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1 Introduction

This paper is concerned with proof procedures for nonmonatonic reasoning systems. Although
we believe many remarks and conclusions presented applyv to most of such systems, we concen-
irate on predicate logic, and its largest computable snbset, clausal logic with domain closure
and unigueness of names assumptions.

Very recently, algarithms for such nonmonotonic systems have appeared, and it seems that
many of them are addressing exactly the same problem. These include Praymnsinski’s [4] and
Ginsberg's [2] algorithms to compute circumscription, and Reiter and de Kleer’'s CMS [3], a
generalization of de Kleer's ATMS, which we analyze in this paper.

Independently of these, Siegel [7] has defined a framework that clearly explains the compu-
tational aspect of such systems, and produced an efficient algorithm which can be applied to
such problems.

This paper

* Explains Siegel’'s framework;

e Uses it to show the strong connection between the problems addressed in 4, 2, 5] as well
as others involving nonmonotonic reasoning;

o Makes a detailed comparison between Siegel’s and ['rzymusinski’s algorithms, which ap-
pear to be very similar. Those conclusions are that 1) Siegel’s is more general, and thus
can be applied to olher problems, and 2) it is more efficient as it includes restrictions on
the search space not present in [4);

*This is a first. dradt.



e Shows how the computational aspect of the CMS, and in particular the ATMS can be
solved with this algorithm;

¢ Makes a comparison between Ginsberg's algorithm and Przymusinski's, which becomes
very easy, as Ginsberg uses an ATMS as part of his algorithm to compute circumsecription.

We assume knowledge of [4, 2, 5], although we provide short summaries of the resulls pre-
sented in those papers.

2 Siegel’s Framework

Siegel first deflines two problems that help to understand the computational aspect of several

nonmonolonic Teasoning systems.
We fix a set of clauses called a produetion field, that will be denoted P. Thesc are intended

to represent the “interesting” clauses to solve a certain problem, and will generally be infinite,
and therefore defined implicitly: e.g.. the set of positive clauses.

Problem 1: Given a theory T and P, find the theorems of T that belong to P, i.e. TA(T)NP.

Problem 2: Given a theory T, P and a formula F, find the theorems of 1'+ F that belong
to P and are not theorems of T, i.e. (Th(T + F) -~ Th(T)) NP,

The only requirement on P is that it should have the following property:

Definition: A production field P is stable if for every formula F that belong to P, F' = F
implies that F' belongs to P.

An easy property is then proved: the union or the intersection of stable production fields is a
stable production field.

For example the set of positive clauses, and the set of clauses formed only from literals
belonging to a certain vocabulary are stable production fields. From the result above we can
conclude that the positive clauses belonging to a certain vocabulary are also stable.

As we will use these concepts subsequently, we give them a name; the following definition
generalizes one given in [1].

Definition: We assume a production field P is given. T is a set of formulae, and F is a
formula.

1. The characteristic clauses of T', denoted Care(T), are the theorems of T that belong to P;
Care(T) = Th(T') N P. Moreover, we require that this set contains no subsumed clauses,
i.e. if ' and €' are in the set and C | ¢, then ¥ |= C.

2. The new characteristic clauses of F' wrt T are the characteristic clauses of T+ F which
are not characteristic clauses of T'; Newearc(T,F) = Care(T + F) — Care(T).
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We will see how these concepts help to understand much of the work being dene on the
computational aspects of nonmenotonic reasoning.

3 Przymusinski’s Theorems

Praymusinski (4] is cencerned with the problem of computing circumscription. For this he
provides both a pair of theorems and an algorithm. In this section, we will Teexpress the
theorems using the definitions given above. This will help to understand the meaning of the
theorcins and make clear the relationship with other work. We first consider the two theorems
explicitly mentioned in the paper, and then show that these have heen strengthened in the proofs
of the completeness of the algorithm. We will be later concerned with the algorithm itself.

3.1 First Results: Theorems 2.5 and 2.6

Theorem 2.5 (Przymusinski): If F' does not contain literals from Z, then CITRC(T; P; Z) =
F il there is no clause D such that (i) D does not contain literals from Z + P, and (ii)
P'E-FvDbulTD.

