ICOT Technical Memorandum: TM-0745

TM-0745

Design Plan Generation through
Constraint Compilation

by
Y. Nagai & K. [koma

uly. 1989

11989, 1ICOT

Mita Kokusal HBidg 21F (3] 456 31913

|D DT 4-28 Mita 1-Chome Telex ICOT 132064

Mmato-ku Tokwvo 108 Japan

Institute for New Generation Computer Technology

Design Plan Generation Through Constraint Compilation

Yasuo NAGAT

Information & Communication Systems Laboratory
Toshiba Corporation

70 Yanagicho, Saiwai-ku. Kawasaki-shi. Kanazawa. 210, Japan

Phone: Tokyo =81-44-348-53333.
Kenji IKOMA

Fifth Research Laboratory

Institute for New Generation Computer Technology

4-28, Mita l-chome, Minato-ku, Tokyo, 108, Japan
Phone: Tokyo +81-3-456-3192,

Keywords

design expert system, design process, design plan, knewledge compilation, ranstraint,
cunstriunt compilation, constraint-hased problem soiving, mechanical design

Abstract

The goal of this research is to consider constraints as a sophisticated representation of knowledge und
to improve the elliciency of the constraini-based problem solving mechenism. As the first step, we propose
to generate design plans by knowledge compilation. For this we need to clarify the architecture of eXpert
systems for various types of design [27] such as circuit design [19,20,32], mechanical design [13,23,24], and
configuration [21]. Therefore, we diseuss the technical issues from the viewpoint of knowledge representation
and problem selving. In particular, we regard constraints as a suitable knowledge representation paradigm
different from rule and frame representations, and constraint-based problem solving as a suitable new problem
selving paradigm. We propose primitive tasks for the constraint-hased problem solving mechanism, based
on the design process model. We define routine design and discuss the expert system architectures for
design problems and the necessary functions for solving them. Furthermore we consider constraints as a
sophisticated knowledge representation and study efficient problem solving for constraint processing,

This paper reports on the basic concepts of knowledge compilation, oa knewledge compilation for design
problems, and on design plan generation through this method, using constraint representation and constraint-
based problem solving, *

1. Imtroduetion

A large quantity of knowledge that depends on the specific design objects is required to develop
knowledge-based systems for design problems. Thersfore a kuowledge representation specific to the de-
sign problem and an effictent preblem solving method that uses this knowiedge are keypoints for research
on a teol for building desien sxper: systems. The goals of our research are to clarify the architesture of
knowledge-based systems for desizn probisms and to realize expert system Luilding vools [26].

* This paper describes researsh done at the Fifth Research Laboratary of the Trstitute for New (Generation
Computer Technolagy (ICOT).

Different kinds of designs require different design methods, parts, and know-how, and have given rise
to different standards. The process model and the decision sequenes necessary to realize design systems are
not formalized explicitly, except for parts of the siylized design such as routine design. For this reason, most
design systerns are built and ucilized as specialized systems for special purposes. Thesse svstems are provided
to designers or users as individualized systems. Is is difficult for the users to maintain and extend these
systems, aod it is pot also efficient for them to use these systems as general purpose toals. We therafors
suggest the realization of zeaeral purpose building tools. enabling system builders (and designers) to build
and maintaia design systems. In other weords, we want to aveid deseribing design knowledsze as existing
procedural programs and forcing system builders to deseribe design knowledge 1n she representation form
which 1s dependent on the specific sroblem solver. This is a very important problem., sinee desizn koowiedgs
should not be invisible to desizness. The inowledge can be embedded inside the sysiem, and it i3 SRSV 10
reuss design kaowledgs by inhesitiag kaowiedge among designsrs.

Consequently, we shail take the approach described in Fig L which shows design knowledge as zeparate
from the problem solver, and both being represented declaratively. The environment in which the designes
can huild the system by combining them is provided, and the problem solver of the built system can be
handled efficiently.

In most design knowledge, relations between objects may be represented using symbolic descriptions
such as mathematical formulas. When we compare the declarative with the procedural representation of
design knowledge, the former provides a higher-level and more natural deseription than the latter. In short,
procedural representation must be given explicitly, and declarative descriptions need pot be.

Design expert systems

A tool for design expert systems

Fig. 1 Research Approach

Here, relations hetween obiects are represented as constraints to conveniently handle design knowledge
a5 a declarative representation. Accordingly, declarative knowledge representation is a more sophisticated
representation than existing procedural knowledge representations and 15 effective for building knowledge-
based systems for design problems.

We can expect to reduce the time spent in unnecessary search and to improve the efficiency of our
problem solver because :he solution space to be searched can be restricted by means of an effective utilization
of constraints.

We will focus on chis advantage of constrains. consider the realization of constraint-based sroblem saiv-
ing for design problems, and regard knowledge compilation as the most important technical issue, Generaily.
knowledge compilation is a sechnique by which knowledge about the domain is stored in declazative form.

2

such as facts and theories, and this stored knowledge is applied and utilized by interpretive procedures. This
teconique makes existing paths of processing more efficient rather than enabling new paths of processing.
in this case. we regard knowiedge compilatior 28 o techpique by which knowledge linkad to an efSciant
problem soiving task {shallow knowledge) is generated using principled knowiedge such as physical laws amd
steucture of objects [deep ipowledge). Therefore, more efficient procedures specific 1o the task domain can
be generated using che knowiedee compilation techoique [2],

We shail realize nowledze compilation by focusing on the conerpt of constraint: we define this technique
a5 copstraint compilation. In design problems, constrammt compilation can geaerate an eficient design nian
[semi-iautormatically, using design knowledge represented declarativeiv.

Before discussing knowledge compilation in detail, we clarify the archizecturs of knowledze based svsiems
for design vrobiems. Therefore, knowledye representation. problem solving and the architecture of design
2Xpert systerns are discussed o Section 2.

Section 3 gives an overall flow of knowledge compilation. concentrating on the problem of knowledgs
compilation for design problems.

Section 4 describes design plan generation through tnowledse compiletion and constraint compilation,
We describe the characteristics of mechanical design problems which have guided us in apalyzing the problem.
Then we define in detail the process of design plan generation through constraint compilation and deseribe
the constraint compiler. Tast we describe an actual constraint compiler that applies the concept of knowledge
compilation to mechanieal design, MECHANICOT,

We give the details of design plan generation using MECHANICOT, ziving as an example the problem
of gear unit design.

2. Research Issues of Design Expert System
2.1 Knowledge Representation and Problem Solving

Existing expert systems are broadly classified into systems that solve analvtical problems and svstems
[or synthetic problems. Analytic problems like disgnosiic problems generally select hypotheses in a limited
solution space, because a set of hypothetical soluticns and a set of rules for selecting hypotheses can be
predetermined. Synthetic problems, however, need efficient problem solving, since solution spaces are so
large that generating candidate solutions beforehand is difficult. Design problems are typical sxamples of
syuthetic problems. The development of a design expert system requires a large amount of knowledge that
depends on & design object. Hepresentation of design knowledge and a good problem solving mechanism are
important for a design expert system.

This section gives an overview of the design knowledge representation and of the problem solving mech-
anism in the design expert system.

