ICOT Technical Memorandum: TM-0783

TM-07HI

Formal Semantics of Flat GHC

by
K. Ueda & M. Murakam

July, 1984

1989, 1COT

Mita Rokusa Hidg 21F (03 456-3191 -5

COT 28 Mita 1-Chome Telex ICOT 132061
Minate-ko Tokyo 108 Japan

Institute fo} New Generation Computer Teéh_nology

Formal Semantics of Flat GHC

Kazunori Ueda and Masald Muralams:

{Institute for New Generation Computer Technology)

1. Introduction

GIIC [1] & & simple concurrent programming lamguage
hased on the process inlerpeetetion of Horg-clause pro-
grams. This suggests two approaches to the formal seman-
tws of GHO: one s lo adapt the formaliem of concurrent
processes such as CCS [2]) and the other is to adapt the
declarative semantics of logic programs [3]. This paper in-
formally describes these bwo approsches,

This paper deals with a subset of GHC called Flat GIIC
[4], which restricts guard goals to the calls to test predi-
cates, predicates defined using clauses with empty bodies.
Flai GHC 15 expressive enough to descoibe concurrent pro-
reases and has two desireble properties; that iy, puard gosds
are deterministic and generate no substitutions.

2. Semantics of Flat GHC as a Process De-
scription Langunage

The semanties as a process deseription language, which is
fully described in 4], was motivated by our previous worl
on transformation rules for Filat CHC programs that were

finally formalized in [4].

2.1 Design Criteria

+ Modeling Hehewor. A multizet of GHOC goals can be
regarded a8 a process that communicates with the out-
sade world by observing and generating substitubions,
The semantics should model this behavioral rspeet,

Abgtraciness. The gemantics should concentrate on
communication. It should abstract away internal af-
faira of & process such as the mmmber of (mb)poals ad
the number of commitments done. Also, 1t should ah-
stract away how unification is specified in the sourcc
text.

Modeling ron-lermingting progrems. We must be oble
to define the semantics of programs that do not terma-
nate bl are still waeful

Modeting anomelous dehavier. Anomalous behavior
such as failure of & unification goal in a clase body,
irreducibility of & non-unification goal and infinite com-
putation without observable substitution must be mod-
eled, because we have to prove that such behavier is net

introdueed by program transformation.

« Simplicity and generalify. The semantics should be as
simple and general as possible to be widely used. We

decided to use standard tools such s finite terms, sub-
stitutions defined over them, and least fixpomls, We
decided not to use a mode system that assigns the mode
inpul or output to each argument of & predicate. We
decidad nof to handle discontinuous eoneepts ke fair-
Ness.

2.2 The Semantics

The semantics of & multiset By of goals under a program 7,
dennted [Byle, is modeled s the set of all possible finite
sequences of transactions with it. A (normal} fransaction,
dencted {m, 4}, is an act of providing & multiset of goals
with & possibly empty input subalifubion o and getting an
ohservahle (see helow) sufpud substituiion 3. An ocutput
subsiitution is alzo called & portial enswer subaistution, We
use idempotent substitutions to mede] information commu-
nicated with a multiset of poals,

Thie first Aransaction {eq, J)) most be made through the
vartables in var(M,), called the interfoce of By, The abowve
observability condition for ¥ can be written as Syogdh) 2
Bpey. Ay the result of the first tronsaction, Dy will be
reduced to a multizet By of goals, which represonta the meat
of the computation. Then the second teansaction (aa, 5)
musl be made through the nterface vae{Doan 5.

