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This paper presents our new constraint logic programming language cu-Prolog and in-
troduces a simple Japanese parser based on Japanese Phrase Structure Grammar ( JPSG)
as a suitable application of cu-Prolog.

cu-Prolog adopls constraint unification instead of the normal Prolog unification. In
cu-Prolog, constraints in terms of user defined predicates can be directly added to the
program clauses. Such a clause is called Constraint Added Horn Clause (CAHC}). Unlike
conventional CLY systems, cu-Prolog deals with constraints about symbelic or cambina-
torial objects. For natural language processing, such constraints are more impaortant than

those on numerical or boolean objects. In comparison with normal Prolog, cu-Prolog has

ARG S, BT A R PR A
TRy, A
Yhp, CORMYRAT 4 BiICfThiLf ACL European Chapter KEE A LAY ] cNBTELELOTS




more descriptive power, and is more declarative. It enables a natural implementation of

JPS5G and other unification based grammar formalisms.

1 Introduction

Prolog is frequently used in implementing natural langnage parsers or generators based on
unification based grammars. This is because Prolog is also based on unification, and therefore
has a declarative feature. One important characteristic of unification based grammar is also a
declarative grammar formalization [9).

However, Prolog does not have sufficient power of expressing constraints because it executes
every parts of its programs as procedures and hecanse every variahle of Prolog can be instantiated
with any objects. Hence, the constraints in unification based grammar are foreed to be implemented
not declaratively but procedurally,

We developed a new constraint logic programming language cu-Proleg which is free from this
defect of traditional Prolog [10]. In cu-Prolog, user defined constraints can be directly added to a
program clause (constraint added Horn clausc), and the constraint unification [14, 6] ? is adopted
instead of the normal unification. This paper discusses the outline of the cu-Prolog system, and
presents a Japanese parser based on JPS(G {Japancse Phrase Structure Grammar) [5] as a suitable

application of cu-Prolog.

2 Constraint Added Horn Clause (CAHC)

Most of the constraint logic programming language systems (CAL [13], ProloglII [4], etc.) deal
with constraints about algebraic equations, i.e., constraints about numerical domains, such as that
of real numbers ete,

[Towever, in the problems arising in Artificial Intelligence, constraints on symboelic or ecombinato-
rial objects are far more important than those on numerical objects. cu-Prolog handles constraints
described in terms of sequence of atomic formulas of Prolog. The program clauses of cu-Prolog are
following type, which we call Constraint Added Horn Clauses (CAHCs):

[Def] 1 (CAHC) Constraint Added Horn Clause consist of the following two types of clauses:

haad ﬁaﬂ:t;.r eonstraint
“H:-B1,B2,...BaC1, o 1O
head constraint
HCh, G Cm

H is a head and By, By, ..., B, composes a body like normal Prolog.
y,Cq,...,Cp comprise a set of the constraints (or null} on the variables oceurring in the head or
body. Cy,Cq,...,Cw must be ,in the current implementation, modular in the sense that it has the

following canonical form.

Seen from the declarative semantics, these two clauses are equivalent to the following two pro-

gram clauses of normal Prolog.

“In these earlier papers, “constraint unification™ was called "conditioned unification.™
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L H = By, By, ... By, C,Cq, ..., O,

LH -0, 0. Ch.

Of course, program clauses of normal Prolog are the special cases of CAHCs.
[Def] 2 (modular) A sequence of atoric formulas Cy, (5, ..., Cy is modular when

1. every urguments of C; 12 variable, and

2. ne variable occurs in two distinct places, and

. the predicate of C; is modularly defined (1 < i < m).
[Def] 3 (modularly defined) Predicate p ¥ modularly defined, when in cvery definition clause
ofp (P:=-D.)

D s emply,

o

1. every argumen! of D is variable,

2. no variable occurs in two distinet places, and

3. every predicale occurring in D is p{) or modularly defined.
For example,

member( X, Y}, member(U/, V) is modular,
member( X, Y), member(¥, Z) is not modular, and
append( X, Y, [a, b, ¢, d]) is not modular,

3 cu-Prolog
3.1 Constraint Unification

cu-Prolog employs Constraint Unification [14, 6] which is the usual Prolog unification plus
constraint transformation {nermalization).