2.1.1 Knowledge Representation

Knowledge representation requires two facilities: knowledge must be represented suitably for the expert
systems, and designers must be able to represent their own knowledge sasily. Design knowledge is koowledge
about the design objects themseclves and about problem selving [36]. Kaoowledge about design objects
consists of the structures, shapes, and attributes of the object being designed. A system’s knowledge about
a design object is called an object model. Knowledge about problem solving, however, includes methods for
analyzing ohject models, for evaluating and modifying sclutions, for designing the object, and for choosing
among capdidate solutions. A design process can be regarded as a design requirement satisfaction process;
operations such as selection, modification and refinement are repeatedly applied to an object maodel by using
knowledge about problem solving. Furthermore, to enable designers to build an expert system by themselves,
we require an ecovironment in which a design expert system can be built by declaratively representing an
ohject model and knowledge about problem solving. To realize the environment, we propose a tool that
generates a design plan from separate inputs of an object model and knowledge about problem solving, and
that provides an interface between design knowledze and the problem solver,

2.1.2 Problem Solving
If & design plan is given expiicicly, a design problem can be soived according to the plan, Thera are oiten

cases Where a design plan cannot be given expliciily. but only consteaint and probiem-solving heuristics can

3

be given. An effective way of solving these cases is to employ constraint-based problem zalving, regarding
a design process as a constraint satisfaction proeess. In addition, the whole design process can be seen
as a consiralnt sausfaction process; an object model represents constraints on the structures of the design
objects. and design reguirernents and knowledge about problem solving also represent sopsiraicts, These
copstrainis are given prionities and changed dynamically according to the designer’s intention and preference,
and to trade of Detwesn performance, due dates and cost. Therefore. a constraint soiver suitabie for a design
prooiem 1s reqguired,

The structural information derived from the object model is constraint exoressed explicisiv. Desizn
knowledge sueh as methods for analyzing object models and desizn requirernents suca as cost 2nd performance
are alsn regarded as constraiots. However, maay of the existing tools that support the sopstruction of expert
svstems do 0ot mase it easy to 24press the constraint cobcent expiicitly: the persun copsiTucting the svstem
must use 3 tack-specific languace to realize mechanisms for applying constraint sepresensations which depend
on the design object. We therefore represent design knowledge declaratively by introdisiag the concept
of constraint explicitly, and realize a suitable problem solving mechanism. For this, the classification of
constraiuts o design problems is important.

When considering design problems there are of course various domain-specific constraints. These con-
straints are related to each of the stages of design process compesed of the coneeptual design, fundamental
design and detailed design. They are described in this section.

In conecepiual design. the constraints are the description of performance and cost from the list of the
requirements and the specification. In fundamental design. the constraints are the ways of mapping or
instantiating the functional description to the real ar physical warld. Far example, when models are selected
and performance is analyzed and evaluated according to them, the constraints are derived from these models.

In detailed design, the design object is refined according to the selected model. Then the constraints
are e form and structure representations together with knowledge about the design style for component
configuration and about relations between components. In this case, because the model depends on the
design abject, the constraints derived from the medel depend on the design object 22].

Next, we will classify constraints for this design problem according to the following characteristies and
discuss them [23).

1) Static and Dynamic Constraints

Many constramnt systems consider constraints to be static entities. Static constraints are specified in
advance, and are constant and unchanging. In design problems, however, not all constraints are miven in the
Initial stages of a design process: many are added or deleted during the design process and are dynamically
changed 1o design problems. They are imposed depending both on interactions with the user and on the
syatem; they tend 1o change, with their range of applicability varying.

2) Obligatory (Hard) and Sugszestive (Soft) Constraints

Not all the constraints are selected and executed on an equal basis in design problems. In other wards,
pricrities are assigned to constraints, and the pricrities are based on design requirements and designers’
intentions. All obligatory (hard) constraints must be satisfied, and these are generaily miven explicitly.
Suggestive (soft) constraints, however, are used as guides in choosing the optimum branch at a node in the
search tree, and they are given lower priorities than obligatery constraints. Thus, if an obligatory constraint
cannot be satisfied, suggestive constraints may be changed so that the obligatory constraints are satisfied.

3) Local and Global Constraints

One way of soiving a design proble is to divide it into subproblems. Thus, it is necessary to distinguish
whether the applicable scope of a constraint closes locally within a subproblem or is globally related to
other subproblems. In addition, interactions between local constraints within a subproblem and interactions
between local and global constraints must be considered. Local constraints are used to conduct searches
when a state changes within a given modsl, object or process and the scope over which the constraint is
valid is limited to within the maodel or object or process. Global constraints are used when a state is to be
evaluated using not only local constraints, but all related constraints, without imposing any limit.

4} Finite and Infinite Domains

Some constraints in design problems are represented as inequalities. Therefore, net anly do constraints
propagate vaiues, they alsc propagate over interval bounds in which variables that can take certain values
must be considered. Variables of the constraint are not constant; these coustraints propagate over the interval
bound as a label [8].

Becausge one constraint may possess multiple characteristics, there are some combinatorial possibilities
of the above classified constraints, 'Therefors, the framework that can handle constraints from the uniform
viewpoint is expected. Io the {ollowing, the constraint-based problem sclving mechanism that considers
several characteristics among them is discussed,

2.2 Design Process and Constraint-Based Problem Solving

As shown in Fig.2, we will divide a formalization of knowledge-based system for desicn problems into
three levels: hknowledge level, architecture level, and program level.

At zhe knowledge level, after a type of design problem is determined, the corresponding solution space,
design theory, and design specification are formalized.

At the architecture leve], the {constraint-based) problem solving model is determined according 1o the
design process. This problem soiving model can be realized by applying varicus solution methods such
as problem decomposition, constraint propagation, failure recovery, (hierarchical) generate & test, [east
commitment, and (linear) approximation. The details of the problem solving model are described in Section
2222

At the program level, knowledge-hased systems are realized using expert shells composed of knowledge
representations such as rule and frame descriptions and programing languages such as iogic programming
and constraint logic programming languages, according to the fixed architecture of these systems.

BEnvwledge Lovel
Types of Design = Rowtine Desien
Salution Space
Degn Theary
Speeallcation
o Deasign Requirsmeal
o Desagn Goal
F
I Architecture Level
| — T ke VR TR
L P,
Proviem Sedving Medsl based an Desgn Process - s -'Dlllwm
iCosatrmink-Nesed Probles olving) T wrrttest Gamarnts § 16
* e Cprerumann

| . | Ammaiiioen

Tooi,

Expart Sihail lincluding rule, lrame, st

Lage Frogrammeng Languege {proiag, EIP, sie]
Coridrit Loges Programmmg (CLP. Cal el
Emuaiity Sedver & Inequaity Solver

Fig.2 Formalization of Knowiedge-Hased Syatems

Consideration of a modeling of the design process model is required to realize a problem solving mech-
anismn for design problems using a constraint satisfaction process. Purthermore, a more efficient problem
solving mechanism can be realized using tools and programming languages at the program level.

This ssction considers the design process, the target architecture of the design expert system including
consiraint-based problem soiving mechanism relative to the design procsss, and tools and progremming
languages to reaiize the problem salving mechanism.

2.2.1 Design Process

At the knowledge level, we need to formalize a knowledge-based system for design problems according
te the design process model.

Fig.3 shows a model of the design process for routine mechanical design. This design problem consists
of editing pre-existing designs. and is based on this model. The structure of the design object is determined
by combining the components or is according to predefined design styles of the design object. In this
case, the siructures are determined by retrieving the appropriate design style from the knowledge base. The
components are implemented using standard pares found in catalogues or non-standard parts from the design.
Most of the strategies for selecting standard or non-standard parts for an implemenration of compenents are
described in the sperification or requirernents. They generally trade off the periormance and sost.

The fundamental tasks at each level makes the iterative design composed of the problem decomposition
and refinement proceed according to the design plan. If a design fails, redesign is executed, and the preblem
s decemposed and refined again. It backiracks the previous design decisions in the sasks at the higher level
or executes local medification at the same level, and executes the iterative desizn.