The ‘siz=’ of & transaction depends on how the cutside
world observes an eudput substitation. Suppose By returns
& complex [or even infinite) data structure ¥ in response to
an input o, What shauld f; be, or what should the sutside
wozld see in one transaction? The answer is that the outsice
world eon observe any finite enti instance of ¢ (Le., a term
of which i an instance]. In our semantics, the result
of one unification goal may be observed using twe or more
tranractions, mod fhe resull of two or more unification goals
may he obeerved in one trensaction. A Lransaction i of &
fimite nature; it 1 realized by a finite number of reduetions
and can return only 2 finite data strocture,

The outside world moy not comomunicate wich By at all.
This is modeled by always including ¢ (empty seguence)
it [Balp. The empty sequence is used me n hase case in
defining the semantics of By inductively,

An input &y to By may not necessarily cause a normal
transaction as defined above, TFirst, it may cause failure
of & unification gual ju 2 clause body. This is modeled by
letting {oy, T} € [Bolp, where T menns fuilure. The trans-
action (o, T) menns that the input oy may lead the com-
putntion to o chaotic situation. Second, By may succeed
(i.e., be reduced to an empty muliiset) with no observable

output, Third, By may deadlock (ie., be reduced to a2 mul-
tiset of goals that does not allow Farther reduetion) with no
chéervable output. Fourth, By may fall into infinite com-
putation that does not generate observable oulput, The
last three cases mean mactieely of By and cannol be dis-
tinguished from cutside; so they are all modeled by letting
fuy, L} € [Boly, where L stands for ‘no outpat”. Hewever,
if nocessary, these cases could be distinguished in the se-
mantics by “!iﬂ-E Lonceesss L deadioes a0 L divergence instead
of L. Failure and inactivily are called special fronsaciions
and cannob be followed by other transactions; they are used
a5 base cases in defining the semantics of I,

The semantics shown above, in retrospect, is similar te
Heare's semantics of nondeterministic processes [5] in the
sense that both characterize procesees 1n berms of their pos-
sibly anomalous bohavier using o similar technique. How-
ever, the basie concepts of processes in these formalisms are
quite different.

2.3 Examples
Consider & single clanse program

Fi plx) - true | X=£(Y), p(¥).

and eutonomous (i.e., empty input) transactions with P,

Then [p{%}]p has

{;L{n-—fl:n]]},
?3'. {ret(x0)) {0, (X1 —2(x22}),
PAT £ (0, {1 =2 (x2) 1) {8, {22 (X33 Y),

anel also

(B X222},
(X —20ei20x330)),

Note that [p{X})5 contains {§, Liisergence} 35 well, because
the goal X=f(¥) may be ignored consistently 1 an unfair
execution.

Our model successfully circumvents Brock: Ackermaon
anomaly [6]. Let B4 be:

df[k1.],0) :- true ! O=[a&,a].

mergel [A1%1],Y, %) = trun |
In[A1Z1), merge(X1,Y,Z1}).
nerge(X, [AI¥Z1.2) :- true |
Z=[Al21], merge(X,¥1,Z10.
narga([] ,Y,2) :- true | Z=Y.
merge(X, [1.Z) :- true | Z=X.

pi{la.BI_}.00 := true | O=[4,2].

p2{[a]21],0) :~ true | O={AlD1], p21(Zz,01}.
p2i([BI_],01) :- true | Di=[B].

g1(1,3,0} := trua |

d{I,X), 4(J,¥), merge(X,Y,Z), pLl{Z,0).
g2(T,31,0) := true |

4(I,X), 4(1.Y). merge{X,¥.2), p2(Z,0}.

Ther, the computation
{1 [al 3} {0 [nlﬂ'I}}

belotigs both to [ga(1,J,00]4, aad to fg2(1,7,00]5, (0
being a fresh variable], bal the comnputation

T Tal I} {0 Tal0T ({1 [u1_07.f0" [B1}}

belongs oniy to [g2(L,1,00] g, and not to {g10I1,7,00] 4.

3. Semantics of Flat GHC as a Logic Pro-
gramming Lanpguape

In this section, we introduse a model-theoretic semantics
of Flat GHC programs. For pure Horn-logic programming
languages, the results on the model-theoretic semantics ave
reported in [3). T that approach, the denatation of a pro-
gram 5 given as the minimum model of the set of Homn
clauses defining the program, in other words, as the set of
ground unit elasses.