The production field here is P = P* + . ' Condition (i) thus means D belongs to P.
T = -FV I} can be written as T'+ ¥ | D. So we arc looking for a clause D in the production
field, implied by T' + F but not by T alone. In other words,

Theorem 2.5 (New version): Let I be a formula not containing literals from Z. Let P be
Pt 4 (). Then
CIRC(T; P, 2= F ff Newecare{T,F) = ¢.

For [ormulae containing predicates from Z, the following holds:

Theorem 2.6 (Przymusinski): F is any formula. CIRC(T;P;Z) |= F iff either T k= F or
there is a formula G such that (i) & does not contain literals from Z + P~; (i) T = F v G and
(i) CIRC(T, Py Z) = -0,

Now, T' = F means T'U —F = false; note that in that case, Newcare(T, =F') would contain
only O (the empty clause). Condition (i) again means that & belongs to P; and condition (ii)
can be written as TU-F |= G, If (7 is O (the formula false), then =G is the formula true and
adding it to a set of formulae produces no new theorem: Newcare(T,true) = ¢. We can now
write

"We denote a production field simply as a union of collections of literals, but it also means the set of clauses
composed only by those literals.



Theorem 2.6 (New version): Let F be any formula. Then
CIRC(T, F; Z) = F ff Newcarc(T,=F) 1s a formula & * such that Neweare(T,~G) = ¢.

Of course no important result has been given yet. But this formulation seems to be much
mere clear than the former. For example, the first theorem says the following, We want to know
if a formula is true in the (P, Z)-minimal models of a theory. Now, certain clauses deducible
from the theory are representative of those minimal models, in the sense that il adding the query
to the theory produces a change in those clauses (i.c. a new one) then the addition of the query
has produced a change in the minimal models as well. These representative clauses are of course
the characteristic clauses. The existence of a new characteristic clause thus means the query
has altered the minimal models: thus if Newearc is empty, the addition of the query has no
effect on the minimal models and thus the circumscription of the theory satisfies the query.

Let’s review some of Przymusinski's examples with this new concepts. (The examples are
numbered as in [4]).

Example 3.5: The following theory T is given, with £ = {I,s,j}, and Z = ¢.

(A, L)V (A, G) V ~s(A)
—ms(A) VI[A, L)
s(A)
maskA).
The production field is then P = P* 4@, i.e., positive occurrences of literals whose predicate

symbol is [, s, or j, and any occurrences of literals from mas.
The characteristic clanses of T are thus:

(A, 1)
A FIVIA S v —3(A)
s(A)
ms(A).
The query ' = ~I(A,G) has the same characteristic clauses: if added to T it generates no
new theorem belonging to P. Thus Newearc(T,C) = ¢ and, as expected, CTRC(T,P) |k C.

Next an example involving queries containing predicates from Z.

We use Neweare as a single formula as well as a set of clauses (with an implicit conjunction}.



Example 3.10: The theory T is

B(T)
~B(T) v ABT) v F(T)
~O(T) v ~F(T).

In this classical bird example, of course P = {Ab} and Z = {F}, so P contains positive
occurrences of Ab, or any occurrence of B and (). The characteristic clauses are then:

B(T)
AB(T) v ~O(T).

Przymusinski shows that the circumscription of T' does not satisfy G = F{T') bnt satisfies
= 0(T)v F|T). Let’s verily these facts.

Adding —=F(T) to T produces the new characteristic clause AKT). We now add —AbT') to
T which gives another new characteristic clause: —~((T)}, and thus F{T) does not follow from
the circumscribed theory.

Now we add =H = -O(T) A =F{(T). T+ {-0(T)} + {~F(T)} has ~0O(T) and AKT) as
new characteristic clauses. The negation of these two clauses is Q{1 Vv =AW T). Adding this
to T produces no new characteristic clauses, as the only new thevrems are Q{T) v = ABT) and
F(T} and they do not belong to 7. Thus, as expected, (7 is in the circumscribed theory.

3.2 Second Results: Completeness of MILO-resolution

Przymusinski then presents an algorithm, MILO-resolution, and proves its completeness regard-
ing the problem of computing circumseription. In faet this completeness result strengthens both
of the above theorems, showing that not all the characteristic clauses need to be produced. [t is
suflicient to consider a subset of these, those that result from the algorithm skipping all literals
i the production field.

