ICOT Technical Memorandum: TM-0809

TM-0B0G

An Object-Oriented and Constraint-
Based Knowledge Representation System
for Design Object Modeling

by
I. Yokoyama

Dctober, 1989

© 1989, 1ICOT

Mita Kokusai Hldg. 21F {03y 456 3191--5
" :D | 4-28 Mita 1-Chome Telex ICOT 32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

An Object-Oriented and Constraint-Based
Knowledge Representation System
for Design Object Modeling

Takanor YOKOYAMA

Institute for New Ceneration Computer lechnology
499 Mita 1-chome, Minato-ku, Tokyo 108, Japan
e-mnail: vokoyamaSicot.jp@relay.cs.nel

Abstract

This paper presents an object-oriented and constraint-based knowledge represeniation system FREEDOM for
design object modeling. An object madel rrpresented as a set of ohjects in this system s not a mere data structure
butb aa active entity which works 1o solve design problems, Knowledge renresentation provided in the system, based
on the chject-oriented paradigm, makes it possible to describe constrainls in declarative form. A class hierarchy
is represented with as-n links and includes links, and a class-instance yelation can be changed dynamically. These
features are useful for top-duwn refinement. ‘U'he problem solving mechanism of the system is based on constraint
sntisfaction technigues. Coustraints are declared statically and can be added to objects dynamically. An object
has n function to keep its state satisfying given constrainis. Hy this function, we can find values of attribunles and
classes of abjects that satisfly design requirements. The constraini satisfaction method is based on the technique of
constrainl logic programming and constiaint propagation amang ubjects. FREEDOM is implemented using ESF
language on a P51 machine.

Al topic: Enowledge representation, Cunstraint-based problem solving
Domain area: Design

Langnage/ Tool: ESF

Status: Hesearch

Effort: 1.5 Person-years

Irrpact: Knowledge representation presented here makes it easy {o build an effective design
expert syslem.

1 Introduction

A number of design expert systems have heen developed
in several domains, such as VLSI design and mechanical
design, The knowledge used in design expert systems can
be classified into wwo types: knowledge about design ob-
jects and knowledge about design methods, Only knowi-
cdge about design metheds has been regarded as impor-
tant in conventional systems. Bul, cecently, it is heing
recognized that koowledge about design objects is very
important to realize practical expert systems [Uhsuga&i-].

The knowledge about design abjects should be repre
sented as a design object model in a design system. Dut
ohiject models used in conventional design systems are
mere static data structures thal represent atiributes of
design objects, They need to be interpreted and manip-
ulated in terms of desipn taske or procedures and the
knowledge about design objects may be embedded in
model manipulation procedures or design methods, In
those design systems, it 15 difficult to make effective use
of the knowledge about design objects,

To solve design problems effectively, it is important to
represent all knowledge about design objects as an object
madel and to put it to practical vee in Lhe design process.
Furthermors, we propose to give an active role to an ob-
Jeet madel; the object model has a function to change its
state toward the state that satisfies given requirements.

We present o knowledge representation system hased
on an object-oriented and constraint-based paradigm for
design object modeling. The sysiem, called FREEDOM
{n Framework for REpresenting and Elaborating Design
Ohject Models), provides a framework for representing
design objects in declaralive form snd [acilities based on
construint satisfaction for prablem salving.

In this system, a design object model 15 represented
as a set of objects, and design requircrnents and most of
the heuristics used in design can be represented as con-
straints. The object has a function to maintain its state
to satisfy constraints when ils structure or values of its
attributes are modifisd or when a consteaint is added to
it. 5o the object model which represents a design solution
can be built only by the addition of constraints as design
requuremments and heuristics,

The rest of this paper 1s organized as follows. First,
we have a general discussion on knowledge representa-
tion frameworks for representing design object models in
Section 2. Then knowledge representation of FREEDOM
which integrates object-oriented and constraint represen-
tation is presented in Section 3. Problem solving of
FREEDOM based on constraiuol satisfaction is discussed
in Section 4. Linplementation issues are described in Sec-
tion 5. Tinally, Section 6 briefly reviews related works
and compares FREEDOM with them.

