ICOT Technical Memorandum: TM-0810

TH-0810

EUVODHILOS: Interactive Reasoning
System for a Variety of Logics

by
T. Minami & H. Sawamura (Fujitsu)

October, 1989

© 1989, ICOT

Mita Kokusal Bldg. 21F (03) 456-3191~5
“ :O I 4-28 Mita 1-Chome Telex ICOT]32964
Mmate-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

EUODHILOS: Interactive Reasoning System for a Variety of Logics

Toshiro Minami and Hajime Sawamura

International Iustitute for Advanced Study of Social Information Science(IIAS-5I3),
FUJITSU Ltd., 140 Miyamoto, Numazu 410-03, JAPAN

FE-mail: minamifiias.fujitsu.co.jpluunet.uu.net

Abstract

EUCDHILOS i the reasoning assistant system with
two characteristic features, One is its “naturality”
which indicates that users can $ee and manipulate
proaf fragments interactively in a natural style as is
used on paper with pencil when they reason on sheets
of thought which is a proof supporting environment in
ETTODIILOS. The ather one is its “generality,” which
means that EUQDHILOS is logie-ind2pendent in the
sense the langnage and logie to be used are defined by
its user. We will see the overview of the system and
commparisons to related works.

1 Introduction

Logical reascning plays important roles in many fields
like :nal.hmrt.'-i.t.ir:m i:[][]lp‘uT.H‘[' SElence, artificial intel-
ligence. Various logies such as first-order, higher-
order, equational, temporal, modal, intuitionistic, and
tyvpe theoretic logics are used there{d, 18]. Just as
5. K. Langer states, we recogunize that “Ewvery uni-
verse of discourse has its logical structure®[11]. So
reasonings in a variety logics will increase and become
more and more important in future, As computers be-
come popular in these days, it is natural to think that
computer assisted r\tr."l.'cnlling will be the standard Elt-}’[e
of formal reasoning in the future. Under these con-
siderations, we have been making research of gemeral-
purpose reasoning assistant sytem named EUODHI-
LOs.

We put two major subjects to be pursued for ap-
proaching to this theme. The first subject is the inves-
tigation of “reasoning-oriented human-computer inter-
face.” The fundamental recognition in this subject is
that the reasoning essentially proceeds via trial and
error. A system is helpful for ome to conceive ideas
in reasoning if it has a good interface 5o that one can
reason in a natural style.

The other one is the “generality” in reasoning,
which corresponds to the requirement that the sys-
tem must be independent from any specific logica. We
think that for sach object we mention, there must be a

fogic suited for expressing and discussion about it. 50
it is preferable that reasoning on it must be done by
using the most suitable logic. The system's name EU-
ODHILOS is an acronym of the Langer's statement.
It is taken in order to emphasize the generality of the
system.

To summarize, we may say that the characteristic
feature of EUODHILOS is on its “naturality.” We
can use the logic natural to the object domain so that
objects in the domain can be described by using nat-
ural expressions. The reasoning style on the sheets
of thought is natural in the sense the system does not
limit the style of reasoaing. User can put assumptions,
derive upwards or downward, conneet two proof frag-
ments, and do other operations in any order he likes.
Throughout the system it is the user who makes rea-
soning, and the system is used for assisting the user
in order to boost the reasoning abality of the user,

In order to realize such a system ETODHILOS must
have the following functions:

(i} It has to assist the user to define the underlying
logic for reasoning.

(i) Sinee it is used interactively, it has to assist proof
constructions in various styles of reasoning.

2 Overview of EUOQODHILOS

The current version of EUQODHILOS is developed as
an experimental system of general-purpose reasoning
asgistant systen. We intend to clarify the image of
the ideal reasoning system by wsing it. Figure 1 is an
illustration of how the system is organized.

It inciudes a function assisting for defining the logic
to be uwsed in reasoning. A logic in EUODHILOS con-
sists of language and derivation systems. We will ex-
plain what they are like in the following two subsec-
ticna.