For a trivial example, if P contains both a and b, the origin clause is simply {a}, and the
theory contains only the clause {—a,b}, the characteristic clauses are both {a} and {b}, while
MILO-resolution will only produce {a}.

The reason is obvious. Suppose that in a deduction from a theory T, we skip a literal from
a clause 'y, and MILO-resolution end with a leaf ;. Then resolving such a literal instead of
skipping it will produce, as a leal, a clause (5, and it is clear that T U {Cy} E C5. This set is
called the Deriv(T, "), and due to this last observation,

Derin(1,C) | I" iff Care(T'+ () = F,

thus showing that only Deriv is needed. .
Now, the derivatives are defined only operationally: they are the output of MILO-resolution.
The above remarks help to characterize them semantically: they are the minimal set of clauses of



the production field from which the characteristic clauses can be semantically entailed together
with the original theory, le. the minimal et & such that

TUS | Care(I' + O).

As we will refer to such a set S later, let's call it the minimal precursor of the characteristic
clauses.

4 Generalizing Przymusinki’s Results

At the light of the previous discussion, let’s try to generalize the above results.

Generally speaking, in any problem involving nonmonotonic inference, some formulae will
behave monotonically: there will always be a theorem saying that some formulae will be valid
m the extensions of the theory (or minimal, or preferred models) if and only if they are se-
mantically entailed by the theory (valid in all the models). For example, in Bossu & Siegel’s
subimplication [1] in which all literals are minimized, these monotonic formulas are the positive
ones. Przymusinski’s Corollary 3.6 [4] shows that for circumscription the monotonic formulae
are those formed by literals ;from P* 4+ Q. In general, there will be a subset of the repre-
sentation language £ that we can call the monotonic subset and denote £y, such that, (using
Shoham's [6] notation in which j=¢ means entailement by the preferred models,) for every F of
J':M‘ T |=|: FiaffT .:': F,

Now, loosely speaking, the answer to the question T e F will be “yes”, if T and T + F
are in some sense equivalent: that means that F has not added any new information to T. Te
answer this question we thus need to compute the theorems of 7'+ F and compare them to the
theorems of T alone. As this computation is very expensive (NP-hard for non-Horn theories),
we should look for the smallest subset of Lhe theorems for which the property holds, i.e. the
smallest subset for which the addition of F' produces a change if and only if the answer is “no”.

This smallest subset is the one formed by the thearems that belong to the monotonic subset,
Le, Care(T + F) when P = L.

As once the characteristic clauses of T' + F are computed, we will need to test whether or
not they are implied by T alone, and owing to the discussion at the end of last section, we need
only compute the minimal precursor of these characteristic clauses. This is thus the smallest st
needed to be generated in order to answer such a query.

We now examine how Siegel and Przymusinski have found very similar algorithms to comnpute
this set.

5 Przymusinski’s and Siegel’s Algorithms

In [7], Siegel gives an algorithm to solve problems 1 and 2, i.e. to compute the theorems of a set of
clauses belonging to any stable production field . Although using very different data structures
and notations, it appears that this algorithm is very close to Przymusinski’s MILO-resolution;
it has, however, some important new features. Rather than giving a complete description of the



algorithm that would involve introducing all the formalism used by il, we give the results of the
mapping from one to the other, using Przymusinski's data structures and notations.

The following changes in Przymusinski's algorithm gives Siegel’'s. Among them, the first is
by far the most important. It is a generalization of Przymusinski’s algorithm that shows the
algorithm need not make any reference to circumseription or minimal models and thus can be
applied to other problems as well. The second one is strongly related to the discussion at the
end of the last scction: it shows that MILO-resolution computes the minimal precursor of the
characieristic clauses, while Siegel’s can either be used to compute this minimal precursor or
all of the characteristic clauses. The third one indicates that the efficiency can be improved by
reducing the clauses with which the current clanse is resolved upon, thus reducing the search

space.

L. Siegel's algorithm is more general: No refercnce at all is made of circumseription, or
literals from P, ), or Z. Instead it produces theorems belonging Lo any stable production
field P. Taking P = P* + @ gives MILO-resolution. So the first modification of MILO-
resolution to give Siegel's is the following: in step (1) replace the words “that belongs to
& + P77 by the words “that do not belong to P7. (N.R. Of course the important thing
here is that all reference to literals relevant to circumscriplion are avoided and any stable
P can be used instead. The other change, i.e. replacing “helongs” te “not belongs” and
taking the complement of £ + P~ (i.e. P* + @) as production field is only made to stress
the importance of P = P* + @ as representative of the minimal models).