Planning decomposes and refines the problem or specification according to the design plan. The design
style determined from the design plan, in other words, the architectural knowiedge about the design object, s
indexed by the requirement or specification of the design, and can be regarded as constraints. The refinemment,
optimization, analysis, and evaluation tasks are selected and executed according to the design sivle, Tle
decompeosition of the requirements or spacifications of the design are executed by applying the design style. [t
is assumed that problem deceinpesition can transform er map the problem to the subproblem or component,
"There are two methods for problem decomposition: in one case the subproblems are interdependent, in the
other they are independent of one another. In the former we consider the relations between the components
at the same level, and in the latter we consider the relations between the components and subeomponents,

Refinement transforms the divided specification into structural representation composed of the com-
ponents and relations betwesn them, These relations between components can be regarded as constraints.
Constrainls on the component attributes are particularly important. For example, the mechanism for the
propagation mechanism of consiraints in decomposing into interacting subproblems is different from that
in decomposing into independent subproblerns. The former mechanism propagates the interactions among
subproblems as the constraints. and the latter propagates the constraints upward or downward arcording to
the hisrarchical representation of the design objeect.

Optimization modifies the struetural representation lacally, so that the funetions expressed in the spec-
ification de not change.

Design requirements
]

T
Planning
l T Nasipn shject modal
Decompoaition
A\
Bystem Unit
}ieﬁnemeut Tﬁnumﬂnt |_ Unit
Anaiysis | Analysis o
l | et
r i .
i Evaluation Ewaluaticn — Component
+
Design solution Fig.3 Design Process Model

2.2.2 Target Architecture of Desipn Expert System
2.2.2.1 Problem Solving Models for Constraint Reasoning

The architecture of design expert systems which use the copstraint-based problem soiving mechanism
is compesed of the following primitives: the geperator, propagator, tesier, and ibe failure recovery module,
as shown in Fig.4. This problem solving mechanism s extended based on a zenerate & test method.

The generator assigns values to parameters or maps funciional components o the physical components,
The gensrator can take either a conuoucus or a discrete vaive, The lormer assigns parameters of the
atiributes by local modification based on the predetermined components. The latier assigns parameters by
retrievine the standard parts for implementing ompanents frem the 2atalogie, a table look-up method.

The propagator assigns or selects values to parametars by actively svaluaning constraints and propagating
CONSETAINLE.

The tester checks the constraints and can be considered as the passive handling of coostraints. In
general, the inequality deseziption can be handied by the tester, but in some contexts, constraints can also
be considered as the equalizy.

The failure recover module modifies the atiributes of the components locally nsing the advice mechanism
and plans problem decompesition. The advice mechanism repairs partial or local designs using heuristics
about the attributes of the components. It uses the above generator and propagator as primitives. In
failure recovery haﬂdliﬂg, both the Dhligamr:r' and the suggestive constrainks must be handled. Susspﬁtiva
constraints are selected or relaxed by a planning algorithm that tries to satisfy as many constraints as

possible.
Tntailigens
Countroller buektrack [Design /
Salbe | goni . d

prablem
- T
| —
Heject | Propagator Apply
‘ i
Generator Tester
Pagsive
constraint
Failure
T recovery O —

Fig.4 Problem Solving Model for Constraint Reasoning

2.2.2.2 Architecture of Design Expert System

We describe the architecture of the expert system for routing design. Hesearch has been conducted an
architectures consisting of primitive tasks for routine design, called generic tasks for design [5,6,23,28]. These
architectures provide the ability to structure knowledge for the various design deseriptions and provide prob-
lem solving for the design to reduce the gaps between the functions for the design process at the knowledge
level and she functions supported by expert system building tocls at the program level. However, they do
not provide a modeling facility and it seems that thev ace insufficient to handle the constraint representation
for this generic task. Therefore we investigate the archicecturs inciuding the consiraint representation and
itz problem soiving mechapism, Conscraing representation is proposed as 3 new paradigm for knowledge

7

representation, and the problem solving mechanism as a new paradigm for the architecture of routine design
expert sYstems.

We now define and describe in detail constraint-hased problem soiving in routine design expert systems.

Constraint-hased problem zelving corresponds to an efficient execution of the design plan ebrained by
compiling design specification and various related types of design knowledge. The initial constraints are
the design specification and knowledge about the desion object; the compiiation process 1s based on the
fundamental tasks of the desien process, such as planniog, problem decomposition, and refinement, The
constraint-based problem solving mechanism is described according 1o the abeve constraint classifieation by
matching the design process model for a roucine design to the design system or toal.

When we solve the problem, we can deal with this problem by using various nrabiem solving stratesies
and inference methods., Even though we solve the same problem, there are several solution methads and ‘he
difficulty of the preblem may depend on each soiution mechod.

Therefore, it is necessary to realize the fexible and efficient consiraint-hased problemn solving mechanism
to select and apply the following suitable solution methods and inference methods.

1) Constraint Propagation and Its Control

When, in the process of satisfying constraints, a value is assigned to one variable, the values of other
variables may be determined by the former vartable; this is a mechanism of constraint propagation.

Both date Jow apalysis and simultaneous equations are typical examples for a sclution method of
constraint propagation [4,33]. Data flow anaiysis tales care of local constraint propagarion, simultaneous
equations used when the problem cannot be solved by loeal constraint propagation only. In particular, when
using data flow analysis, a trade-off betwesn constraints may resuit if the constraints cannot all be satisfied.
Cleariy, we need a strategy for contrelling constraint propagation.

Furthermore, in hierarchical design, interactions between constraints must alse be taker into account
when realizing constraint propagation. In partienlar, structural constraints shouid be considered in mechan-
ical design. Structural constraints are reflected in the design style, specifications, and requirements at each
abstract level of the desipn, and determine the structural decomposition. partition, and design style at lower
design levels. [n hierarchical design, the constraints are propagated from higher to lower design levels. The
desipgn style constraints determine the structure of the design object and the problem decomposition at lower
design levels, Constraints are partitioned through the stoucture of the design object and decomposition of
the design problem.

2} Failure Rﬂcnvﬁry

The failure recovery retries the design decision when the active assignment of values o variables by
means of generators and propagators (ails, or the tester returos a failure. This fatlure recovery executes an
efficient generate & test process using procedural heuristic knowledge, and executes a constraint relaxation.

Constraint relaxation is applied to weak constraints. It is equivalent to searching for alternatives to the
specified constraint. That is, at the failure stage, when a constraint has not been satisfied, we search for
alternative constraints at the same or a lower level, Selection involves the choice of a constraint when there
are {Wo or more competing conatraints, and is regarded as constraipt interpretation. In this way, constraing
relaxation can be formulated as a planning problem [11].

3) Least Commitment

Another approach to the problem of constraint interactions 13 minimizing ioteractions between sube
problems, This is ceferred to as the principle of least commitment; by delaving constraint evaluations as
long as possible, refinements aceording to the design plan are executed, and evaluations are performed when
necessary (1],

4) (Hierarchical) Generate & Test

Generate { zest is a strategy for general problem solving. In this strategy. a generator is used to generate
values for variables and a tester is used to test thess values, This strategy mav make the problem solving
mecpanism inefficient, depending on the kind of problem being solved. The characteristies of the problem
therefore should be considered eareinlly. In design aroblems the problem must be divided into structured

8

subproblems with hierarchical ievels; we can then apply generate & test again in each subproblem to give
an efficient problem sclving system.

5) Problem Decomposition {Divide & Conguer)

If we consider design by step-wise refinement, interaction between constraints among separate subprob-
lems are extremely impeortant. Considering practical design problems, we need to decompose the problem
into subprobiems such that the |nreractions among the subproblerns can be minimized.

6) Preservation and Management of Dependencies among Constraints

In processes whers the values of constraioed variables are propagated through the execution of constzaint
propagation mechanisms, the preservation and management of dependency relations among sonstraints, vari-
ables, and constant values ars desmed important for resolving such contradictions which may arise in variable
values and to explain the values generated [15]. A mechanism for monitoring constraint evaluation should he
included in any problem-sclving mechanism that relies on constraint representations. [t manages constraint
checks and ensures consistency, and is ts some extent realizable using demons or attached procedures.