2 Design Object Model

A design ebject model represents information and knowl-
edpe about design objects, such as their attributes,
shapes, structures, and sa on. The chjective of design
is to build an ebject model that satisfies design require-
ments; it represents a solutien. During the design pro-
cess, a model whose properties satisly given requircments
is eonstructed.

A framework must be develaped that represents knowl-
edge about design objocls and provides design process
eupport facilities. The system should provide functions
to caleulate values of attributes and functions to build
a design object model that satisfies design requirements:
determining the kinds of parts, building the structure of
a model, refining an object model, and so on.

A frame system [Minsky75] has been used to represent
structures and attributes of objects in knowledge systems.
Using o frame system, we can represent each element of
an object in understandable modular form.

Hecently, an object-oriented paradigin [Goldhergd]
[Stefik&6] whose concept is similar to a frame system has
been generally used and also applied to design prablems.
An ohject-oriented langunge is suiluble for representing
structures, attributes and behaviors of objecis. But it s
difficult to describe relations between objects or between
attributes,

These relations can be represented as constraints in
declarative form. Design requirements can be regarded as
constraints on design objects. Bul conventinnal ohject-
oriented langnages do not provide facilities for dealing
with constraints on objects.

Methods by which to represent knowledge about design
ohjecks that introduce constraints have been investigated
(Stallman?7] [Sussman80] [Heintze87]. These provide efli-
cient form of knowledge representation in terms of declar-
abive description, but they are not suitable for the repre-
sentation of large-scale, complicated objects because they
lack structural represcntalion.

So investigations have been made into introducing con-
straints suitable for describing relations to an object-
oriented paradigm that describes structures and at-
tributes [Rorning®l] [Borning86] [Harris86] [Struss&7)
These have made it possible to represenl properties of
design objects in understandable form. [owever, only
constraints on numerical attributes {instance variables)
can be represented in these systems, and thess constraints
may be used only to calenlate the values of attributes.

We have developed FREEDOM system based on
object-oriented and constraint-based paradigm. The ob-
jective is to realize a system which provides adequate
functions to build an object model that satsifies require-
ments. Objects in this system play an active role to solve
a design problem. The features of FREEDOM are de-
scribed in the following seclions.

rwo_stage_wrplilier

wiwibute: gain
canskrainl:
gain = stage_lii-*gain * skage_2-->gain * stage 2-Finpui_imp
Sistage_L-moutpul_imp + stage 2:.*input_imp)

V([siage 2)

LLm-rhuu: Exin, oulwl_i-mpJ L afuibuls: gain, invu'r_iumpJ

seage_1

Figure 1: Example of constraints on objects

3 Knowledge Representation

3.1 Object and Constraint

Knowledge representation provided in the FREEDOM
system is based on an object-oriented paradigm. Object
oriented representation is suitable for description of the
structure of a design object.

Constraint satisfaction techniques play important roles
in solving design problems. They reduee a combinatorial
explosion, and values of attributes and structurcs of ob-
Jects can be determined using them. Thus it is effective to
introduce the concept of constraint to an object-oriented
paradigm. It is possible to describe constraints in declar-
ative form in FREEDOM.

Constraints on attributes arc descnibed in the form of
a predicate or an equation. Figure | shows an example
of constraint declaration. The constraint on the attribute
of object stage.] and the attribute of object sfage ¥ are
declared in object amplifier which consists of stage_7 and
slage_£. Here, “stage.l :-> gain” means gain of stage_l.