Using constraint unification, the inference rule of cu-Prolog is as follows:
g o

AK;C., A —L:D.,

B = mgu{A, A"),C" = m f{C8, M)
Lé, K& ¢!

(A is an atomic formula. K, L, C, D, and C’ are sequences of atomic formulas.

mgu{A, A') is the most general unifier between A and A".)

mf(Cyy..0y,Cm) is @ modular constraint that is equivalent to Oy, ..., C,. If iy O 8 incon-
sistent, m f{(’y,...,Cr) does not exist. In this case, the above inference rule is inapplicable. -
For example,
m f(rmember( X, [a,b,c]), member( X, [b, ¢, d]))

relurns a new constraint ¢0(X ), where the definition of ¢0 is
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m f(member( X, [a,b, e]), member( X, [k,1,m]))

is not defined.
This transformation is done by repeating unfold /fold transformations as described later.

3.2 Comparison with conventional approaches

In normal Prolog, constraints are inserted in adequate places in the goal and processed as
procedures. It is not desirable for a declarative programming language ,and the execution can
be ineffective when constraints are inserted in insufficient places. On the contrary, in cu-Prolog,
constraints are described and processed declaratively.

As constraints are rewritlen al every unification, cu-Prolog has also more powerful descriptive
ability than the bind-hook technique. For example, freeze in Prolog [1[3] can impose constraints on
one variable, so that when the variable is instantiated, the constraints are executed as a procedure,
Freeze has, however, two disadvantages. First, freeze cannot impose a constraint on plural variables

al one time. For example, it cannot express the following CAHC.
fX),9(Y,Z);append(X,Y,Z).

Second, since the contradiction between constraints is not detected until the variable is instantiated,
there is a possibility of executing useless computation in constraints deadlocking. For example, even

after executing
freeze X, member( X, [a,b]))

and

Sfreeze(Y, member(Y, [u,v]))

X and ¥V are unifiable. In cu-Prolog,
FIX); member( X, [a,b])?

and
F(Y); member(Y, [u, v]).

are not unifiable.

*member( X [0, 4]} i not mm;;h;.r, bl i ;.1.4||i'.'d:-!||l. i p1{ &) ,where

plial.
wl(b},



3.3 Constraint Transformation

This subsection explains the mechanism of constraint transformation in cu-Prolog.
Let T be a set of definition clanses of modularly defined constraints, £ be a set of constraints

{Cy,...,Cy} that contains variables ry,..., %y, and p be a new m-ary predicate.

Let T be a set of definition clanses of new predicates, and
Py=TUD

T 1s imitially

{:P{'T'lr-"'!:cm} : _Cl!' "!C’l'}

and other new predicates are added to T in the transformation process.

Then, mf(¥) returns p(z1,...,&m ), if and only if there exists a sequence of program clauses
P‘:J‘pl!""l‘?ﬂ

and every predicate in P, is modularly defined. In the above sequence, Pyyy is derived from T

(0 < 1 < n) by ene of the following three types of translormations.

1. unfold transformation
Select one clanse { from 7, and one atowic forwula 4 from the body in (. Let ;,.... 0, be

all the clauses in P; whose heads unify with A, and (; be the result of applying {; to A of {

T 41 is obtained by replacing ¢ in P, with {J,..., (.-
2. fold trensformation
Let ({4 : =K,L.} be a clause in 7, and £(8 : =K'.} be a clause in 7, and # be the most
general unifier hetween K and K' * that meets the following conditions:
(a) K and L have no common variables, and
(b)Y (D
Then, B4, is obtained by replacing ¢ in Py with Af: - B# L.
3. integration

Let (A : ~K,L.) be aclanse in P, where K is not modular and contains variables z,,..., 2xn

and there ate no common variahles between K and L. Let p{} be a new m-ary predicate whose
definition 1s £ :
Pz, Em) =K,

Then, P;+1 is obtained by replacing { in 7 with

A:—plzi,....zm), L.

and adding £ to 7. { is also added to D,
4Tor example, the most general unifier betwesen flu, b, X ), oY, ¢} and g{d, 7Y, F{V 0, W) e (I fe, V/a, X/W, Y d)}.