The idea of giving the semantics of a prograum by a seb
of unib clauses s a usefnl and elegant one also in the case of
Flat GHC programs [7]. Levi |7] introduced the notion of
guarded atfoma as a GHC counterpart of the nation of nnit
elauses i ordinary logic programming. A guarded atom is
a guarded elause such that all guard and body goals are
unification atoms. However, in this approach, a puarded
atoms descoibes only the relation between input substitu-
tions to & goal and computed substitutions obtained when
the goal suecesds. This kind of relation is insufficient for
digcugsing the mfinite computnticn of a program.

The author reported another model-theoretic samantics
of Flat GHC programs [B]. In that paper, the notion of
I/O lustories iz introduced rs o GHO counterpart of the
notion of unit clauses. An 1/0 history is denoted as IT o=
L7, where I is the hepd denoting the [orm of afn slomic)
process, and GU is the body which is n partially ordered
#et denating, the inputs and the sutputs of the process. H
is of the form p{X,, ..., Xi), where p is a predicats symbal
and Xy,..., X are distinct variables. GI7 i a set of tuples
g | Uz that saticfies the conditions shown in Definition 3,
where & is an eeprassion denoting & substitution and U7 is an
expression deneting unification executed in a clause body.
Intultively, <o | I'> mnwmns that when o has heen applied
to the process sinece the beginning of the computation, the
unification I is executed. An IO history denctes a possible
computation path of a program which is generated when the
program iz executed without any dendlock.

This section is mainly concerned with the body of an
[/ history,

3.1 Guarded Stream

Let Var be an enumerable set of variables, and Fun be a
set of function symbals. Each element of Fua has its arity.
Let Terms be the set of terms defined from Fun and Var
in & standard way, A term v is seid te be simple if it is
o variable term, O-ary function symbaol or in the form of
FiX,,...,X,) where f € Fun and X,,..., X, are distinct

-

voriables. Let v be a simple term and X € Var. Theo
X =7 is called & substifufton form. In this section, a set
o= {X;=7,...,00 = Tn} of substitution forms, where
X.'s are distinet variabies and X; £ ryfor 1 <7 < n, is
intended to represent a substitution of, where k is such
that w* ! = o (wu suppose such & exists). For example, a
substitution represented by the set [X=[A1Y], A=a} maps
Eto [21Y].

Definition 1 Cuarded Unifieation.
Let & be 2 seb of substitution forms and 7 be a substitution
form, Then < | 075 i called a guorded unification,]

Let GU be a set of guarded unifications, which rep-
resents a possible computation of a program. For any
gy | Uy, gog | D & GU, T 15 exeentable hefore 7 1f
& C oy

Definition 2 Ordering Between Guarded Unifications,
Let GO be o set of guarded unifications, TFor <oy |
(s, awe | Uy © GI we define

oy (UNe = oy | Dy
to hold if and only if 7y C oy and 7y #F @y []
Obwvisusly, ~ is a well-founded srdering,

Definition 3 Guarded Stream.
A get of gurrded unifications GLU i3 called o guarded atream
if the following hold,

(1) For any <oy | Xj=n>, <oy [Xy=my» € GU, 1y and
my Are unifiable if X; = X,

(21 For any <o | X1 = n>, <op | Ih> € GU (that are
possibly identical)), (X =r) & oa.