In EUCQDHILOS, partially constructed proofs,
which are called proof fragments, may appear on one
or more windows called sheets of thought. A sheet of
thought is an envircnment for creating theorems and
their proofs. Manipulations on proof fragments such

EUQDHILOS
Iopaz
. Lagie . F myparn
| Language Fout _]
By)| Svmbod - uoparses aditar
. .\H‘- i
r_) Dervancn Sofrear
- (Azom) kevboard
Inserenee ALE Rewninne i Formuls
Theory parser I
debase s Sheet of Soagn —ans Reawoner

Figure 1: Confiruration of EUQODHILOS

a3 creation, deletion, derivation, connection, Separa-
tion, and so forth are possible by actions to the system
mainly by using mouse. The theorems constructed on
the sheet can be saved to the library of theorams so
that they can be reused as a starting formula in the
later prools for other theorems. Lo this way, users can
cumulatively constrict many theorems in the theory.
Software-keyboard and formula editor are provided to
facilitate input/output.

2.1

The language system of a logic, which defines what
strings of symbols are thought to be wvalid logical
expressions, is designed and defined by the user at
first. Characters used in logical expressions are de-
fined by using the standard font editor. The syntax
of the expressions is given in definite clause grammar
(DCGY15]-based formalism. From the descriptions,
with operator declarations, a BUP[12] parser and an
unparser for the defined language are automatically
generated,

We have to say here that the sicing expressions
themselves do not denote their “meaning”. For exam-
ple, & string expression “¥z.2" consists of four sym-
bols, e, it has four components, while we see it as
an universal-quantification expression with two com-
ponents “z” and *", There is no interpretation cor-
responding to “.". The differences between “{a+ b8)" |
“la) &= (B)", and “a =" are another examples. They
expressions are different but what they denote are the
same. Therefore internal expressions should be used
for manipulation in the system.

Following to the conventional method of DCG, we
can describe the cnrr&apnndence hetwaen external and
internal expressions by using an argument for nom-
terminals. For the examples above, we may deseribe
like:

Language Description

formnla(™(V,F)) —> "7, variable(V),
=", formula(F)

e_formulal{F) =--> "(", formula(F), "}"

Since describing the internal expressions is usually
a boring task, EUODHILOS automatically generates
the DCG expressions from the given descriptions, In
order to automate this step, operator declarations are
required of the user. These deciarations indicate which
alements of the syntax descriptions are used as opera-
tors in the internal expressions.

As the result, the parser oot only checks the validity
of given external expressions, it also translates them to
the corresponding internal expressions. The unparser
translates inversely.

2.2 Axiom and Derivation Rule De-
scription

A derivation system in EUODHILOS consists of ax-
joms and derivation rules. EUODHILOS allows
rewriting rules as well as inference rules as derivation
riles. This comes from our observation on how hu-
man ressoning proceeds. For exarnple, we often use
a chains of formulas like a; = a3 = --- = a,, each
Gipy 18 obtained by rewriting a;. Axioms are given
as a list of formulas in the axiom definition window,
Inference rules are given in a natural deduction atyle,
which measns that an inference rule consists of three
parts; the first one is the premises of the rule, each
of which may have an assumption, the second is the
conclusion of the rule, and finally the third is the op-
tional restriction that is imposed on the derivations of
the premises, such as variable occurrence conditions.

Schematically, an inference rule is givenr in the fol-
lowing form in which each of the assumption parts is
optional:

[Assumption;] [Assumptions] ... [Assumption,}
PrEl‘II'I.isc[Prcr;iise-g Prel:lliiﬁt.,
Conelusion

If a premise has its assumption, it indicates that the
premise is obtained under the assumption, and other-
wise Lhal it is obtaned by some way. An infercnee
ritle can be applied if all the premises are obtained in
this manner, and the restrictive condition, if given, is
satisfied. I it is applied, the conclusion is obtained as
the result of the derivation.

A rewriting rule is given in the form:

Pre_Expression
Post_Expression

A rewriting rile is applied te an expression
when it has a subexpression which matches Lo the
pre.expression part of the rule. The resultant ex-
pression is obtained by replacing the subexpression
with the appropriate expression corresponding to the
post_expression part of the rule. '

Well-known typical styles of logies such as Hilbert's,
Cientzen's, equational can be treated within this
framework. Hilbert's formulation 15 expressed by us-
ing axioms, modus ponens as inference rules, and no
rewriting rules are given, while Gentzen's formulation
consists only on inference ruies, and equational formu-
lation can be given by axioms and rewrting rules.