The third transformation can be seen as a special case of fold transformation. Hence, these
three transformations preserve the semantics of programs because unfold /fold transformation has
been proved as valid [12].

Example.
The following example shows a transformation of
member(A,Z), append(X, Y. Z)

Here, T is { T1,T2,T3,T4 }, where

Tt = member(X, [X|Y¥]).

T2 = member(X,[Y|Z]):-member{X,Z}.

T3 = append([],X,X).

T4 = append( [41X],Y,[AIZ]):-append(X.Y,.Z).

and X is {member(A,Z),append(X,Y,Z]}.
Stepl : The new predicate p1 is defined as

Di = pi(A,X,Y,2):-member(A,Z},append(X,Y,2).

and

Py ={T1,T2,73,T4,D1}

P =4{D1}

Step2 : Unfolding the first formula of D1's body (member(4,Z) }, we get

T5 = p1(a,X,Y,[AlZ]) :~append (X,Y,[AIZ]).
T6 = p1(A,X,Y,[BIZ]) :-member (A,Z) ,append(X,Y,[BIZ]}.
So

Py = {T1,T2, T3, T4,T5,T6}

Step3d : By integration (p2 and p3 are new predicates) |

T8 = pi(A,X,¥,[A1Z]):-p2(X,Y,4,2).
T = PI{A’:{IY![BIEJJ:-FE{A'QEI!J?IB}I

D2 = p2({X,Y,A,Z):-append(X,Y,[AIZ]).

D3 = p3(A,Z,%,Y,B):-membar(A,Z) ,append(X,Y,[BIZ]).
and

P, = {T1,T2,T3,T4,T5', T6',D2,03}

D = {p1,D2,D3}

Stepd : By unfolding D2,



T7
T8

2001, [A1Z1,A.2).
p2([BIX],Y,A,Z) :~append(X,Y,Z].

These clauses comprise the modular definition of p2. Thus

Py = {T1,T2,T3,T4,T5', T6', T7, 78,03},

Stepd @ Unfold the second formula of D3% body (append(X,¥, [BI1Z]) ), and we have

p3(a,2,0 1,[B12],B):~member(A,Z).
p2iALZ,[B1X],Y,B) :—member(A,2) ,append(X,Y,2).

I3
o

Py = {T1,T2,T3, T4, T5', T6', T7, T8, T9. T10}.

Step6 : Polding T10 by D1 will generate
Ti0* = p3(A,Z,[BIX],Y,B):-p1(4.X,Y,2).

Accordingly

Ps = {T1,T2,T3,T4,T5', T6', T7. T8, T9, T10'}.
Every predicate in P iz modularly defined. As a result,
member{ A, Z), append(X,Y,Z)

has been transformed to p1(4,X,¥,2) preserving equivalence, and the following new clauses have
boen defined.

{T8',16',T7.T8. T8, T10'}.
3.4 Implementation

The source code of cu-Prolog is, at present (Ver 2.0, eomposed of 4,500 lines of language C on
UNIX or M5-DOS.

For the effective implementation of the constraint transformation, sume heuristics are necessary,
In the current implementation, as an ahject term of the unfold transformation, vne alomic formula

is selected in the following order:
1. The atomic formula of the finite predicate.
2. The atomic formula that has constants or [ | (nil) in its arguments.
3. The atomic formula that has lists in its argument.
4. The atomic formula that has plural dependent variables.
3. Any atomic formula,

Here,



[Def] 4 (finite predicate) A predicate p() is finite, when the body of every definition clause of
p() 18
I. nil, or

2, composed of finite predicates

Above selection rule is effective in the following examples.
Example 1 Transformation of m{ X,V ), p(X) , where

m{X,[ ])-

m{[A]B], X} : —m(B, X}.