T) Adoption of Solution Methods for CSP

A copstraint satisfaction problem (CSP) is a problem that assigns values to all variables such that al]
relations on variables {all constraints) can be satisfled when a set of finite variables is given where each domain
defines the set of finite values that variables can take. A CSP can be represented in terms of constraints [9,10).
Design problems can be represented in terms of the constraint network, but there are alternative methods
for generating values to variables in constraints. Thesefore well-structured design problems require strategies
for efficient problem solving, such as control of the search process, in addition to the sther techniques for
solving CSPs.

2.2.2.3 Relation to Programming Languages (Program Level)

A language scheme called constraint logie programming (CLP) has been proposed [12.16,30]. This
scheme defines a class of languages designed to deal with constraints using a logie programming approach.
It handles mathematical formulas composed of linear equations and inequalities as algebraic constraints.
The interpreter of mest CLP languages consists of three modules: inference engine, constraint solver, and
preprocessor or interface modules, The constraint sciver ssives constraints which cannot be handled by the
engine. In other words, it determines the sclvability of that set and, if solvable, computes the solutions,
given a set of constraints. To obtain the solutions, it needs the solution methods for a set of constraints,
that is the solution methods for simultaneous equations

CLF languages allow more flexible evaluation and assignment of values to variables than PROLOG does.
Conventional programming languages must determine the ordering of the evaluation and assignment in the
form of the procedural statement and must bind all arguments to values, Therefore, CLP languages provide
more flexible and expressive power for describing constraints than do conventional programming languages.

The design plan generated using the knowledge compilation technique is the constraint network de-
seription; it includes the design knowledge, the problem-solving heuristics and problem-solving primitives
of the predetermined architecture. The mechanism for the interpretation and execution of this design pian
mostly depends on the mechanism of constzaint propagation. Constraine propagation and its control are very
important for constraint-based problem solving; both local and non-local propagations must be taken care
of. CLP languages can handle this propagation mechanism easily because both the local and the non-local
propagations can be handled by the constraint solver, which can be viewed as a generalization form of unifi-
cation., Furthermore the CLP’s logical, functional, and operational features are available as in conventional
logic languages. Thus the CLP language scheme is suitable for the above constraint-based problem solving.
In the second versicn of the knowledge compiler environmens, the design plan description is translated into
this language. Problem solving primitives for constraint-based problems other than the ones described here
will be provided as extensions of this langnage. since the CLP language is the programming language.

3. Kopowiedge Compilation

Knowledge compilation techniques are being investigated in many problem areas such as diagnostic and
machine learning problems.

This compilation 13 a tezhmiaue by which knowledge 1n declarative form, such as facts and theories,
about the domain is stored ard this stored knowledge is applied and utilized by interpretive procedures. This
technique makes existing paths of processing more efficient tather than enabling new paths of processing.
Thersfore, more eficlent procedures specific 1o the task domain can be generated using the knowledge
eompilation techaique.

Io this case, knowledge compilation means to transform knowledge representation {problem specifica-
tions) at an abstract level to one at a more concrete level; from knowledge level to architecture level, from
knowiedge level to peogram level, and {rom archivecture level to program level. The purpose of this methed s
to imoprave the effictency of the utilization of various kinds of knowledge and the problem salving mechanism.

In the fallowing sections we intreduce knowledge and conscraine campilation for design probiems, design
plae generaton for routine mechanical design, and the current state of oug research.

3.1 Knowledpge Compilation for Design Problems

In this section we define knowledge compilation for design problems.

In mechanical engineering there are many cases when design systems or tools are provided for each
design object. In fact, the individuality of the design object makes it difficult to abstract, arrange, and
utilize the design systems or iools because the corresponding model and analysis method for this object
often changes when the siructure of the design ohject changes.

At present the individualized design systems or tools for mechanical design implemented using a typical
procedural language such as Fortran are inconvenient to use and inefficient for designers.

To reduce the locosvenisnce and joefliciency of existing design emvironments, we need to provide an
environment in which the designer can apply the approach used in cirenit design o mechanical design and
can construct design systems or tools easily.

By dividing design Imowledge into knowledge about design object and knowiedge about problem solv-
ing we may handle both types of knowledge effectively and improve the efficiency of the problem solving
mechanism of the whole sysiemn. Viewing knowledge and requirements as constraints. we can regard design
problems as the constraint satisfaction problem. Knowledge transformation is a very important technique
to bandle these independent Yinds of knowledge uniformly, to generate design plans aceording to primitives
of constraint-based problem solving, and to improve the efficiency of the problem solving. We consider two
methnds for transformation: one is knowledge compilation, whick generates design plans by analyzing and
compiling knowledge about design objects and about problem solving and which builds design systems. It is
suitable for parametric design where the structure of design object is fixed, and an eficient problem solving
mechanism can be realized.

The second method is to translate knowledge of object models and kmowledge about problem solving
into intermediate descriptions and to interpret these intermediate descriptions. This is an interpretation
approach, which corresponds to an interpretation of a design plan. Furthermore, it is possible to interpret
a design plan generated during problem solving efficiently by reusing knowledge derived beforehand nsing
knowledge transformation techniques {including the design plan and its intermediate description). At first,
we focus on a dﬂign pmHem where the structure of the r]eaig_'n c:h_fer_t and 'L:nnwhdge H.bmlt. prnHE'm sn]\l'"tng_
are fixed. Therefore we adopt knowledge compilation as our knowledge transformation technique.

This knowledge compilation for design problems is & technique that transforms the input design speci-
fiearions into the design plan, assuming that the structure of the design object has been determined. Fig.d
shows an overview of knowledge compilation. The input of the knowledge compiler is a design specification
which includes the functional description and comstrainis such as performance and resource limitation in the
form of a parametric description.

The knowiedge compiler determines the structure of the design object and the analysis and evaluation
methods, based on the instances of the configuration and mechanism of the design object stored in the
knowledge base, The structure of the design object may be given by the designer through the user interface.
The k‘,’!:’:-WEmi.ge hase stores k_nuwig-.:lgn about the 1{r$i.gu ui:;jec'[. model such as constraints for the analysis
and evaluaticn of the model. its struciural knowledge, and public knowledge such as the catalogues and
parts standaras, The compiler anajyzes the relationship among the components of the deeign object, studies

10

the problem decomposition and refinement method, determines the relationships among the consuraints
and parameters and among the components or parts and attributes. The design plan by which the design
speciiications can be satisfied 1s generated by compiling design knowiedge and problem-solving heuristics (3]
along the archizecture described in Seetion 2.2.2. The generated desizn plan can he considered the program
for the design.

The above anaivsis 13 used 1o gemerate the design plan; the funciional or physical components are
determined for impiementation of the design object by retrieving knowledze of the catalogues and parts
standards. assuming that the siructure has been determined. The compiler also analyzes and =valuates the
design object at this time and then optimizes the design ulan, considering the probiem decempesizion taking
care of both the independent subproblems and the subproblems with interactions.

Knowledge compilgtiopn Dwesign requirements Haogwiedge base
L AEA R AT RN N RS N E I EE ST NN f RN P U N AW N NS P EEEO AR LA EEE : ‘E}:E'HFEEIE?.L_"}P_#_:} ---------
E Constrairt network generatian e ' ::_-.‘.l'[p-rhanicni system

H | &1 | {mechanism} likrary

! |Determinaticn of mechanism and structure : :
jlof design ebject (structural model) ERRE |

1

1

1 1

1 1

i 1 "
E IIJEE,ermtnnt.inn of enginsering model F :
i i\ :
1 i

1 i

i

]

i

Engineering model

b

| Refinement of eogineering model |, -., .

: = | library
" 1 « § -
: Lttt ot ot il
: : | :
: - 2k
: }Eunntra:nt.anal}ra.ia I H l _________________________________
: |P_lanueneratiaun I
l-r-------.--.....-...........*......-........................ ‘KRR
Design plan Fig.5 Cverail flow of knowisdge campdlatinn

Next, we will adopt a knowledge interpretation approach to handle a design problem where the structure
of the design object and knowledge about problem solving are changing during the problem solving.