One can obtain a derivation tree by iterating the ap-
phicasions of the derivation rules. Toreduce the similar
applications of several rules appearing in many places,
ce can define the derivation rules. Once defined, a
derivation rule can be used just like 2 primitive cne.
We can say from our experience that derived rules are
much more useful in proving new resuits than the re-
sults expressed by formulas (i.e. theorems).

2.3 Proof Construction

The proof constructing environment provided by EU-
ODMILOS is called “sheet of thought™. Maybe we
may also eall it a proof editer, but we call it other
way because we want to regard it more genmerally as
an environment of reasoning with intelligent assisting
functions. We can draft a proof, to connect proof frag-
ments (i.e. partially comstructed proofs), separate a
proof, o reason by using lemmas (or theorems), and
%0 on under the support of sheets of thought.

As the design principles of sheet of thought, we take:

1. Theorems and proofs are found and constructed
under the user's initiative through the process
which would proceed basically via trial and error.

. Heasoning during prool constructions can be done
along with the natural way of thinking of human
MEASOTLEe.

When one wants to reason, one may make a candi-
date of thearem or derive some trivial results to see
what the logic is like. Roth styles of reasoning are al-
lowed on the shests, At first, the user opens a window
of shieet of thought, and then he may enter o goal to be
proved or may enter several assumptions which seem
Lo L used Lo depive some resulls. Entering one or
gamme of the axioms is also possible. He can apply the
derivation rules to these formulas and obtain the resul-
Lanls. He ran also combine some resultants to make
more complicated results. In this way the partially
constructed proofs, which we call prool fragments, are
oblained and become bigger and bigger, and finally a
complete proof fragment, which 18 a proof of a the-
oremn, is obtained. We can store the theorem to the
theory database so that it esp be used n the later
PEASCIINE.

Ve can define derived rules so that we do oot have
Lo apply the same sequence of rules al several places.
Inference, rewriting and derived rules are applied and
expressed schematically just like those which we write
on the paper.

EUODHILOS supports the typical styles for reason-
ing, that is, forward (or top-down) reasoning, back-
ward {or bottom-up) reascning, and reasoning in a
muixture of them. Most of other systems allows conly
one style of reasoning. For example, the underlying
logic of Nuprl[3] is version *nu” of Proof Refinement
Logies. It is a logie for top-down reasonimg. Proofs
in EKL[10] is constructed bottom-up. From our ob-
servation of human reasoning, both reasoning styles is
used in ressoning. So for our purpose, both types of
reasoning must be provided.

3 Example

In crder to get the image of reasoning on EVODHILOS
mare intuitively, we show an example in this section.
We take a mocking bird puzzle by R. Smullyan[17] in
which combinatory logie is treated with the interpre-
tation into a forest of birds,

=* term;

formula—term,
term—b_term;
term—b_term, "«", b_tarm;
b_term—variable_symbol;
b_term—constant_aymbal;
b_term—b._term, "+", b_term;
boterm—" (", term, ")7;

variable.symbol— "AT [VE"|Tz™;
constant symbel— "MM;

metaformula— "F7;

meta formila— metapred, "[", term, "1™
mata pred — meta formela;

mata_variabla — ™I";

meta_term— "Y"["I™;

b_term— mata_tearm.

operator

. " oM

L i
predicate
mata_pred.

Figure 2: A description of the language for the puzale
of mocking birds

Figure 2 is an example description of the language.
From the definition, we can see that expressions such
as “Mexz=xex" and “(A#BYex=He(Bex)}” are formulas of
this logic.

Figure 3 is the definitions of axioms and inference
rules. In the definition of inference rule named sub-
atitution, the expressions ‘[1]’ and ‘[Y]" indicate the
occurrences of the expressions of variable ‘X" and term
¥ in a formula ‘F' respectively.