il 1)

p{la]).
If we always select the lefimost atomic formula, that causes an infinite loop because m{ ) 15 always
unfolded. However, with the above rule, becanse predicate m is infinite and p is finile, p(X) is

unfolded for the first time, and the transformation easily stops.
Example 2 Transformation of
fuse(A, B, C), fuse(C, D, E), fusel E, F,G)

nhere

fuse([ L[ L[]}

fuse([A|X),Y,[A|Z]) : — fuse(X,Y, Z).

fuse( X, [A]Y],[A|Z]): - fuse(X,Y, Z).

fuse([A|X),[AIY], Z) : — fuse{ X, Y, Z).
The leftrost seleciion causes an infinile loop. Moreover, n this example, unfolding from the formula
except fuse(C, [, E) nlso eauses an infinile loop. Because fuse(C, D, E) alone has two dependent

variatles (7 and £, it is selected by the selection rule § and the transformation succeeds.

Figure | demonstrates constraint transformation routine of cu-Prolog.

4 A JPSG parser

As an application of cu-Prolog, a natural langnage parser based on the unification based gram-
mar has been considered first of all. Since constraints can be added directly to the program clanses
representing a lexical entry or a phrase structnre rule, the grammar is implemented more naturally
and declaratively than with ordinary Pralog. Here we describe a simple Japanese parser of JI'S(G
in cu-Prolog. CAILC plays an important role in two respects.

First, CAHC is used in the lexicon of homonyms or polysemic words. For example, a Japanese
noun “hasi” is 3-way ambiguous, it means a bridge, chopsticks, or an edge. This palysemic word

can be subsnmed in the fallowing single lexical entry.
lexicom([hasi|X], X, [...sem(SEM)]); hasisem(SEM).

where hasi_sem is defined as follows.



member (X [X]1Y]).
_member(X, [Y|Z]) :-member(X,Z).
—append([],X,X).
- _PIIII’I{ [hix] i1 [A1Z] J;-a.ppan.d(lphﬂ} .

_0 member{X,[ga,ns,es,ni, kara, made, sae]) manber(X, [to he.ni, kara, sura,gal).

asclution = cO({X)
c3inil.

c3ikara).

cligal.
cOCEO) =3 (XA).

CPU time = 0.017 sec

_% member (4,I),append(X.Y,Z).

solution = c14(A, Z, X, ¥}

cl50E2, X2, X0, Y1, Y3):-append(X0, YiI, Y3).

c16(X2, Y3, X0, ¥Yi, Z4):-ci4(X2, Z4, X0, ¥1J.

clafan, X1, [J, X1):-memberAQ, X1).

cl4(A0, [AE1Z4], [A1IX2], Y3):-clISCAO, A1, X2, Y3, Z4).
CPU time = 0.000 gec

The first four lines are definitions of member and append, The lines that begin with "@" are user’s input atomic
formulas (constraints). cu-Prolog returns the constraint {e0{X')) that is equivalent to the input constraint, and
its definitions. | The cpu time is counted by B0ths of a second),

1: Demonstration of the constraint transformation rouwtine

hasi_sem(bridge).
hasi_sem({echopsticks).

hosisem(edge).

The valne of the semantic feature is a variable ( SEM ). and the constraint on SEM is hasi_sem{SEM).
Note that predicate hasi_sem is modularly defined. According to CAHC, such ambiguity may be
considered at one time, instead of being divided in separate lexical entries. Japanese has such an
ambiguity is also shown in conjugation, post positions, ete. They can be treated in this manner.
Second, a phrase structure rule is written naturally in & CAHC. In JPSG [5], FFP{FOOT

Feature Principle) is:

The value of a FOOT feature of the mother unifies with the union of those of her
danghters.

This principle is embedded in a phrase structure rule as follows:

psri|slash(M 5], [slash(LDS)|, [slash( RDS)]); unvon(LDS, RDS, M 5).