{3) For any <my | Uy >, <oy | Up> € GU, 0 (X =7} € 1
and (X =7') € oz, then r and 7' are unifiable. 1

Next, a composition operation celled synchronized
merge 8 defined in arder to obtain the guarded stream rep-
resenting the computation of & whole goal clause from the
guarded streams representing the computations of each goal
in the goal clause [8]. We first introduce the basic ides of
Diefinition 4 shown balow, Let GUY ... G, be guarded
streams, Each GLUY represents the computation of the ith
process. Then, the synchronized merge of GUY, .., GU,
{denoted GUY ||--- |G, is the umon of GUy,....GU,,
the following cases excepted. Assume <o | X =72 € &L,
co | Us e QU and (X =r) € o;. Namely, the ith process
is the producer of X and the jth process is o consumes of
X, Then <a; | [7= i3 replaced with <a;Ua;\{X =1} | >
in GO j-- - | G, Intuitively, this means that if thess twe
process are executed in parallel, the communication that
sends 7 through the stream X is localized and ne procsss
waits for v to come through X from the environment. The
formal definition is as follows:

Definition 4 Synehronized Merge,
Let GUy, ..., GU7, be guarded streams, and Gug{0 < k) be
as follows,

Gug = {=e|U> | {Ti(=e|U=eGN))
AW g e ViNe (<o’ U ¢ GU;)))

Crmpy, = ugll
{4."47“_'.-'} | Eﬂr'{
Hi<e' |T=eGI;))
AT es (Wi ve [<e" U > & GUS))
Vido" (o' [U's € t-'r.u‘:l};l:l
Al = (a0 Se" (o T s € Gug)l
L™ |
St (A e’ (o™ W' > & Gug))
AT e ﬁ'rjfl}:l
]

Mareover, let GL be || ___ Gup. If GU is 2 guarded stream

i

amel of
{L" Se{ar|lize GE-"}} = {Ul S [criliz ¢ i-r'U;'}},

then Lhe spmchronized merge of GUy, .., Gy {denoted
LU || O,) s defined ta e GI7 [

Enfarmally, the Cuy’s can be understood as follows. Let
ar | U= e U, If «s | Ux € (Guy, it means thet when o
is provided from the environment of GUy || --- || GUs, U7 can
he exeented after at most & rounds of internal enommunica-
tion ameng the GL's. Forinstanee, <o | ['> € Gup means
that [the computation represented by GLY can execute I
without receiving any substitution from the other GLU;'s,
and <o | U'> € Guy means that GU; cen execute 7 after
recciving some substituticn that the GL7's have generated
witheut internal communisation.

3.2 Example

We eonsider the program B4 in Section 2.3 anpmented with
the {ollowing clauses:

= true | O=[b].
= true | O=[a].

inv{[al1],0)
inw{[b|1],0)

Let U represent the computation obfaiped by exe-
cuting the goal g1(I,7,0) with the input

o = {I=[AII1],4=a, J=[B1J1),B=b].

Then

GUy = {<oy |0s[a2]01) >, <oy [Al=ax,
<my | 01=[E1102] >, <oy | Blsbi,
<ay |02=[1>].

Let GUy represent the computation obtained by executing
the geal inv{0,J} with the input

oy = {0=[AL|01], k1=a}.

Gl = {<op | T=[BIIL] >, <o | B=b,
<oy | M=0>].

In this case, Gu; = 0 and hence GU = . Thus,

{U | Jo(=e|U= e GU)} =0

However,

{U |35 (<n|U> € GU,))
= {0=[A1101], A1=a,01=[B1]02],B1=b,02=[1,
J=[BI71],B=b,J1= 1],

Thus,
{0 | 3o (<o [U> € GUY} # {1 | 330 (<o |U> € GUY)

and therefore the synchronized merge of 307 and GUy can-
nob be defined.

Chn the other hand, let U7 represent the camputation
of the geal g2(1,7,00 in which

(1) the input o3 = {I=[AIT1), A=a) is given firsl,
12} G=lalDt] iz eutput in response, and then

(3] = is given.

Then

GU = {<my [0=[A1101) >, <oy | h1=a>,
<ey |01=[B1102] >, <o) | Biobz,
<g; |02=1=).