As an example of derivation process on a sheet, we
will illustrate in Figure 4 how one can proceed deriva-
tions in the example of the mocking bird. The problem
is to prove the statement: “Any bird is fond of some

L&Y [= kims d i "
@_ NIAK S Juceing SHEEN.OF _THIUGH! @ mocking
FONT Tofmuls ==> Term squxl. Term;
S0FT _KEYBOARD squul —-}h‘ =" AXLIOH : mocking G
tatm —=> b_teTm:

SUNTAX = totm —=> b_term apply b_term; Hex=xex G
INFERENCE_RULE apply == = § (AXE) sx=Aw (Bex) L
REWRITING RULE E_Ttearm ——> gonstant’ u
DERIVED_RULE b_term ==-> vautriablel

AXTOM b_term ==> b_term FTar, b_Term: -f1
SHEET_OF _THOUGHT |[|sTar —=> " %" 3 Lt

STENDEE b_Term —=> " ., term "J)" MexX=xex

SHEET_OF _THOUGHT i mocking “sbst 0)
(AXBY sx=As (Bex) MsA=Ash

(ARBY ax=As (Bex) Max=%ex
(5Bt 0) ———————{zhzt 0} hoAm e an F:}
(A% » (A%XB) =As (Bs (AXB)) Ms (AxBY = (AXE) » (AXB) i
{(sbit O3 —_—{sbksT O}
(A%LD » (AXM) =Ae (s (AXM)) Me (AxEM) = (AXA » (ARM ﬁ
(g 0}

CARM) o (AXMD =As [(AEM) « (AxM)

(A%B) sx=As (Bax)
(sbst 0
[A¥MD sx=Ae (Max)
(sbzt 0
(A%LD » (AL =As (Mo (AXM))

Msx=xax

e (AXM) = (AXM) o {AXMD

F ol

F [1]

TOOOD

(sbzt 0

(et O)

. ; . HUreen. .
USER. : -ras v atrechildowindew /10"

SIMPOS Version 4.1°

CARMD » (AXM) =Ae ((AXM) » (AXM))

XX To_ windaw XX
= and *%
x&k quit ®¥=E

1R

. @7=Mig-89 Mondau

Figure 4: Proof Construction on the Sheet of Thought

Axiamms:

Hex=xex Existence of the mocking bird,

{A*B)ex=Re{Bex)} Composition.
Inference rules:
ulss FUO_¥=2

=2 {equality)

— I:‘:iIJEI."-Ei.LI.H-iI'IIJl}

FLY] F[z]
Figure 3: Axioms and inference rules for the logic of
mocking birds

hird.” That is, for any bird ‘A" there exists a bird ‘X’
such that “AeX=X" holds,

At first, in a sheet of thought at the top-right cor-
ner of the figure, one eénters two axioms “Mex=xex”
and “(A*B)ex=A+(Bex)” on a sheet. To deduce
some formula, he may deduce “Meb=Aed” from the
axiom “Msx=xzsx" by substituting ‘A’ to the wvari-
able 'z.' He cannot proceed any more in this
case, 30 he tries other substitution. Next, at the
middle-left sheet, he may substitute ‘A*B' to ‘z".
In this case, he gets “Ma{A*B)=(A*B)«(A*B)" and
“(A*Bla(A»B)l=Aa{Bs (A+B})" After looking these, he

makes aware that by substituting ‘M’ lo “B" he gets the
desired formula “CasM)e(A®M)=he{ (A=M)o (A*H})."
This indicates that a bird ‘4’ is fond of the bird de-
noted by the expression “(A+M)«(A+H)." If he re-reads
his proof carcfully, he may become aware that the
proof is redundant, and he can get the final proof of
the theorem; By substituting ‘A+M’ to 'z’ and ‘W to
‘8", and by the inference rule of equality, one can get
the desired farmula. (It is shown on the bottom-left
sheet.) Proafs on the sheet of thought proceed like
this. To see the more practical examples, refer to [13]
and other papers in it.

4 Related Works

When we think about what the automated reason-
ing is like, probably most popular idea would be
fully automatic theorem prover(ATF). An ATP(such
as BMTP[1]) is a system which searches a proof of a
formula given by the user. In a RAS(Rasoning Assis-
tant System), on the other hand, proofs are searched
and found through the interactions between the sys-
tem and the user. The initiative is taken by the user.