2. Przymusinski skips the resolulion to literals from P. Siegel either skips them or resolves

on them. When all literals have been skipped, the clause belongs to P, and thus the
algorithm stops.
We showed in the last section the differences between skipping literals from P or not:
Siegel proves his algorithm produces all the characteristic clanses, and resolving in all
possible ways all literals is necessary for this to hold. Praymusinski skips those liter-
als; this produces a minimal precursor of the characteristic clanses, and this is enough
to correctly answer querics involving model-preference nonmonotonic inference. But not
skipping them, i.e. computing all the characteristic clauses instead of a minimal precursor
can be necessary for other problems.

J. Siegel includes two additional results that makes its search space smaller (of course, without
sacrificing compleleness neither in the general case of computing all theorems belonging
to the production ficld, nor in the particular case of computing circumseription ):

(a) it restricts the resolution of the current clause with clauses from T not having literals
equal to framed literals at the right of the literal resolved upon, as this would produce
only clauses subsumed by some previous current clause.

Example:
F = {a,d].

Suppose F resolves with the following clause of T'

{—a,b,c}

=]



Eiving
{b,e,lal, d}.

Now suppose there is a clause

{' b, a}
in T. The above restriction tells us that this clanse may safely be skipped in the
deduction, as it contains a, a literal appearing framed in the current clause. In effect,
it would give the clause

{a,[8],¢,[a],d}
which is subsumed (in the sense of OL-resolution, i.e. taking into account only
unframed literals), by a previous current clause, I7.
Clearly, this has two advantages: 1) it restricts the search space and 2) it avoids
many of the subsumption tests in step (iii) of MILO-resolution [4, Definition 3.1].

(b) Let € = {7 be one of the current clauses (the ) are sets of literals}, in which
I is the next literal o be resolved upon (i.e., the first literal not from P). Then if
the clause €y C; appears later in the deduclion, all remaining choices from ¢ can be
avoided, as they will only produce subsumed clauses.

In the most trivial example, if the current clause is
F={ab}

and T contains
{~a,8)
then the clause
{8}
is produced (we did not write the framed literals as they are not relevant to this
example).

In this case ), = ¢ and C; = {b}. Now if T contains, e.p., {-a,e} then when
backtracking oceurs the algorithm ean safely avoid making this resolution. In effect,
it would generate

{e,)

which is subsumed by the previously penerated clause
{b}.
Siegel then proves the following results:

1. Decidability: The algorithm stops.

2. Soundness: Every clause produced from T' + F' is implied by T 4 F. *

*The notation T+ F is used in [4] 5o we keep it to make the comparisen clear. It means both the set TU{F}
and the linear resolution from the set T' with arigin F.



3. (Strong) Completeness: If T does not imply G, and T + F implies &, then therc is a
deduction from T+ F (i.e., whose origin 18 F') that produces G.

These results also hold if we speafv any stable production field.

Hasicallv, results similar to these are also implicitly included in the proofs Przymusinski
gives at the end of his paper. But again, these are independent of circumscription or minimal
models and thus the algorithm can be applied — as we will shortly see — to other problems as
well. In other words, Przymusinski’s proofs mixes up two completely different results, namely:
1) the validity of Theorems 2.5 and 2.6 listed above, and 2} correctness and completeness of a
particular resolution algorithm, that itself has nothing to do with circumscription or minimal
!'I!Udl.‘]ﬂ.

The following are some remarks concerning efficiency.

o Przymusinski is not very much concerned with efficiency problems: keeping the initial
theory as it is forces his algorithm to do the same inferences over and over for different
queries. However, some of these inferences can be made once and for all, without knowing
the guery. That is of course the motivation of our definition of characienstic clauses: they
represent Lhe comnpilation of the theory, Le. all the inferences that can be made before the
query is issued.

But the two situations — queries invelving or not involving predicates from Z - must be

handled difterently. Not dealing with predicates from Z is easy; in this case, the following
can be proven by applying the definition:

Newcarc(1,F) = Newcare(Care(T), F).