The interpretation of the design plan is executed by the design plan interpreter which is based on
the problem solving model shown in Fig.d; the synthesis and analysis tasks in the design are executed
according to this design plan which is generated by knowledze compilation, using the interpreter hased on
the predetermined system architecture,

In future, a design system building environment customizable by the designer will require this design
plan generation facility using both knowledge compilation and knowledge interpretation.

3.2 Mechanical Design Problem

In mechanical design it is difficult to modularize the design ohject because the geometrical information,
the representation in three dimensions, and manufacturing and assembly information are closely linked with
the design object. This is why the behavior of the design object changes as the geometric features change:
the geometric features depend on the functional description or fabrication information. This results from
the dynamic creation of the model from the components of the design object. .

In contrast with cireuit design, feature description at the functional level has little effect on featurs
description at the physical level and it is diffieult to abstract the components of the design object from their
behavior or function. Therefore, given the specifications, it is difficult 1o detsrmine whether the behavior
satisfies the specificasions. so the analvsis itself requires careful considerazion,

Strategies for the decomposition of the problem are not aiways formalized ciearly and act applied in
mechanical design as in crcult design (22). In circnit design, the design process ac each levei is formalized

11

so that the design tasks can be kept modular and simple. It i= very important to consider the interactions
between functional description and physical description for both eirevit and mechanical design. In mechanical
design, most interactions are betwesn the function, based an the physical laws, and the form, such as topology
or geometry of the design object at functional or physical level; the design problem must be dealt with by
investigating the degres of decompesition of the problem or specification. In this case, we assume that the
structure of the design object at the funcrional level has already hesn decided.

4. Design Plan Generation Through Constraint Compilation
4.1 Constraint Compilation

Constraint compilation is a technique by which kmowledge about the domain iconstraints, facts, and
theories) is stored in declarative form and is applied by constraint-based problem solving mechanisms. 4
constraing compiler makes existing paths of constraint processing more efficient rather than enabling new
paths [14], Considering a design problem. it transforms the input design specifications inzo the design plan,
assuming that the structure of the design object has been determined.

4.1.1 Constraint Compiler

A constraint compiler can specialize knowledge by combining knowledge independent of a certain design
object and a designer's heuristics which depend on a certain design object. Since the constraint compiler
can generate a design plan by analyzing dependencies among constraints, design knowledge can be also
represented declaratively. Inputs to the constraint compiler are the design requirements, ohject models,
and knowledge about problem solving. Reference to results of previous designs and the designers’ heuristics
about searching for alternatives are also represented as knowledge about probiem solving. From these inputs,
the constraint compiler analyzes dependencies among constraints and parameters, gensrates a design plan,
and provides an interface between the design knowledge and the constraint solver at the architecture level
or the languages at the program level. The output from the compiler is a specialized design expert system
including the designers’ heuristics at the architecturs or program level. Therefore, a fexible environment
in which an expert system can be built by designers themselves is obtained by dividing design knowledge
inta ohject models and knowledge about prablem solving, and by generating design plans using a constraing
compiler.

4.1.1.1 Overview of the Constraint Compiler

The general flow of control of the constraint compiler is shown in Fig.6. The compiler contains three
main procedures: lexical and syntax analysis, inheritance relations analysis (by generation of class definition
tables), and constraint analysis (by both generation and update of tables and determination of a constraint
analysis sequence). The input to this compiler is user definitions and libraries, and the output is a design
plan. [nheritance relations between functional blocks and between components are analyzed in the inheri-
tance analysis part. In the constraint analysis sequence determination part, relations between components
are analyzed and a directed-acyclic graph (DAG) that represents part-whole relations and abstract-concrete
relations is generated using this analysis result. The constraint analysis sequence is determined accord-
ing to this graph. In the constraint analysis part, dependencies among constraints inside components and
functional blocks are analyzed according to this determined sequence, After this the compiler analyzes de-
pendencies between functicnal blocks and components, between functional blocks, and between components,
and finally among the constraines of the whole system. In the design plan generation part, a design plan that
enabies efficient problem solving is generated according to the dependencies between constraints assuming
the problem solving primitives shown in Fig.2.

4.1.1.2 Constraint Analysis and Design Plan Generation
Constraint analysis executes as follows;

@ Generates a constraint netwerk from the constraint representation.
o Regards the generated constraint network as a graph description and -aleuiates topological infor-
mation of the graph description [18,37].

1"1‘

o Using that topelogical information, ic extracts parts of this graph that contain loops and groups
them as blocks.

o {(3roups as blocks those parts that contain no loops.

Thus, design plan is generated by grouping the blocks analvzed above and reanalyzing shem. Finaily,
problem soiviag mechaniams suitable for sach blocks are selected, so that the problem can e soived efficiently.

It is unfortunately necessary to reduce the complexity of the problems by some methods besause systems
for design problems are large-seale and cemplex and need to handle a large quanuy of knowledge. For
syxampie we nesd an aigerithm for dividing the problem inte casier subproblems wsing munltiple hierarchicai
levels of system abstractions. Similarlv, handling the constraint network is difficult. becacse the structure
of the network is quite complicated for complex systems. Therefore it 1s pecessary o struciure ibe network
with this hierarchical level of abstraction apd to combine subnetworks, instead of handling the whoie of
network as a fat sweucture. These hierarchical levels of this structured network correspond io functional
blocks, or components.

In order 1o deal with constraint analysis for structured networks with hierarchical levels. the analysis
phase is divided into two phases. The analysis is executed according to the tree descripticn composed of
part-whole relations and is-a relations of the system.

Phase one procesds from the bottom up: it performs data flow analysis and reduction {merging) for
each component and functional block.

Phase two instead starts from the root and proceeds from the top down towards the leaves: the depen-
dencies of the constraint network are determined by reanalyzing constraint dependencies among functional
blocks, and between functional blocks and components.

Concretely, constraint analysis begins at the lowest level of the class hierarchy and proceeds towards
the highe_-;:. level class If there are inheritance rq]a.rinnal the constraints are not pmcessad aiﬂﬂg the class
hierarchy between parent classes and children classes, but are treated as a flat set of constraints included in
both parent classes and their children classes.

After dependencies among constraints inside components and functional blocks are obtained by the
constraint analysis, design plan generation proceeds towards the higher level of the hierarchy of the design
object using the result of the analysis. As shown in Fig.7, constraint analysis generates this design plan so
that the problem solving mechanism ean be executed efficiently on the assumed archizecture,

In other words, the generation of the efficient problem solver based on the problem solving strategies
suitable to the given problem is required to identify and assume tasks necessary to solve the problem from
the analyzed dependencies. These problem F.nlving 5Lral‘.negie3 are described i Section 2.2.2.2.

4.1.1.3 Extension of Constraint Analysis

Considering practical design problems, especially parametric design, there are various types of con-
strzints to be satisfied. When the structure of the network of constraint is complicated for complex syatems,
an efficient constraint-based probiem solving mechanism is oot realized enough using only CLP languages,
especially their constraint sclver, Because this copstraint solver handles the constraints in both the flat and
global set,

To improve the execition speed, it is therefore necessary to separate the constraint network description
of the design plan into parts that can be processed by local propagation and parts that require non-local
propagation, using the concept of the structuring of the network with hierarchical level. To split up the
constraint network we consider the constraint network as a graph and extract the tree description and loop
description, and interpret and execute both the tree description and the loop description [L18]. Thus, by
splitting up the constraint network, each description is dealt with using the appropriate solver for constraing
handling to reduce the search space of the problem. Furthermore, when the ordering of the assignment of
values to parameters in this constrain: network changes, the tree description and locp description generated
from the original graph description also change. The former can be considered as a data dow graph.

An affective utilization of the structure of the problem space extracted using the constzaint anaiysis will
lead to the architecture suitable to knowledga-based systems. In thie case. the exzension of the consiraint
analysis considering this separation concept will lead to the improvement of constraint-nased problem solving,

13

| Sﬂ-uma inp'ﬂt : : User definilios snd library

L 3

| Lexical and svotax analvsis !