However, this cannot be described in this manner in traditional Prolog. _
Figure 2 shows a simple demonstration of our JP'5G parser, and Figure 3 shows an example of
treating amhiguity as constraint. The current parser treats a few feature and has little lexicon.
However, the expansion is easy. It parses about ten to twenty words sentences within a second
on VAX8600. Since JPSG is a declarative grammar formalism and cu-Prolog describes JPSG also
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declaratively, the parser needs parsing algorithms independently. In the current implementation,
we adopt the left corner parsing algorithm [1]. Furthermore, we would even be able to abandon
parsing algorithm altogether [8].

_i=pi[ken,ga,naomi,wo,ai, surul}).

v[Fore_o28, AJN{Adj_530}, SC{Subfat_932}]:SEM_934-=-[euff_p)
: —=v[ve2, 50{Sc_922}1:[love,5bj_583,0bj_5%1]---[subcat_pl
: --plgal :ken---[adjacent _pl
l i-"-rl [n] :ken===[ken]

[

|

|

| i

| |

I | 1__plga. AJA{n[nl}]:ken~—-[gal
| I

| l_vlve2, sciplgal, Sc_922}]: [love,5bj_689,0b;_591]1===[subcat_p]
| |

I |--plwo] inacmi---[ad jacent_pl
I | |

H I i==n[n]:naomi==-[naomi]

| [

| I i__plwe, AJMn[al}]:nacmi===[we]

I |

| |__vlws2, sc{pl{we], plgal, Sc_922}]:[love, Shj_BES,0bj_S51)---[ai]
|

I

_viForm_928, AJA{v[ve2,5C{35c_922}1}. AJIN{Adj_930}, SC{Sublat_%32}]:5EN_934---[suru]

cat cat(v, Form_928, [], A43_D30, SubCat_932, SEM_534)
cond [c2(8c_52%, Obj_5%1, Sbj_58%, Form_%28, Sublat_932, Adj_530, SEM_534)]
True.

CPU tima = 0.050 sac

_i=eM_,_,_.F,8C,ADJ SENM}.
F e syusi S5C = [] &I = [] SEM = [love,ken,naomil;

The first line is 3 user's input. “Ken ga Nasmi wo ai sury” means “Ken loves Naomi”
Then, the parser returns the parse tree and the category and constraint {¢2{ )) of the top node, User solves the
constraint to get the actual value of the variables.

F 2: Demonstration of our JPSG parser

5 Final Remarks

The further study of cu Prolog has many prospects. For example, to expand descriptive ability
of constraints, the negative operator or the universal quantifier can be added. The constraint-
based, alias partial, aspects of Situation Semantics[2] are naturally implemented in terms of an
extended version of cu-Prolog (7). For practical applications in Artificial Tntelligence in general and
natural language processing in particular, one needs a mechanism for carrying out computation
partially, instead of totally as described above, where constraint transformation halts only when
the constraint in question is entirely modular, So the most diffienlt problem one must tackle

concerns itself with heuristics about how to control computation.
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_t-pilai,suru hito] ).
nlnl:Semantics_430-==ladjunct_p]

|
[--v[Fera 41¢, AIN{n[nl}, 5C{ 428}]:Semantics_430---[=zuff_p]

I

| | ==w[ved, S0{8c_19831:[love Bhy_81,0h_83]-—-[ai]

i

I | __viFern 416, AJA{w[vs2,5C{5<_198}]}, AJN{n[nl}, SC{_428}]:Semantics_430-—-[suru]
|

|__nlnl:insti0bj_487, [pecple,0bi_487])---[hite]

cat cat(n, n, [1, [1, (], Semantics_430)

cond [e6(5c_198, Obj_83, 5bj_ 01, Form_ 416, _428, Obj_487, Semant:ics_4301]
True.

CPD time = 0.017 zec

i=eB ..o Sem) .

Sem = inet(0bj0_7¥2, [and, [people Obj0_72], [love,Sbj1_T4,0650_72]171:
Sem = inst(5bj0_T72, [and,[people.Sbj0_72],[love,5bj0_T2,00j1_%4lld;

This is @ parse tree of "ai sury Ken” that has two meaning: “Ken whom somecne loves” or “Kan who loves
someone” . These ambiguity s shown in two solution of the constraint.
 3: Example of ambiguity
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