The part-whole relation, so-called part-of is an bnpor-
tant way to represent the structure of ohjects. The re-
lation is classified into two: the first is that parts are
needed to construct the whole, the second is that parts
are not needed to construct the whele. For example, the
relation of a rectangle and its four sides corresponds to
the former case and the relation of a bookease and books
in it corresponds to the latter caze. The former can he
regarded as a structural constraint of an cbject and is

called & consists-of relation in FREEDOM,

To specily the type of an element of a design object,
the class name of an ohject corresponding to the element
can be declared as a type constraint. The object must
belong to the declared class or its subclass,

Because constraints may be generated dynamically dur-
ing a design process, functions for addition or deletion of
a constraint on an object are provided,

amplifier
atirshate: gain
single amptiffe difTerential amplilier prash-pull ampliffer
witribiale: RL sitribits: KL1, RL2 atiribuie: RL

is_-/ ‘\\lﬂ_l. is_n is_m
comman-emine | | comman-<wllecior || dUT. amp. with osll, mrp, with

wircuit circuit EmiteT reiator | | consiant Cares Sisge
mitribule: Bb, Re i : Bh it Re acribuie; e

Figure 2: Example of class hierarchy

3.2 Class-Instance Relation

In a design process, parts that satisly the design require-
ments must be searched and the values of their attributes
must be determined. Sometimes, after the values of at-
tributes of an instance that corresponds to a selected class
have already been determined, the designer may want to
perform an operation that changes the class to another
class Lo which the instance belongs.

For example, Figure 2 shows a class hierarchy which
represents a taxonomy of amplifier eirenits, At the first
stage of the top-down design of a cireuit, attributes com-
mon to amplifier eirewits such as gain must be determined
before the kind of circuit is selected. So an instance of
class emplifier 15 created and values of attributes are de-
termined. Then the kind of circuit that satisfies the de-
sign requirements, for example differenticl amplifier, is
selected.

In this case, in existing object-oriented languages, we
must remove an instance that belongs to old class {emphi-
fier in this example), create an instance that belongs to
new elass (differeniial amplifier), and copy the values of
attributes commen to these two classes (gain).

FREEDOM handies the relation between class and in-
stance, the instance-of relation, which can be changed
dynamically. This makes it possible to design effectively,
because it is unnecessary to create a new instance or to
copy the values of attributes. A dynamic change of a class
15 lirmuted according to a hierarchy of is-a relations, and
limited to the specified class and its subclasses to satisly
type constraints.

3.3 Class Hierarchy

A class hierarchy with multiple inheritance is not always
represented using a relation between an abstract level and
a concrete level, but using inclusion of a function declared
in another class. It makes a class hicrarchy too complex
to understand.

In FREEDOM, is_¢ relations can be declared only when
two classes belong to the same category, and they must
he represented in the form of simple Lree structures, A

£r class class name has
ia_a superclass name ;
inciudes
[key name 11] included closs name |
® a8 :
conaists_of
element name [1= defeult class name 1,
v :
attributes
gitribute name [t:= defoull value],
. 6w ;
copsiraints
eapsirainl ,
P

i~ body of medhed ;

@

messagé)

P

math{O],

fr_and.

Figure 3 Syntax of class definition

refinement in a design process corresponds to the search
operalion of a class that satisfies design requirements by
reforeing Lo the is.a tree siructure.

‘I'he multiple inheritanee s useful for representing in-
elusion of functions, 50 a definition of the includes relation
is introduced for representation of the class hierarchy.

3.4 Syntax

Figure 3 shows the syntax of class definition in FREE-
DOM. Only items needed for representing an object are
to be declared, fragments in square brackets may be omit-
ted. A kev used to speeify the view of an ohject can be
added to an included class. A class name specified in
an element definition is regarded ns a type constraint of
the clement object. Only attributes of the object and
attributes of its elements can be referred in constraint
declarations.

Tn FREEDOM, methods are used to provide interfaces
rather than to describe the behavior of objects. Proper-
tics and behavior should be represented using constraints,

System methods are provided and are vsed to create
an instance, to change the class of an instance, to refine
an object, to assign the value of an attribute, to add a
constraint to an object, Lo delete a constraint of an object,
and so on, An ohject model can be manipulated with
these methods. A method is activated by message passing
whose format is * send(recesver, message) ™.