This shows the nitial theory T can be compiled into Care(T). When a query is issued,
we just need to add it to Care(T), and compute the new characteristic clauses.

Unfortunately, this is not the case if literals from # are concerned. An easy counterexample
15 the following,
T = [Bird, —~Birdv Abv Flics}.

Care(T) is simply Hird, as the other theorem, AbV Flies, is not in P (Z = {Flies}).
Now adding —Flies produces Ab as a new characteristic clause, because it resolves against
a literal jfrom Z and thus makes the resulting clause be back in the characteristic clauses.
However, the situation is not so bad: the original set can yet be simplified, computing its
reduction, i.e. replacing it by the set of subclauzes implied by T". In this example, this
means that although I° cannot be compiled into {Bird}, its only characteristic clause,
it can be compiled into {Bird, Ab Vv Flies}. We develop on this while cumparmg the
compiled /interpreted approach in next section.

L A th]ﬂm Cﬂnﬂﬂrﬂing IIGI]I[I{JHE}LHTI{{: i]lrt.‘n‘.'.[li_'ﬂ [U{!Illputillg ﬂirf"lIlH{:ripLi{Hl hﬁ'i'llg []IIL‘,’ Qne
example), will always need some kind of saturation, i.e. computing all the formulae of a
certain production field. An ideal algorithm would directly produce these claunses. Un-
fortunately, such an algorithm does not exist, as any known algorithm produces many
redundant (i.e. subsumed) clauses. If such a subsumed clause is produced, all deductions
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that use this clause will be redundant tuo, so the price payed for producing such redun-
dant clauses is very high. Of coursc as soon as a clanse is produced, a subsumption test
can be made, but this would involve making too many subsumption tests, which is very
expensive tou. So Lhe key problem is to produce as less as possible redundant clauses and
vet performing as little as possible subsumption tests.

This is exactly the motivation behind condition 3-a above, neither present in OL-resolution
nor in MILO-resolution, and the relative efficiency of the algorithm comes in part from
this condition. If the original set is “clean” (contains no subsumed clauses), none of the
current clauses will be subsumed by any previous one neither by a clause that participated
in the deduction. So the current clauses (and in particular the final one) can only be
subsumed by a clause that did not take part in its deduction. For example, from the set

{{a,b}, {a,c}, {b.d}}
the deduction with origin
{=¢,~d, e}
will produce (we do not write the framed literals here)
{a,b,e}
which is subsumed by {a, b}, that was not called in the deduction.

This is in fact the reason why a the “strong-soundness” property (dual of the strong-
completeness) is inissing from the list of the 3 results listed above. That property would
he “every clause produced jfrom T+ F is implied by T - F but not by T alone”.

Ewven if the algorithm presented here has many advantages regarding efficiency, computing
circumscription still remains NP-complete, as it is equivalent to the decision problem in
propositional logic. A very important peint which is often neglected is to find heuristics
to make NP-complete algorithms work efficiently in non-trivial problems. Siegel includes
a study of such heuristics. Although this point is out of the scope of this paper, let us
mention the following one as an example. Tirst, the current clauses are written using a
different data structurc. For example, the framed clause

{a,[b],¢,[d], e}

iz written
(abd)(cd)(e).

So the first literal of cach list represent unframed literals of OL- resolution, and the rest
of each list represents the framed literals at the right. Now, this permits reordering the
clause at each step: for example, this clause can be rewritten

(e)(abd)(cd)
without altering any of the propertics of the algorithm.

Reordering the clause so that the literal whose opposite appears in the least number
of clauses of T is put first, is a heuristic that has proved to substantially improve the
complexity of the algorithm.
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6 Reiter and de Kleer

Reiter and de Kleer (5] propose a generalization of the basic ATMS called the CMS (clanse
management system) and show its application (v abductive reasoning and efficient search. A
(CMS is intended to work together with a rcasoner, Lhat issues queries that take the form of
clauses. The CMS is then responsible for finding supports, which are clauses whose negations
(called ezplanations) are the most gencral contexts in which those queries (called observations)
hold.

The key concept is thus that of suppert for a query C with respect to a set of clauses X
Such a support & must verily the following:

1L YESUC
2.0 KS

Moreover, a support is minimal if no proper subset of it is a support.