This is the major difference between the features of
ATF and RAS, which may come from the difference of
the purposes of the research of them, The purpose of
the research of ATT may be criginated to the interest
how the mtelligent activities of human can be simu-
Ii-lr.!":‘l. .l:l:r I'['I.:i.ﬁhi]'lﬂ'.‘i.. T]H‘. P'Ilr[:l{'!irF!‘ uf ﬁ,."! S\ pLAY] [I l'lll,'r_]bﬂbl.bl'
of ather types of interactive reasoning systems, is to
find what is the ideal way of reasoning under the so-
operation between hurman and machine.

With all the difference, they do not confront each
ather. At least from the view of interactive system,
the outeome of ATP may be used to make the svstem
more saphiﬁtir_a'r.r.r] and in hEETIEFmI:. Far Exan1p|ﬂ, ATP
can be used for filling the smail gaps between formulas
in pruut's.

The second style af automated reasoning would be
that of proof checker, We call a system proof checker
if 1t’s main purpose is o verify the correctness of a
proof described by the user. Suppose there 5 a pu-
tative proofl of some theorem obtained by a human.
A human proof may contain some careless mistakes
including small zaps in a proof. e may say “triv.
ial" which is in fact not trivial but just tedious. This
is & typical situation when a prool checher is used.
The checker provides a language for deseribing human
proofs. The user describes his or her proof by this lan-
guage and gives it to the systern. The system checks
the correctness of the proof. If the checker finds errors
in the proof, it shows them to the user. The situation
of proof constructors and ILAS are lidtle bit different.
In this situstion, there is no proof deseription at the
beginning. The purpose of the svstems s to assist
their user to create validated proofs easily,

In fact. it is not so easy to classify the purpese or
the situation of the syvatem clearly, becuise most of the
aystems would not be used in the typical stvles ciced
above, AUTOMATH (2] is & proof checker in which
the user specifles the construction of proofs. CAP-LA
(8] checks the proofs in linear algebra. The systems
such as LCF [5, 14], FOL [1#, EKL [10], and Nupsl
(3] are proof constrictors.

EUGDHITOS ity be called o kind of Prﬂﬂf Con-
structors in some point of view. The major difference
of RAS (such as EUODHILOS) and the ordinary proef
constructors lies in generality and the form of proof
[ragments. Mavbe this difference also comes from that
aof the purpose of the wser of the system. Most of the
proof constrietors seem te have an intention that they
are used mainly for verifications. The most important
point for this purpose would be ta find the spectfic fea-
ture to make reasoning for the underlying logic which
is fixed to the system. On the other hand the purpose
of RAS is to assist ay many cases of human reasoning
as possible. So the fixation of the logics to he treated
in the system becomes a restrictions to the domaim of
Teasonings.

In order to realize na.l.l:ra.]it.}' we 1|rziigm-.d hhe syslern
so that it can be used just like an intelligent “paper”.

(=]

We think the expressions written on the paper would
be the most suitable one for human reasoners. From
this thought, we think a feature that facilitate to use
a new symbol is necessary, and the we decided to take
the natural deduction stvle of formulation frame for
the fundamental reasoning style in the system. It is
possible to say that the generality of the system is also
an example of naturality. From our thought expressed
in the Langer's statement, it is natural to think that
the HAS svstemn has to deal with logics in domains
which me intend to reason about.

5 Concluding Remarks

S0 far, we have dealt with logics, such as frst-order
logic (K], propositional modal logic (T, intensional
logie [IL), combinatory logic, Martin-La0"s type the-
ary, and category theory.

From the experiments so far in EUOQODHILOS,
though it is still in its ealiest step, we are convinced
of the followings:

(1} Describing the syntax of logical expressions 1s dif-
ficult at first. But, after defining seversl logies,
we can define a new logic in a few hours. TF the
svetemn keeps deseriptions for typical logies as a li-
brary, the deseription of a new logic may be quite
aasy even for beginners.

On sheets of thought, users are free from dedue.
tion errors. On the paper, they may make mis-
takes in deriving a new formula when deduction
rules are applied. The difference 1s important, be-
cuuse the users have to pay attentions only to the
decisions how to proceed the proof on the sheet
of thought.

(i)

The reasoning assistant systemn can be used as a
tool for CAI{Computer Assisted Instruction) in
logics and logical reasenings. The students can
deal with a variety of logics in a single system.