Firure 4 shows an example of the class definition which
represents an eleclronic cirenit of an amplifier. Here, the
notation x:->y means attribute y ol element 2.

A source program writlen according to the syntax is to
be translated to the internal representation in ESP to be
executed.

WL Veltape dmplifier NIL
fr_slass volisge_amplifies Eas
mttritutes
geln, ispat.imp,
max_o9TpRT, WEs.
copstrainca
powar = (ves + vasl % i
ir_sod.

cutput_imp,

vaE, 1, povar;

Eu Tuo Stags Differesentisl dmplifiser KX

fr_class tvo_staps differential_saplifier haa
la_m
veltags_ azplifier;
connizva_ol
ptage_i :is differentinl_saplifier_mnit,
stage, 7 *:= differsntial aaplifier_snit;

attribetes
beta, k, open_gais, mmp iaput_i=p,
r_nfb 1, r_afk.2, r_iopat;

Cconstraints
2 » ppen_gals = (sfage 1 -3 esntpat_isp
+ wimge, T :-* input imp) T stage.l ¥ input,.i=p
® aeage_f - gaim * atage 3 i-> guinm,
mate * (r_sfe_] + r_nfb 7} = r_nibh I,
g = {1+ ppan_gain * bata) = 1,
gain = & * opsn_gein,
k » nop_foput_lmp = stage_l -3 input_izp,
irpue_tzp » (a=p_lsput_imp 4 r input)
= mmp_impot_iap = §_isput,
pubput ap = k * stage.l 1-* output_isp,
maz_sntpot ® FLAgA_2 1=F max_cutpul,

Ir_end.

Figure 4: Example of class definition

4 Constraint Satisfaction

4.1 Calculation of Value of Attribute

An object in FREEDOM has a [uoclivn to maintain the
values of ils attributes that satisfy constraints declared
statically or added dynamically. The function makes it
possible to solve design problems effectively. The values
can be obtained by solving constraints.

For example, suppose that there is an objecl repre-
senting an amplificr which consists of two amplifier units
stege.] and stage £ and there are two constraints on at-
tributes of them shown below,

tofal guin = stage.l:-rgain + slage 2:—>gain
: ' stage 2:->inputimp
stage.]:—roulpul amp + stage 2:=>inpul imp

stage.l:=>gain = 2# stage.2:->gain

If we have a heuristics that the value of owlpul.imp
of stage_ is much smaller than the value of input.imp
of stage_£ and the former is negligible, we can add the
constraint helow to the object.

stage L:->oudpui imp = 0

tlass 0

arribuse O
wenatminl G

wiuas | <lads 7

witribute | anribise 2
camstmdnt | censirainl ¥

e ;‘ E la_w L] :. !: it W
claas 3 elaas 4 class § elats &

afribute 1 attriune £
conitrmint Y feenatraint &

eelinement

astribte §
ponsoaint 3§

arribide 4
sopataing 4

Figure &: Class search based on constraint satisfaction

Now, if the value of attribute fofalgain is given as a
design requirement, attributes gain of stage-t and gain of
stage_f are determined by constraint satisfaction.

As shown above, constraint satisfaction is a useful
method in parametric design problems whose goal is to
get values of parameters that satisfy design requirements,

4.2 Class Search

In general design problems, not only parameters but also
the kinds of parts and the structures of ohjects must be
determined. To find which kind of a part satisfies require-
ments, we must search a class hierarchy.

Search for a class that satisfies design reguirements
is realized using e constraint satisfaction mechanism in
FREEDOM. When a struclure or an attribute of an in-
stance 15 modified, if constraint satisfaction fails in the
class to which it belongs, the class may be changed anto-
matically to another class to satisly the constraints. An
object in FREEDOM has a function to change its class
for constrainl satisfaction.

This function realize class search without desecribing a
procedure. We call it constraini-besed fazonomic reason-
g, Figure § represcnts a class hierarchy with és-a rela-
tions, We assume an instance [which had belonged to
Class 0 was further specified and now it belongs to Class
I. The instance satisfles Constramt? ¢ and Constraind {
in this state. Then, to refiue il, or make it concrete, we
send it the message to activate a procedure that tries to
change its class o the lower class.