Reiter and de Kleer then poinl out that, if we want to maximize the efficiency of the CMS
once a query is issued, the set ¥ should be saturated (i.e. containing every clause implied by it
and with no redundant clauses), as in such a case, 2 clause logically follows from the set iff it
is snbsumed by a clause in the saturation. They call such a set the prime implicants and show
some relationships between prime implicants and minimal supports.

Reexpressing the [irst condition as © U -C |= S, and setting the production field to be the
set of all clauses, we see that

Mrnumal Supports(EZ, ) = Newearc(T, ().

However, =C is now a conjunction of literals. not a clause. But this is no problem, as the
following result holds:

Proposition: Let H =) A--- A O, be a conjunction of clanses. Then

Neweare(Z, H) = | | Neweare(E,, ),
i=1

where By =X and Yy = X+ O fori=1,...,m -1

if however we eliminate subsumed clauses from this last set.

In other words, we just need to run the algorithm with each clause, and then clean up the
resulting set to eliminate redundant clauses.

In the case of de Kleer's ATMS, there is a distingnished subset of propositional symbols called
the assumptions. The important point is that in this case, the output of CMS are clauses that
only contain such literals. So the production field is that set of clauses containing only negations
of assumptions. (Note that an explanation of a formula is a negation of a support for it.)

Finally, Reiter and de Kleer consider the tradeoffs between a compiled and an interpreted
approach, In the former, the prime implicants of ¥ are computed. This is very expensive, but
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retrieval is then efficient. In the latter, CMS's database is kept as il is; the price we have to pay
is a high retrieval cost.

We thus see that Siegel's algorithm will compute prime implicants and minimal supports.
But as Reiter and de Kleer point out, that can also be done with a brute force algorithm,
that makes all possible resolutions until enly subsumed clauses are produced. So let’s consider
efficiency problems compared with such an approach.

Computing supports using a compiled theory is not expensive. The serious problems are
either computing supports with an uncompiled theory or compiling a theory, Regarding com-
plexity, these problems are equivalent. The prime implicants can be computed using every clause
as origin; for the first of such clauses, the original theory will probably be highly redundant; for
the second one, a little less, and so on. Thus the interpreted approach is a particular case of
the compiled one: the question is to know how efficient will be the algorithm working with &
non-compiled theory.

In both situations, two cases have to be considered.

1. In the general case of the CMS, no distinguished subset of the language has a priority.
Thus the relative efficiency of the algorithm as compared with a brute-force algorithm
comes from the additional conditions needed to make a resolution: thosc involving framed
literals. Among them, the last two remarks al the end of last section are particularly
relevant.

2. In the case of the ATMS, the algorithm must produce clauses all whose literals are from &
distinguished subset of the language. Of course in this situation, in addition to the above
remarks that still hold, the algorithm performs much belter as the search focuses on this
restricted vocabulary.

But there is another interesting production field that offers an intermediate alternative to
the compiled /interpreted disjunctive. If the production field is the set of subclauses of clauses
ef £, (note this is a stable production field) then T is reduced to a high extent. Computation
from this new set will thus be much more efficient than from the former, and yet not all the
theorems of the original sct need to be computed.

For example, the set {{a}, {-a,b}} will be transformed in {{a},{b}} (in this case producing
the sub-clauses is equivalent to saturation), However, {{a,e},{—a,b}} contains all the sub-
clauses implied by it and thus will not be simplified, while the saturation would have added
{b,e}.

Before concluding this section, we should note that in the original setting of [5], the CMS
and the ATMS are used for computing all minimal supports for the query. This is just the case
of not skipping literals from the production field, which is described in the Siegel's condition 2
in the last section. But if we need the minimal precursor of the characteristic clauses instead
of computing all the characteristic clauses, we can extend the notion of the CMS as described
in section 3.2. We show in the nexi section how the concept of minimal precursors is useful for
computing circumseription if we use an ATMS to answer whether or not a formula holds in all
preferred models.
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7 Ginsberg

Ginsberg [2] presenls an another algorithm for computing circumscription. For the algorithm
to work, assumptions as in Przymusinski need to be done: clausal logic, domain closure and
nnigqueness of names. The algorithm however works only in the case (. the set of fixed predicates,
15 empty.