W r

f . 3
i is | Table of cl definitions
|L Inhmtagc-a analysis _\\‘L " Table of class i ;

~ 1
Determination of constraint |
analysis sequence

’ v

| Constraint analysis = *

| Code Generation J

Fig. & Compilation Procedure

| Hmewiedge Latthi |y oo]
: - |
1 fdllllﬂunl-!qnu-l::nl) :
1
| :
i i
I i
P oo o :
I| -Strustuniog of ths Probles Spece 1
-~ S 4

Constraint Analysis
Acshitepture evels |, o mmmmaaa -

Elsitive Pllitalbsa of U Sifuirgure of by Proslen Spees

L]
[} 1
L] i
| 1
i 1
I 1
i 1

1
1]
i]
1 I
1 I
L

Aurehiuecisrs based so Lve @fucitire of L probles spacs
| Laweln iy iTisiwanl, prwsbilem aciwing |

Fig.7 Role of Constraint Analysis

Furthermore, we will consider the following extensions of constraint analysis. We need to apply an
incremental analysis (compilation) or interpretation function o this constraint analysis, to handle constraints
that change dynamically, such as addition, deletion, and modification of constraints during a design process
and to handle their preference. Furthermore, design plan generation requires scheduling of goals and subgoals
according to the rough prediction of the necessary cost for problem solving during the constraint analysis
considering an efficient problem soiving.

In future, constraint analysis will not handle the static role of constraints; it must be able to interpret
roles of constraint and directions of an information Jow of constraints dynamically.

4.1.2 MECHANICOT

As stated above, we divide design inowledge into objec: modeis and inowiedge about problem soiv-
ing. This enables us to maintain knowiedge and 1o modify knowledge fexibiy. Regarding knowiedge and

14

design requiremnents as constraints, we empioy constraint-based problem solving. To help designers build
an expert systemn suitable for a design problem. we propese a building tool that regards design knowledge
as constraints, generates design plans by analyzing their dependencies, and provides an interface hetween
the design knowledge and the comstraint sclver, We used a constraint compiler to obtain facilities for thia
huilding tool, The expert sysiem which is the output of the tool can efficientlv cbrain salutions that satisiy
the design requirements, according to the desiza plan generated by the tool. Fig 3 shows the architecture of
the building tool. An expert system building iool. MECHANICOT. is being developed (35, MECHANICOT
iz a tool for @ mechanical parametric design. It anaiyzes dependencies between structures of a design object
and parameters. produces a design plan, and buoilds a speciaizzed design axpert system.

MECHANICOT {ona PEI machine)

Libraries
-1 Mechanical pacts & wnits |
t:lhlﬂ. bearing, gear | |

| Dlesign formulas,
w0 | cataloguas, tables

Hnowiedge
abaat
prablem salving

Constraint - bosed

enowledge compiler
‘Ganecales a design plan by
analyzing conslruints
- Pravides an interface betwesn

I B design knowledge and the
Lalerence engine
T

Catput *
J_Duig'n AEPETT 3¥Stam I

Design
requiremenss

Fig. 8 Overview of MECHANICOT

4.2 Design Plan Generation of Gear Unit Design
Next, we will describe in detail the constraint analysis process, using a gear unit as an example.
4.2.1 Problem of Gear Unit Design

Fig.9 shows the main spindle head of a lathe. It consists of a main spindle to grip a workpiees and to
rolate it, 3 motor as a power soures, V-belts and a pair of pulleys to traosmit power from the motor to
a pulley-shaft, bearings to support both the main spindle and the pulley-shaft, and two pairs of gears to
change the main spindle speed. The problem is to determine the dimensions of each part and find each part
number by searching catalogues. The main spindle head of a lathe can be realized in different styles and
consists of functional subsystema. Furthermore, cach subsystem is implemensed by configuring or combining
the basic machine elements, composed of a pair of gears, the shaft, and the bearing, according to the design
style [17]. For example. the design style for the power transmission unit betwesn two paralle] axes shows
the reducer with *wo shaft units, whese components are the two shafts. bearings. and reducer. The power
transmission unit of this reducer can be realized using a design styie such as the gear-drive, belt-drive. or
special-drive,

15

In this section we give a5 an example this gear unit. This problem is farmulated in terms of the following
specification parameters which describe the definition of domain-specific characteries. Fig.10 is a schematic
description of a gear unit used in a reduction system of a main spindle unit. In this design, input parameters
(design requirement) are the twisting momesnts of input and output shafts, shearing strength, tolerant torsion
angle, and the number of wput revolutions. The output parameters are gear ratio, pitch diameters of gears,
shaft dizmeters, and the number of ouspus revolutions,

The gear unit design can be considered as the probiem of determining the design parameters so that the
specification paramesers and performance parameters are satisfied when the structure of the design object is
assumed o be fixed. It is a tvpical example of paramestic design. 1t 15 necessary to consider that there are
two strategies for the realizatien or implemestation of the physical components using standard parts and
data. non-standard para. and their eombinstion in this problem. These strategles are determined depending
on the design specificaticns of requirements and the parametric design is executed based on the strategies.
Fig.ll shows an example of design knowledge of the gear umnit.)

4.2.2 Example Using MECHANICOT

Parametric design problems such as gear units can be considered routine design and can be formalized as
well-structured problems. Fig. 12 shows a constraint network of the problem formalized from the viewpoint of
the conespt of constraint. There are some alternatives in generating the values for the variables. Therefore,
solving the problem can be sfficient or inefficient according to the solution methods for problems, because
there are several possible solution methods (strategies) for them. Although the problem can be formalized
as a constraint network. the available strategies do not lead to an efficient solution. Funections to insure
efficient problem sclving must be provided to deal with practical problems.

MECHANICOT analyzes the relationships among components of a gear unit, seperates the lree de-
seription showing parl-whole and is-a relations, and determines analysis sequences according to the tres
description.

Dependencies among eonstraints on components and functional blocks of the design object are analyzed
according to the determined sequence.

Constraint analysis consists of two phases. In phase ane, data fow analysis r1] is exeeuted [or the
inpul shall, sutput shalt, and the pair of gears that corresponds to leaf parts of the tree description. Next,
traversing toward the root of the tree. data flow analysis proceeds in the functional block (gear umit) in
the upper part of the tree description. After thar, we parform data flow anaivsis for the gear unit and
its components, including the input shaft, output shaft, and the pair of gears. The constraint analysis
terminates when the root of the tree is reached.

In phase two, the analysis is executed from the root of the tree to the leaves, Lo this phase, dependencies
between the functional block (shaft) and the components (inpat shafs, output shaft, and the pair of gears),
and dependencies between these components, are reanalyzed: finally the dependencies in the whale system
is analyzed.

Fig.1.d shows an intermediate description of dependencies found by constraint analysis of a gear ugit
design. For example, constraints from structural relations, generator, tester, and filter are wssigned to
subgoals. Each constraint is interpreted as a function. When processing constraint, a subgoal is assigned to
each constralnt statement; a subgoal is also generated for each method. [n the middle a data low deseription
of the design method for calenlating a shaft diameter is described. In this design methed, a twisting moment
T, a shearing strength G, and a torsion angle thets are input. Shaft diameter D is the sutput.

Fig.14 shows a design plan generated according to this analvzed result. This figure consists of data
flow descriptions for each gear and for a pair of gears. Subgoals are integrated into goals hased on the
ipput-output dependencies of parameters generated by a data flow analysis. Names are assigned to goals in
exactly the same way as to subgoals.