First, the class search mechanisin tries to change the
class of | to Cless ¥ and solve the set of Constraint 0,
Constraint § and Constraint 8. If it succeeds, this proce-
dure is terminated and the class of Tis Cless 3. 11 1t fails,
the procedure backtracks and tries to change the class of
Tto Class § and solve the set of Constrarmit §, Constraint
Fand Constraint . If it succeeds, the class of [is deter-
wined Clase §. If it fails, the procedure fails and the class
of [is not changed.

For example, a problem to determine the kind of an
electronic eireuil is considered. Figure £ represents a

B chnss
Amplifier
attribute A, RL
is_n s _i
class clags
FET Amgplifier Bipolar Trarsistor Amglifier
amrbute | gm =5 m3 sttribate | hde = 400, his = 20 K
corstrmint | A = gm * RL constraint | A = (Rle /hig} " EL
7
" Instance)
Aumglilter_]
atiribute RL 1 I-D?hﬂ
constraint A= 100
L A

Figure 6; Example of class search

class hierarchy of simple electronic circuits: amplifiers.
The problem is to determine the class of instance Am-
plifier_! that satisfies given requirements. At first, the
class of Amplifier.] is Amplifier, and ils class must be
delermined as either FET Amplifier or Bipolar Transis.
ter Amplifier. Amphifier.] has attribute gain A and load
resistance RL, and it must satisfy the constrainl on A,
While the vulue of EL is not assigned its class cannot be
determined uniquely. Whea the value of EL iz assigned
to 10k €@ as shown in Figure 8, the class is determined
Brpolar Transister Amplifier, not FET Amplifier, to sat-
isfy constraint A =100

‘This mechanism is useful for selecting a model of the
device which depends on the condition in which the device
ie used. If the condition is declared as a constraint, a
suitable model is selected automatically according to the
condition by constraint satisfaction.

4.3 Constraint satisfaction technique

The constraint satifaction technique used in FREEEDOM
is based on constraint logic programming [Jaffer87] and
constraint propagation. Each object has a constraint
solver and constraints declared in the olject are eval-
uated by the constraint selver in the way of constraint
logic programming. The constraint sslver can deal with
constraints added incrementally.

An attempt is made to solve constraints among objects
by constraint propagation. But when there is a cyelic de-
pendency among constraints, they cannot be solved by lo-
cal propagation that propagates values of atiributes. So,
in pH.EED[:FH, constraints such as ::qua.t.i.ons are propa-
gated between objects,

Figure 7 shows an example of constraint propagation.
Object o consists of object o and object b, and those ob-

d abject o -\!
akibuie =7 i (4} evaluation
(e + WK = F)
mmr.-a.'tnl. ¢+ maer il
+ Ba B 14

{5) peopsagation " l‘l[ﬁ;l propagation

jwtx=T] wonaisw_of By =]
(£ (e (" otjest b 2
cvaluation Al buds . X attribute v,z evaluation
TAET = =i
[w=13,% 4]\5‘:‘““{": ¥ -ow= L- mehiir.r wz=]‘:J iy i

{1}massignment: z =&

Figure 7: Coosbraint propagation

jects have the attributes and constraints shown. There
is a cyclic dependency between the constraint in object o
and the constraint in objeet a.

Now, we assume that the value of attribute :z of element
bis assigned 6 (1), then constraint satisfaction is executed
in object b (2), the value of attribute y is determined
and propagsted to object e (3}, constraint satisfaction is
executed in object o (4), the constraint is propagated to
object @ because the constraint is on only the attributes
of element a {5), and atiribules wand r are determined
by solving the constraints (8).

