The statistics oblained from data-driven and demand-driven prime number genetr-
ators to compute 198 primes up to 1000 are as follows:

data-driven demand-driven
Message-oriented; 0.83 ser, 1.38 sec.
Process-oriented: 1.23 sec. 4,96 see,

GHC/V, emplaying 32-hit words, ran naive reverse at 33kRPS (kilo-reductions per secomd), and
this number unproved to 53kRIS by optimization based on the mode analysts [Morita and Ueda
1989]. On the other haued, our message-oriented implementation, employing G4-hil. words, ran naive
reverse at 30kILDS and consnmed less memory (1.e., linear size). It is interesting to see how a naive
reverse program runs under message-oriented scheduling,

5. Conclusion

We have proposed a new inplementation technique of Flat GIC that contrasts sharply with
previous techniques. Although our primary goal was to optimize storage-intensive programs and
demand-driven programs, the proposed technique worked quite well also for computation-intensive

-7 -

programs which did not use one-to-many eommunication. The technique avoids conses for inter-
process communication except when buffering is essential, which is another important aspect of the
technique. We believe that our technigue can be utilized also in parailel implementations, though
much work has to be done to demonstrate 16, One of our next goals is to implement distributed
dynamic data structures efficiently.

The technigue iz based on a mode system which is simple and yet powerful encugh to analyze
msl progruns. The mode analysis is based on constraint solving rather than on abstract inter-
pretation. The analysis of dataflow is important particularly on parallel implementations, whether
the scheduling i3 process-oriented or message-oriented. Some concurrent languages such as Strand
[Foster amd Tavlor 1980] introdnees an assignment primitive instead of unification to generate bind-
ings. However, without compile-time analysis, an assignment goal must still check il the left-hand
side is a variable and if some process is suspending on that varizhle. Our mode analvsis can he
utilized for eliminating both [Morita and Ueda 1980]. Compile-time analysis is important also for
reducing the sizge of native codes snd making the usc of native codes more realistic,

Acknowledgments

Waare indebted to Woichi Furikawa and Fenji Horinehi for valuable comments and suggestions.

Iteferences

{Foster and Taylor 198%] Foster, L. and Taylor, 5. Strand: A Practical Parallel Programming Lan-
guage. To be preseoted at the 1980 North Amecricen Conf. on Logic Programmung, 1959,

[Kimura and Chikayama 1987 Kimura, Y. and Chikayama, T. An Ahstract KL1 Machine Instruction
Set. In Proe, 1987 Symp. on Logic Programming, IEEE Computer Society, 1987, pp. 468-477.

(Muorita et al. 1987] Morita, M., Yoshimilsu, H., Dasai, T. and Ueda, K. GHC Compiler on a
General-Pucpose Computer. In Proc. 35th Annual Convention IPS Japan, 1987, pp. T59-760 (in
Japanese).

[Morita and Ueda 1989] Maorita, M. and Usda, K. Oplinization of GIC Programs. In Proe. the
Logic Programming Conference 89, 1C0T, 1880, pp. 203-214 (in Japanese).

[Shapiro 1987] Shapiro, E. Y. (ed.) Concorrent Prolog: Collected Papers, Vol 1-2, The MIT Press,
1487,

[Ueda 198G] Ueda, K. Guarded Horn Clavses: A Parallel Logic Programming Language with the
Concept of a Guard. 00T Tech. Report TR-208, 1C0T, 1986, Also in Programming of Fulure
Generation Computers, Nivat, M. and Fuchi, K. (eds.), North-Holland, 1988, pp. 441-456.

[Ueda 1985] Ueda, K. Parallelism in Logic Programming. In Information Processing 88, Ritter,
C. X (ed), North-Helland, 1984, pp. 957-9684.

|Ueda and Furukawa 1988 Ueda, K. and Furukawa, K. Transformation Rules for GIIC Programs.
In Froc. Int. Conf on FGOSEE, LCO'L, 1988, pp. bE2-51.

"Warren 1980] Warren, I H. An Improved Prolog laplementation Which Optimises Tail Recursion.
In Proc. Logic Programming Workshep, Tarnlund, 5. -A. (ed.), Debrecen, Hungary, 1980, pp. 1-11.