An execution sequence for goals is determined based on their input-ocutput depepdencies, This sequence
13 managed in a goal that is one level higher than included subgoals. We assume that the relationships among
the zoals and subgoals correspond to the hierarchical relationships of the design object shown in Fig.13; the
relationships between the eomponents and subcomponests and the desien method for the components and
subcomponents are formalized and given in advance as the model description of the design object in the
koowledgs base. Based on this assumprion we generate a design plan using constraine compilation and can

16

Cutline of Design Cbject
=Main spindle head of Lathe —

High—speed peer

Lowe—sowsd gear

fwd)

|wnnli-\<
M in ;n-m-—l—{_‘

Renr basring TL_.

m

Wb eCw

I

Cutring ool

Front bearing

Pyl ey -
[largal
Pul ley thaft ﬂ I
U | -
¥ balt 4]/ =
Puliey !"
(wmmll) :[Matar
?iq.g
O Gear unit
Whole=part relations 3"‘:‘ |
Gaar unit - ; S
—Curput sneit E""‘LE
Canrs !Tnl
|nout shaft -Eé__'..
D—I:E : Pe_ziania
Tin | 1
Farameters =
input
Tia Tia Fin Ay Tot, Semi, O
ouiput

Ay, Pdweeni, Ppeen Dig Deml . Ros

Structural eonstraimts

g plE—

Dwznnl Daut
Datuni 2gras bnly dimeins
Dwan cabalt dimmeier

Schematic descsiption of gear unit

17

Higresoaed gear
| pininm

Low—pend gear
[pinuani

Cutlina of spindle head of lathe

Output shaft diamater : Dout
Dout = {[32 Toat X 180 % 10) /(n- 3« Bout)} v
G : Shesring srength

Gear ratio 1 Rg
Eg = Teat ! Tin

Number of output revolution : Rout
Rout = Rin 7 Roue

Pitch diameter of outpuot gear : Pd
Pd_gen: from min to maxef dlasrets valus of Pyl
Pd_gen & Dwhesl + Tm = Pmin_whesl
Fd_wheal & 2000 /- Reot = Pmax_whesl
LDwhesi : Hols dismeter of gear
Bg = Pd__wheel /Pd_ pizion

Gear module : m
m_ges : {10, 15, 4.0, 40, 50)

Fig.11 Design knowledge (formulas) of gear unit

finally obtain the plan written in ESP code shown in Fig.16. When the default strategy of the problem
decomposition is fixed according to the assumption. it is more efficient to determine beforeband the ordering
of the execution of the decomposed components.

5. Current State and Future Research

The first implementation of the design plan generation environment, including the knowledge compiler.
is being carried ous using the Extended Self-contained Prolog (ESF) language '7] om the persenal sequential
inferepce (PSI) machine [34].

MECHANICOT provides a design support environment where a designer can input zod modify desizgn
requirements. eastly design knowiedge composed of a model of the design opject and the design process. and
where the design pian can be generated using constraints derived from chat nowiedze.

MECHANICOT is an automated system with no user interaction. It seceives design requirements and
design sbieet representation written in an ESP-like language as input, and generates the design plan written
in ESP as sutput. The execution mechanism of the generated design plan is realized using the inference
mechanism in the ESF language, such as unification and backtracking mechanisms.

So far, we only handle static and obligatory consiraints. For example, the interpretation of a constraint
is fixed, because the role of a constraint such as a generater and tester on a constraint-handling mechanism
is predetermined. The haadling of suggestive constraints and dynamic constraints, such as the addition,
deletion and medification of constraints during design, kas not yet been 1nvestigated. Both static analysis for
constraints and dynamic analysis, including constraint relaxation, are required to realize dynamic constraint
handling, considering a current constraint compiler.

We have not yet realized a specific mechanism for constraint-based problem solving, and a conpstraini
propagation is performed using the unification function in ESP. A constraint soiver with a constraint prop-
agation and relaxation mechanism is required to handie dynamic constraints.

Next, we will use the CAL (Contrante Avec Logique) language [30] as a language providing a constraint
propagation to implement the design plan generation environment. In this case, a realization of the prop-
agation and its control mechanisms of constraint-based problem solving utilize the inference mechanism of
CAL language, especially the constraint solver.

After that, the extension of the constraint solver shown in Section 4., which adopts the constraint solver
for linear inequality, will be also executed to imprave the execution of the constraint-based problem solving.

In the future, we will adopt an interpretation approach as knowledge transformation technique. In this
case, the design plan, whose design goals and methods were compiled during knowledge compilation, will be
executed dynamically according to a design context or model determined by a design plan interpreter.

6. Conclusion

This paper has considersd a method of design plan generation and interpretation using comstraint
compilation, a form of knowledge compilation. It has focused on the architeeture of expert systems based
on applying constraint-based problem solving.

We have demonstrated the technigue on a mechanical component, a gear unit.

Our future research is to provide an environment in which designers can apply techniques used in existing
compilers to mechanical design, and can construct design systems or tools.

For this purpose we clarify the architecture of expert systems for various routine designs such as circuit
design, mechanical design, and configuration. We regard constraint-based problem solving as a new paradigm
different from rule-based and frame-based paradigms, and for constraint-based probiem solving we propose
primizive tasks required to realize the architecture of expert systems for various routine designs.

Acknowledgments

| would like =0 express thanks to Mr. Satoru Terasaki, joint researcher of the Fifth Researca labora-
tery. and other mempers of the Fifth Research laboratory: Mr. Takancri Yokoyama. Mz Katsumi [noue.
and Mr. Hirokazu Taki for helpful comments. 1 wouid aiso like o thang Prof. Isas Nagasawa. Kyusyu

L&

| reramars | 'ﬁ_‘ Tewt Rls Gin fiz Gt Sout Iiﬂ-: Tia Tewt Fin Qia Sa Guut St
ascl gl | o u:l-l wﬁlilf-' ! 'lr,‘g1||:| 'I-l‘ﬂ -;l.f‘
'\4* .
| ¥ r ¥ r T L]
=amkl | 1 gear wn
{puar want | iz Tout s | gonld Tia Towt Ris
t 1| 1 oo ¥ i ¥ v
| TausTin w L."f[i!l 1 TouwTin api | nFg |I
| | L
L5 oot | Re Raur |
e | | L ! |
Sl | agat .;I!Iq.:|| sarldf | | P Y Y P "'Hj :
' L4 v L) L4 v '
Topucenalr | sugmiasan
T EEeee—
! ggmlf Tia Gin 4o poall Tomt Gems dous
| r + % *¥ ¥ ¥
| il '_ Hi T 1
i —_— —
i r i ! ¥
i bis | i -
i il | [e
—_— L
| L2
gosld Bin Rin " Dot Bt
e [Em |
| 1 |
h 1 -] . | . LA L | l :
span | Diow7m| it | cpoonfin wa | Douielm | o [To0ieBaut | wit [Dm-vm| wu [SeoooPoe | wiz [Doutei=] o [Tonefeqt] i
| ran_sinies | P _puniom | Ty wread l Frus sl I P ‘L‘-ﬂ,-—l *-u-nu i
| % o |
Lo [o _ge= IERE N e i s | " gen o - |
I l iy TM-'-‘ l,n e l_:li_-h.l.
. | FeuDd sheipie | wm [Reerd ool |
i i I px T !
Pd.geakn. M_whwl R P4 pisics Fd_wheal]
= + —
Fig. 12 Conazraint Netwark Desemptoe Pig. 13 istermediate Descoption of Dependencies
i PE—— Tia Tout Ria Gin Bin Dous Bewn
. '
i_m Ll | il |-|1 | welus | apt | o)
goall l l l
[— Tin Tout Hig
|
w ¥ K
= w [
By Haak
L
i win [moa| il ss|
1
11153 I r geala r
ia Ha Tout
impen TF Gi= it Soul &t
v v + + 4
s S —
r
Ihn Dol
I o 1
—
Loali ¥ r + l
|u1. Thn Ria Hy Dows Bzt
[| |
- ¥ * L] *1r
wta [Oin=Tm] wn | 2000k | wid [Bout+Tm | s [20000mReas]
| g | R i | " _yen
i
| LN_— l,hl_-—.l
| Gg= Pl womenPd maisn |
L ¥ |
P _=mion e T
T v

Fig. 14 I:L-nt.ﬂlihsﬂJ Deaign Plas

compist-of i
Lol _ghalt pafmat _ ihedl, guar;
el -
sl wgh, eptl agiis sgrd agil, sgua sgii

Input Shak I Qutput Shaik I Gears | e

ngi b spBl, el apll sgTh, gk, apdi. sl
el

Fig.16 Relationship belwesn gosls according the consist-of relation Fig.lf Dasign Plun writtan |8 che B3P code

[ndustrial Technology University, for nseful suggestions and comments on needs of knowledge compilation
for mechanival design. T would like to thank Dr. Kouichi Furukawa, Deputy Direcior of the ICOT Research
Laborarories for helpful comments and suggestions.