5 Implemantation

FREEDOM has been inplemented using ESP langnage
[Chikayamaf4] on a PS8l machine [Taki84]. ESP is an
object-oriented programming language based on logic
programming and PST is a sequential inference machine
for logic programming. The class definition written ac-
cording to the syntax of FREEDOM is translaled lo the
ESP program.

An instance of FREEDOM is implemented as a set of
instances of ESP, each of which corresponds its inherited
elasves Lo realive efficient class-change. The class of an in-
stance of FREFETDOM s changed dynamically by adding
or deleting an instance of ESY corresponding to a differ-
euce between the class before it was chanped and the class
after it was changed.

Constramt satisfaction of FREEDOM is based on con-
straint logic programming and constraint propagation.
The constraint solver of constraint logic programming lan-
guage CAL [Aibast] is used for constrainl satisfaction i
each ohject. CAT, nses a Nuchberger algorithm for solving
simultanecus equations. Constraint propagation is imple-
mented as message passing.

Only numerical constraints such as equations which are
adequate for simple parametric design are dealt with in
FREEDOM. But, of course, the domain of constraints
dealt with in FREEDOM should be expanded to solve

cormplicated design preblems.

6 Related Work

Several svstems or programming languares with object-
oriented and consiraint paradigm arc presented. The
first systemn of them is Thinglab, & constraint-based
simulation laboratory developed by Borning [Borning81).
Thinglab s suitable for developing graphical user inter-
faces [BorningB6]. SOCLE is a hybrid structured object
and constraint representation language for knowledge rep-
resentation [Harris86). Other systems or languages of
them have similar facilitics using constraints [Shepherd86]
[S1.1'|L:—1.~iﬁ?].

In these systems or languages, constraints are used to
only calculate values of attributes. The constraint satis-
faction mechanism makes it possible to calculate values
of attributes automatically without describing procedure.
This funetion iz useful for parametric design. But in gen-
eral design problems, not enly parameters (values of at-
tributesy butl also Lhe structure of a design olject and the
kinds of parts must he determined. So we must describe a
procedure to search a class satisfying given reguirements
in these systems.

In FREEDOM, not only calues of attributes but also
a class Lhat satisflies reguirements can be determined by
constraint satisfaction. As mentioned in this paper, this
function is useful for solving design problema.

Cronstraint satisfaction mechanisms used in most eon-
venlional systems above are based on the local prepaga-
Lion amd relaxation method. This method iz unefficient
when there is a eyelic dependency. Some systems use
a global method that evaluates all constraints simulta-
neously, Bub in tlus case, as the nwinber of constraints
increases, computational complexity increases exponen-
tially. A large-scale problem must be divided inte sub-
problems to reduce computational complexity.

As shown in Section 4.3, the constraint salisfuclion
mechanism in FREEDOM divides a problem inte sub-
problems naturally according to part-whele relations of
objects. The constraint salisfaclion method which prop-
agates not values of attributes but constraints such as
equations is efficient because it doesn’t need relaxalion.

7T Conclusion

A knowledge representalion systemn for design object
modeling s preseated in this paper. This system, called
FREEDOM, not only represents knowledge about design
objects but also supports design tasks. The object model
is not a mere design structure but an sctive cntity for
problem solving.

The koowledge representation framework of FREE-
DOM is based on object-oriented and constraint-hased
paradigm. It has features suitable for representing design
object: constraints are represented in declarative form, a
class-instance relation can be changed dynamically, and
a clase hierarchy is reprezented using sz and includes
relations.

An object in FREEDOM is kept in the state thatl conp-
straints are satislied; not only the values of its attributes
but also its class are determined by constraint satisfac-
tion. This function is uselul 1o find values of parameters,
types of parts, and the structure of design object that
satisfics design requirements. The constraint satisfaction
mechanism is based on eonstraint logic programming and
constraint propagation technigue.

According to the experience of applying FREEDOM to
simple electronic circuit designs, we think FREEDOM is
a powerful design support tool. But FREEDOM must he
improved if it is to deal with more complicated problems.
Theough the domain of constraints is limited to npumerical
constraint in the system, the domain is being expanded
to symbolic constraints and wser-defined constraints.