The synchronized merge of GU! and (U can be defined as
follows:

GU | &I
={<oy |D=[a1101) >, <ay | h1=a>,
<oy [I=[Bl11]%, <oy | Beb,
<oy | I1=[1>,
<oy | 01=[B1]02] >, <oy | Blwha,
<e3 |02=[1>},

GUY || GU represents the computation obtained by execut-
ing the multiset of goals {g2¢I,7,00,1inv(0, 1)} with the
input substitution oy, 1

Thus, the semantics presented here alse circumvents
Brock- Ackerman anomaly, and artually it is compositional
with respeet te the conjunction { ANDparallel execution) of
goals. Namely, the guarded stream that represents the com-
putation of & multiset of goals is abtained from the guarded
stremma that represent the computation of individual goals.

The domain of /0 histories has been introduced as
2 GHC counterpart of a Herbrand bass in logic program-
ming. However, ench element of this domain is not & GHO
clause syntactically. Recently, » syntactical extension of
Fiat GHC ealled NGHQ (Nested Guarded Horn Clauses
wis proposed [9], An WGHC unit clause represents a possis
ble computation, and the semantics of an NOHC program
is defined with 2 set of unit clauses as in pure Hern-logic
programs. The notion of NGHC unit clauses is essentially
equivaleat te Lthe notion of /0 histories.

4. Conclusions and Future Wark

The two semantics deseribed above have Limen developed
with different motivations and from different directions.
The primary purpose of the first semantics (Section 2) was
to define observables (i.e., entities that matters) that should

be preserved by the propram transformation rules we de-
signed. The semantics is currently defined as an abstraction
of an operational semantics; although the resulling seman-
tics is quite intuitive, it is yet to be shown how the seman-
Lics of A program can be obtained compoaitionally from its
COMPOnents.

On the other hand, the primary putpose of the second
sementics (Section 3) was to see how a semantics eould be
obtaimed in a compositional manner, Anather difference is
that the second semantics is hased om & true concurrent
model while the frst scmanties iz based on interlenving.
However, the second semantics as shown sbeve does ot
deal with anomaleus hehavior and shoutd therefore be mom-
bined with a semantics such as the one in J10). Also, we
musl make certain that the resulfing scmantics coincides
with our intuitive understanding of Flat GHC,

References

(1] Ueda, K. Guarded Horn Clauses: A Pacallel Legie Pro-
gramniing Language with the Concept of 2 Guard. In
Programming of Future Generation Computers, Nivat,
M. and Fuchi, K. {eds.), Nerth-Hollang, Amsterdam,
1088, pp. 441-456.

[2] Milner, B. A Calevlus of Communicating Svstems,
LNCS 92, Springer-Verlag, Borlin, 1980

(3] Lloyd, J. W. Foundations of Logic Programming (2nd
ed.}. Springer-Verlag, Berlin, 1987,

{4] Ueda, K. and Furukawn, K. Transformation Rules
for GHC Programs. In Proe. Int. Conf on FOCS'SER,
ICOT, 1988, pp. 582-591.

[5] Hoare, C. A R Communicating Sequential Processes.
Frentice-Hall International, London, 1985,

[6] Brock, J. D. and Ackerman, W. B. Scenarios: A Model
of Non-determinate Computation. In Formalization of
Programming Concepts, LNCS 107, Springer-Verlag,
Berlin, 1951, pp. 252-250.

[7] Levi, G. A New Declarative Semantics of Flat Quarded
Horn Clauses. ICOT Technical Report, TR-345, I0OT,
1988,

Murakami, M. A New Deelarative Semantics of Parallel
Logic Programe with Perpetua] Processes. In Proc. Int.
Conf. on FGOS'ES, ICOT, 1088, pp. 374-381,

[9] Falaschi, M., Gabbrielli, M., Levi, G. and Murakami,
M. Nested Guarded Horn Clauses: A Language Pro-
vided with a Complete Set of Unfolding Rules. To be
presented at the Lagic Progeamming Coaf. '89, Tokyn,
1983.

[10] Murekami, M. A Failure Set Semantics of Guarded
Hom Clavses Programs. In Preprints of the 27th
WGSF meeting, IP'S Japan, 1088,

[8

—_ 4 —