Finally, I would like to express special thanks to Dr. Kazuhiro Fuchi, Director of IOOT Besearch Center,

who has given me the opportunity to carry out research in the Fifth Generation Computer Svstems Project.

Reference
1] Ahe, A. V. and Ullman, J. D., Principles of Compiler Design, Addison-Wesley Publishing Company
Ine., 18977

[2] Anderson, J. R., Knowledge Compilation: The General Learning Mechanism, Machine Learning, An
Arzificial Tntelligence Approach, Vel. 2, R. 5. Michalski, J. G. Carbonell and T, M. Mitchell {ed.),
Morgan Kaufmann Publisher, Inc., 1986

[1] Araya, A. A. and Mittal, 5., Compiling Design Plans from Descriptions of Artifacts and Problem Solving
Heuristics, Proc. of IJCAI-87, 1987

4] Borning, A., The Programming Language Aspects of ThingLab, a Constraint-oriented Simulation Lab-
oratory, ACM Trans. on Programming Language and System veol. 3, 1081

{5] Brown, D.C. and Chandrasekaran, B., Knowledge and Control for a Mecha.ﬁical Design Expert System,
IEEE COMPUTER, 1986

[6] Chandrasekaran, B.. Generic Tasks in Knowledge-based Reasoning: High-Level Building Blocks for Ex-
pert Sy‘stel‘n Dr.ﬂ{gh, IEER expert, 14984

[7] Chikayama, T., Unique Features of ESP, Proc. of International Conference on Fifth Generation Com-
puter Systems, 1984

8] Davis, E., Constraint Propagation with Interval Labels, Artificial Intelligence 32, 1587

i9] Dechter, R. and Pearl, J., The anatomy of easy problems: A constraint-satisfaction problem, Proc. of
[JCAI-85, 1985

[10] Dechter, R. and Pearl, J., Network-based heuristics for constraint satisfaction problems. Artificial Intel-
ligence, Vol. 34, 1987

[11] Descotte, Y. and Latombe, J.- C., Making Compromises ameng Antagonist Constraines in a Planner,
Artificial Intelligence, 27, 1985

12] Dincbas, M., Constraints, Logic Programming and Deductive Databases, Francs-Japan Artificial Intel-
figence and Computer Symposium 86, 1986

0

[13] Dixen, J. R.. Howes, & (ohen, P. R., and Simmeons, M. K., DOMINIC T P'mg‘:css Tewards Domain
Independence I Design By Iterative Hedesign, Proc. of ASME Computers in Enginesring Conference,
1937

[14] Feldman. R.. Design of a Dependency-Directed Compiler for Constraint Propagation. Proc. of st
Ineernational Conference on Tndustrial and Enginesring Appiication of Artificial Intellizence and Expert
Svsterns ([EA/ALE-35), 1988

1151 Harzis. DR, A Hybrid Structared Objec: and Copsiraint Representation Language. Proc. of AAAL35,
1934

‘18] Meintze. N. C.. Jafar J. Lasser, . Lasscz. J.-L.. McAloon, K. Miczariov, 5, Stuckey, P 1., and Yap.
R. 5., Censtraint Logic Programming: A Reader, Fourth IEEE Svmpesium on Logic Programming,
1857

(17] Incme. K. Nagal Y, Fujii, Y., Imamura, S., and Kojima, T., Analveis of the Design Process of Machine
Toois. - Example of a Machine Unit for Lathes - , ICOT-Technical Memorandum, 1988, {in Japanese)

(18] Henley, E. 1. and Williams, R. A., Graph Theory In Modern Engineering. Computer Aided Design,
Control, Optimization, Reliability Apalvsis. Academic Press, 1973

6] Kowalski, T. . and Thomas, D. E., The VLSI Design Automation Assistant: Prototype System, Proe.
of IEEE 20th Design Automation Conflerence, 1983

{20] MeDermott, D, Circuit Design as Problem Solving, Artificial Intelligence and Pattern Hecognition 1o
Computer Aided Design, {ed. J. C. Latombe), North-Holland, 1978

[21] McDermott, J., R1: A Rule-based Configurer of Computer Systems, Artificial Tntelligence, 19, 1982

[22] Medland, A. J., The Compuzer-based Diesign Process. 1., Engineering design-data processing [, Kogan
Page Lud, 1488

(23] Mittal, 5., Dym, C. L. and Morjana, M., A Knowledge-hased Framework for Diesign, Proc, of AAALS6

[24] Murthy, 3. and Addanki, 5., PROMPT: An Innovative Design' Tool, Proc. of AAAL ST, 1957

[20] Nagai, Y., Terasaki, S., Yokoyvama, T., and Taki, H., Expert System Architecture for Design Tasks,
Proe. of Int'l Conf. an FGOS 38, ICOT, 1988

[26] Nagai, Y., Taki. H., Terasak:, S., Yokoyama, T., and Tnome, K., A Tool Architecture for Design Expert
Systems, Journal of Japanese Societv for Artifieial Intelligence, Vol 4 No. 3, 1089

[27] Nagasawa, I., Design Experi System, IPSJ, Vol. 28, No. 2, (in Japanese], 1087

[28] Nicklans, D. I., Tung, $. 5., and Russo. C. 1., ENGENIOUS: A knowledge-directed computer-aided
design shell, Proc. of Jrd Conference on Artificial Intelligence Applications, 1987

[29] Rinderle, J. R.. Implications of Functiop-Farm-Fabrication Relations on Design Decompesition Strate-
gies, Proc. of ASME Computers in Engineering Conference, 1986

[30] Sakai, K., Aiba, A., Sato, Y., Hawley, D., and Hasegawa, R., Constraint Logic Programming Langauge
CAL, Proc. of Int’l Conf. en FGOCS 38, ICOT, 1088

(31] Stefik. M., Planning with Constraints {(MOLGEN: Part 1), Artificial Intelligence, Vol. 16, 1081

(32! Subrahmanyam, P. A., Svnapse: An Hxpert System for VLSI Design, IEEE Computer, July, 1986

(34 Sussman, G. 1. and Steel I, G L., CONSTRAINT - A Language for Expressing Almost-Hisrarchical
Descriptions, Artificial Intelligence, Vol. 14, 1980

[34] Taki, K., Yokota, M., Yamamete, A., Nishikawa, H., Uchida, 5., Nakajima, ¥., and Mitsui, M., Hardware
Design and Implementation of the Personal Sequential Inference Machine {PSI), Proc. of International
Conference on Fifth Generation Computer Systems, 1884

(35] Terasaki, 5., Nagai, Y., Yokoyara, T., Inoue, K., Horiuchi, E. and Taki, H., Mechanical Design System
Building Tool: MECHANICOT, JSAL SIG-KBS, (in Japanese), October, 1088

[46] Tomiyama. T. and Hagen, P. . W. T., Organizing of Design Knowledge in an Intelligent CAL System,
in Expert Systerns in Computer-Aided Design (ed, J. Gero), North-Halland, 1957

[37] Townsend, M.. Discrete Machematies: Applied Combinaterics and Granh Theorv, The Bepjamin Cam-
mungs Publishing Company, Inc.. 1887