(iif)

The current stake is the first step towards the real-
ization of a practical reasoning assistant system. To
put the step forward, we bave to investigate various
sul jects such ax:

(1) Extending the framework of logic deseription so
that logics given in other formulations can be
treated in the system as well;

{2) Adding the facility of maintaining dependency re-
lations among various theories;

{3) Treatment of relationships between meta and ob-
ject theorics so that reflective proof like FOL[LS]

i5 available;

(4) Improvement and refinement of reasoning-
oriented human-computer interface so that it can

make natural assistance;

[3)} Opening up various new application fields of com-
puter assisted reasoning such as verification, pro-
gramming, education, ete,

We believe the research on reasoning assistant sys-
tern ETDODHILOS will eventually open up a new di-

mension of anboroated rﬂasnniltg for pr.u'.!.ir..ﬂ use,

Acknowledgements

The anthors are indebted to our colleagues Kaoru
Yokota and Kyoke Ohashi in system implementation.
This is a part of the major research and development
of the FGCS project conducted under the program set
up by MITI.

References

[1] R.S. Bover & J 5. Moore: A Computational Logic
Handbook, Acadernic Press, 1985,

[2] N.G. de Bruijn: The Mathematical Language
AUTOMATH, its Usage, and some of s Kxten-
sions. In M. Laudet et ai. (eilds), Sympoosium

on Automated [demonstration, Springer-Verlag,
pp.28-61, 1870,

[3] R.L Constabie et al: lmpiementing Mathemat-
ics with the Nuprl Proof Development System,
Prentice-Hall, 1986,

[4! JA. Gﬂgl'.l’!'n & M. Burstall: II[I[L‘H’_I“[i“E Insti=
tutions, LNCS 164, Springer-Verlag, 1983,

(5] M.I. Gordan et Edinburgh LCF LNCS TR,
Springer-V¥erlag, pp.221-270, 1879,

[6] T.G. Griffin: An FEnviranment for Formal Sys-
tems, ECS-LFCS5-87.34, Univ. of Edinburgh,
19487,

{7] R. Harper, F. Honsell & G. Plotkin: A Frame-
wuork for Defining Logies, ECS-LFCS-87-23, Univ,
of Edinburgh, 1987,

[8] ICOT: The CAP Project {1)-(8), Prac. 32nd An-
nual Conv. IPS Japan, 1986, (in Japanese)

[9] P. Jackson et al. (eds): Logic-Dased Knowledge
Representation, The MIT Press, 1989,

[10] J. Ketonen & JS. Weening: EKL—An Inter-
active Prool Checker, User's Heference Manual,
Dept. of Computer Seience, Stanford Univ., 1984,

{11] 5K. Langer: A Set of Postulates for the Logical
Strueture of Music, Monist 39, pp 561-570, 1925,

[12] ¥. Matsumoto et al.: BUP:A Bottom-Up Parser
Embedded in Prolog, New Generation Comput-
ing 1, pp.145-158, 1983.

[13] T. Minami et al.. EUODHILOS: A General-
Purpose Reasoming Assistant Svstem - Concept
and Implementation -, ITAS-515 Research Report
No. 84, FUIITST LIMITED, 1985,

L.C. Paulson: Logic and Computation, Inter-
active Proof with Cambridge LCF, Cambnidge
Univ. Press, 19587,

F.C.N. Pereira et al.: Definite Clause Grammars
for Language Analysis—A Survey of the Formal
igrm and a Comparison with Augmentad Transi-
tion Networks, Al Journal 13, pp.231-2T8, 1980,

[14]

[15]

(16] B. Hitchie & P. Taylor: The Interactive Proof
Editor-An Experiment in Interactive Theorem,
ECS5-LFCS-88-61, University of Edinburgh, July

1984.

R. Smullyan: To Mock a Mockingbird, Alfred A.
Knopl Inc., 19835

(18] R. Turner: Logics for Artificial Intelligence, Ellis

Horwood Limited, 1984,

[18] R.W. Weyhrauch: Proiegomena to a Theory of
Mechanized Formal Heasoning, Al Journal 13,

pp.133-179, 1980,