First, a result iz presented which transforms the problem of circumseription inte the problem
of finding a confirming formula for the query. These confirming formulas are then computed
using an ATMS5.

We show here that Ginsberg's result is exactly the same as Przymusinski's second theorem,
and leads to a straightforward generalization to the case in which not all predicates vary. These
results were however expected, and Ginsberg mentioned both of them. But more interesting,
Ginsberg uses an ATMS to compute confirming clauses, and claims this is the main difference
between his work and [4]. Now, we have seen that Sicgel's generalization of MILO-resolution
does the same job that of an ATMS, namely computing minimal supports. Thus this algorithm
subsumes bolh Preymusinski's and Ginsberg's and helps to understand the close connection
between Lhem,

We turn to cach of these points now,

7.1 Results

Let’s transforin Ginsberg's definitions and results to ours.

Definition 3.1 (Ginsberg): D i1s a sct of sentences. p is in dnf form wrt [ if it can be
written as a disjunction of conjunctions of elements of [J. T is a set. Then g is confirmed by p
wrl T and [} if the following hold:

1. T'U {p} is satisfiable

2. Tu{pl =1
3. pis dof wrt 1.

In our terms, ¢ is confirmed by p if

].. :{I % _|P

2. TU{~q} —p

3. —pis a set of clauses (i.e., a conjunction of disjunctions) of the production field =D.

Or, in other words,

Definition 3.1 (New Version): ¢ is confirmed by p if —p iz in Neweare(T, —q).
Moreover, ¢ is unconfirmed, if no p confirms ¢: iLe., il Newecare(T, ~q) = &.
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WNext is the main result:

Proposition 3.2 (Ginsberg): CTRC(T:P;Z) |= q if and only if there is some p confirming
g so that =p is unconfirmed.

which we can rewrite

Proposition 3.2 (New Version): Set the production field to -D. CIRC(T;P;Z) k& qif
and only if Newecare(1,—q) is a formula p such that Neweare(T, -p) = 4.

Ginsberg briefly mentions connections with Przymusinski’s work and the possibility of relaxing
the assumption of all non-minimized predicates being variable. Our above results show that:

1. This last proposition is exactly Przymusinski’s theorem 2.6.

2. All results can be extcoded to the case @ # ¢ (i.e., not varying all predicates) just by
setting [} = P~ 4 (), that is, P = =D = P+ + ¢

7.2 Algorithm

Let’s now compare Ginsberg's algorithm with Przymusinki’s. Both start with exactly the same
put and produce exactly the same output, so let’s see where the computational differences lie.

Let us remark that this comparison is somewhat difficult to make, as (Ginsberg does not
give an implementation algorithm, but uses an ATMS based on his multivalued logic [3], whose
applicability is much wider to this specific problem. But still enough information is present to
draw many conclusions.

Ginsberg's algorithm only works for the case @ = ¢; as we showed that it can be easily
cxlended to the case  # ¢, this is no problem: the following discussion is valid in either case.
But of course it would be of no usc to compare Ginsherg’s original setting where () = ¢ with the
general problem in which @ # ¢: in the former case, the production field is simply P*, which
is much smaller than P* + @, and as the efficiency of the algorithm depends critically on the
size of the production field, the comparison will not be very interesting.

Ginsherg, referring Preymusinski, says that “the algorithm he develops appears to be sub-
stantially less efficient than the one we propose”[2, page 100]. We believe this is wrong. In fact
the only advantage of Ginsberg's algorithm appears to be the following: as it uses an ATMS, it
records some inferences so that they are made only once, while Przymusinski’s might do some
of those inferences unnecessarily over and over again.

We already have pointed out this problem in Section 5. Again, that is the motivation
behind the definition of characteristic clauses, and this solution, of course more efficient than
Przymusinski's, appears to be also better than Ginsberg’s: we don’t need to wait for a query
to be issued and, while answering to it, record the inferences. We make all possible inferences
before the query is issued, and so minimize the answering process,

Now, to make the competition fair, suppose that Ginsberg starts with the characteristic
clauses too, or with whatever set he thinks might the best one to answer the query faster,
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We believe MILO-resolution will be much more efficient, and if we add Siegel’s improvements,
the difference will be still greater. Our argument will be as follows: first, we defined the
minimal set of formulae that need to be generated in order to correctly answer a query; we
show Ginsberg generates more than these formulac. More precisely, Ginsberg generates all the
characteristic clauses, while Przymusinki-Siegel (subsequently denoted PS) generates only their
minimal precursor. Second, even il we fix a set of formulae to be generated, PS will generate it
much more efficiently, because it has available information eoncerning (a) the production field,
and (b) the framed literals, while Ginsberg uses a conventional theorem prover [3, Procedure
10.3].