Acknowledgement ;

I would like to thank Mr. II eto Sazuka at NTT Dala
Communications Systems C p. for his assistance in im-
plementation of FREEDOM, and Dr, Koichi Furukawa,
the deputy director of LCO'] Hesearch Center, and all
members of the Fiflh Research Laboratory at ICOT for
their helpfull comments. 1 would also like to thank Dir.
Kazuhiro Fuchi, the director of ICOT Research Center,
and Mr. Kenji Tkoma, the chief of the Fifth Research Lab-
oratory, for their suppert and encouragement,

References

[AibaBB] Aiba, A. et al. Constrint Logic Programming
Language CAL, Proc. of International Confer-
ence of Fifth Generation Computer Systems
1988, pp263-276, (1988)

[Borning81] Borning, A. The Programming Language
aspecls of Thinglab, o Constrami-COriented
Simuletion Laboratery, ACM Transaclions on
Program Languages and Systens vol.3, nod,

prddd-3&7, (1981)

[Borning®8] Borning, A. and Duisberg, R. Constraint-
Based Tools for Building User Inferfaces, ACM
Transactions on Graphics, vol.5, ne.d, pp3ds-
374, (1986)

[ChikayamaBd] Chikayama, T. Unique Fealures of ESP,
Proe. of International Conference on Fifth Gen-

eration Computer Systems 1984, pp292-298,
(1584)

[GoldbergBl| Goldberg, A. and Robson, D. Smailtalk-
80: The Language and [ts Implementation,
Addison-Wesley, (1983)

[Marris86] Harris, . R, A Hybrid Structured Object and
Constrainl Representation Language, Proc. of
AAALS6, ppOBE-990, (1986)

[Heintze87] Heintze, N. et al. CLP{R) and Some Engi-
neering Mroblems, in Lassez, J. L. (ed.) Logic
Programming, Proc. of §ih Internattonal Con-
ference, MIT Fress, pp675-703, (1947)

[Jaffer87] Jaffer, J. and Lassez, J.-L. Constraint Logic
Frogramming, Froc, 14th ACM Principles of
Programming Languages conference, (1987)

[MinskyT5] Minsky, M. 4 Framework for Representing
Knowledge, in Winston, P. H. (ed.) The Psycol-
ogy af Computer Viston, MeGraw-Hill, (1975)

[Ohsugads) Ohsuge, S. Concepiual Design of CAD
Syslews Involving Knowledge Base, in Gero,
J. (ed.) Knowledge Engineering in Compuler
Aided Design, pp29-88, North-Halland, (1985)

[Shepherdi] Shepherd, A, and Kershberg, L. Constraind
Management in Erpert Database Systems, in
Kershberg, L. (ed.) Ezpert Database Systems,
Benjamin/Cummings, ppd09-331, (1988)

[Stallman77] Stallman, R. M. and Sussman, G. JI.
Forward Reasoming and Dependency-Directed
Backiracking sn a System for Compuier-Aided
Cirenst Analysis, Artificial Intelligence, vol.9,
ppl3b-186, (1977)

[StefikBE] Stefik, M. and Hobrow, D. G. Object- Oriented
Programmang: Themes and Variafions, Al
. Magazine, vol 6, nod, pp40-62, (1986)

[StrussBT] Struss, P. Malliple Representafion of Struc-
ture and Function, in Gero, J. (ed.}) Ezpert
Systerns an Computer-Aided Design, North-
Holland, {1987)

[SvssmanB0] Sussman, G. J. and Steel G. L. Ir. Con-
strainis - A Lenguage for Erpressing Almost-
Hierarchieal Deserpiions, Artificial Intelli-
gence, vol 14, ppl-39, {19580)

[Takig4] Taki K. et al. Hardware Design and Implemen-
fation of the Personal Sequentiod Inference Ma-
chine (P51), I'roc, of International Conference
on Filth Generation Computer Systems 1984,

pp398—409, (1984)