Let's develop on this.

1. Ginsberg generates all the characteristic clauses, thus more formulae than those needed.

Note thatl this has two disadvantages: the cost of generating those additional formulae,
and the cost of testing if the negation of these produces no new characteristic clause (i.e.,
what Ginsberg calls testing if the negation of the confirmation is unconfirmed).

The example is the following: T is
{AV-F, Pv-DP; PVZ)

The production field is P = P*, i.e., positive occurrences of Fy, Py, and Ps. The query is
z.

Dy adding =£ 1o T, PS generates only Ps, the only new theorem that belongs to P. This
literal belongs to P and thus the algorithm skips it and stops. It then adds =Py te T
which generales no characteristic clanse, showing that CIRC(T; P; Z) | Z.

Let’s see what Ginsberg does. The sct of assumptions is 2 = =P = P-. Then, the
confirmation of Z is dnf:
_'Pﬁ_ i -"Pz W _|P|.‘

The negations of the confirmation is
Pan Pyoa Iy,

which is unconfirmed.

So the ATMS has produced two additional contexts, {—=F;} and {=P}, in which Z holds
(the three are produced as neither is a subsel of another). PS did not need to generate
them. As explained above, the reason is that {F,} is the minimal precursor of the others,

as
T {Pg] IZ B APy,

2. Even if PS generated such a larger set, it would do it in a more efficient way, and for two
independent reasons:

(a} It uses the information on the production field not at all present in Ginsberg, who
uses a conventional theorem prover. Thus, it generates far less clauscs.
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For a very simple cxample, suppose the query is Z V (), where Z is not in the
production field, while {} is. If Z cannot be resclved against clauses of the theory
in such a way that the result of the resolution produces a clause in the production
ficld, PS5 will never try to resolve on . Of course the conventional theorem prover
will give no priority to & over () and thus try all the resolntions on ) as well.

This example, although trivial, is representative of what will happen in more realistic
situations. In general, maybe Z will be resolved against literals belonging to the
production field, thus producing characteristic clauses. But all the failed branches
will produce backtracking, while a conventional theorem prover will examine the next
literal, (J, making unnccessary computation.
(b) PS will generate less redundant clauses, and yet make less redundancy tests.

This has extensively been discussed above. The reason here is the information in the
framed literals, not present in Ginsberg,

In particular, the additional test Siegel introduces, not present in MILO-resolution,
is a fundamental one for this purpose. For this problem, however, Ginsberg has some
answer: his bilattice records some clauses produced by the algorithm in order to
avoid producing redundant ones. In his terms, this means only keeping justifications
which are less general than others in [3, Procedure 10.9]. It is diflicult to evalnate the
hehavior of the algorithm at this point as it is not clear when those subsumption tests
are done. But again, doing the subsumption tests is less efficient than just avoiding
in the deduction the resolution with clauses that will necessarily produce redundant
ones. To be convinced, read again Section 5.

8 Conclusion

We have tried to show that many different problems concerning nonmonotonic proof procedures
follow exactly the same pattern:

® The key problem is to know if the query has altered the preferred models of the theory.

e A subsel of the theorems of such a theory is representative of the minimal models, in the
sense that a change in this set denotes a change in the minimal models as well.

o These representative formulae are the ones constructed on sub-vocabulary of the language,
the one on which the (nonmonotonic) inference rule behaves monotonically.

* As an implication test is necessary after generating such representative formulae, only a
subsct of thesc is necessary: the minimal precursor, which is thus the smallest set that
needs to be generaled to correctly answer a query.

We then compared Siegel’s and Przymusinski’s algorithm that solve this problem, and showed
many connections with Reiter & de Kleer’s and Ginsberg's work.

We believe many improvements concerning efficiency can still be done. We are currently
investigating this at ICOT.
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