ICOT Technical Memorandum: TM-0728

TM-0728
Nested Guarded Horn Clauses:

A Language Provided with a Complete Set of
Unfolding Rules

by
M. Falaschi, M. Gabbrielli, G. Lewvi
& M. Murakami

May, [9°

C19EY, 1COT

Mita Kokusai Bldg 21F (03) 456-3191—3

IGDT 4-28 Mita 1-Chome Telex ICOT]37964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Nested Guarded Horn Clauses:

a language provided with a complete set of
Unfolding Rules.

Moreno Falaschi*, Maurizio Gabbrielli*, Giorgio Levi*, Masaki Murakami™

*Universiti di Pisa, Diparimento di Informatica + First research laboratory,
Corso Italia 40, ICOT.
Pisa, Iraly. 4-28, Mita 1-chome, Minato-ku,

Tokyo, 108, Japan.

Extended Abstract

DNote for the prosram commitfes In order 1o keep the paper in the page limits, we have moved to an

appendix the definition of an alghoritm (normalization). This more technical part is not essential and can be
climinated in the final version.

1. Introduction.

In the last few years, a lot of efforts have been devoted to the definition of concurrent logic programming
languages. We are manly interested in the family of languages that includes PARLOG [CG 86, G 87), Concurrent
Frolag (CF} [Sh 86] and Guarded Hom Clauses (GHC) [U 86, U §7]. We were initially motivated by the problem of
defining a semantics in the case of GHC. However we think that some of our results can be applied to the other cases
too, due o many basic similantics between GHC, CP and PARLOG as pointed out by Shapiro [Sh 89]. All these
languages do somewhat affect the basic logic prugramming computational mechanism, i. e. unification, by
introducing synchronization primitives which are all based on same sort of constrained unificaton,

As a conscguence, the raditional elegant semantics of Definite Hom Clauses [VEK 76, AvE 82, L1 87] is not
suitable anymore w describe these languages, because the exwalogical feantres that have been added. Most of the
semantics developed for these languages are either in the operauonal style, based on mansition systems [S 85] , (B
86], [BK B8], |5 87] and [S 87a), or in a denotational style, based on metric spaces [RK B8], [K 28]. Both these
approaches are based on the traditional technigues for imperative languages. The first attempts to define a semantics
with a declarative Mavour can be found in [LP 85], [LP 87] and [L 88] for variants of the original languages, namely
the deadiock-free versions. [5 83] first proposed, in an operational semantics framework, inputiouspul histories as the
most adequale semantic domain f(or these languages. Similar ideas have recently been vsed in fixpoint semantics
definitions [L 88, M 88, P 88, BKFPR 89]. For example, in [P 88, BKPR 89] the characterization of (full) GHC and
PARLOG, respectively, is based on variable annotations to represent the input-output constraints.

Levi [L 88a] proposes a new approach o the semantics o provide a "semantic scheme” for all the languages that
differ by modification of the unification paradigm. This approach has already been successfully applied to the case of
pure Homn clause logie [LM 8] and w the already mentioned variant of Flat GHC [L 88]. The key issue of the
approach is that models should allow 0 derive the mteresung operationgl properties and Herbrand models are not
adequate, even in the case of pure logic programs [FLMP 88]. The right notion of model is then, informally, that of
a (possibly infinite} set of unit clauses. The relevant operational properties must he ohservable, by executing a goal
in the model. With this notion of model, a formal semantics can be based on program ransformanon techniques, i.e.
wfpiding [T 84]. Unfolding is, in fact, srongly related w the operational semantics and can be used w formally
denive the model, which is also a program. The unfolding semantics and the least fixpoint semantcs, are stricly
related, since if we have a correct notion of unfolding, it is straightforward to define the transformation Tp,

In order 1o give a semantcs 1o GHC according w Levi's proposal, one major open problem was to find a
complete (i.e. always applicable) set of unfolding rulcs for the language. There exist several atempts o define a set
of unfolding rules for GHC [FOM §7, FOF £8, U 88] but none of them resulted in a complete sel. We believe that it
is not possible to give a complete set of rules for GHC (and for the other mentoned languages as well) because the
GHC syntax is not powerful enough to express its own semantic, which has to be preserved by the unfolding
process. Therefore the problem of giving a complete set of unfolding rules for GHC can be solved only by extending
the language.

In this paper, saring from Flat GHC (FGHC) and following Courien’ s philosophy of making syntax akin to
semantics [C 86], we define a new language, Nested Guarded Horn Clauses (NGHC), which is equipped with a
complete set of unfolding rules. Consequently, according 10 the method exploited in [LM 88] we define an
unfolding scmantics and an equivalent Gxpoint semantics for NGHC. Since it is possible to embedd FGHC in
NGHC, this allows to give a semantics o FGHC as well.

The main new feature of NGHC is its concept of guard. A generic NGHC clause has a (n21) layers of {standard)
guards. This improvement in synitax is directly related to the language semantics since it is this feawre that allows
define a complete set of unfolding rules for NGHC (and therefore a fixpoint semantics). Since our models are made of
NGHC unit clauses and since every reasonabie model has w satisfy some minimality properties, we define a sirong
normal form for NGHC clauses, a related normalization procedure and a minimalization operation on NGHC
programs in strong normal form. An NGHC clause is proved to be cquivalent (w.r.l success ser} 10 its normalized
version, which represents a sort of canonical form, With minimalization, we can eliminate redundant clauses from a
program to obtain an equivalent (w.r.L success sei} program.

We define a complewe saz of unfolding rules for NGHC and then, once we have formally defined our notion of
guarded interpretation as a mmimal set of NGHC clauses in strong normal form, we define an Unfolding semantics
{[L 88a], [LM &8] }, which is proved eguivalent (w.r.t success set) o the operational one. We also define a fixpoint
semantics in the classic logic programming style, by making use of an operator Tyyp defined in terms of unfolding
which works on (guarded) interpretations. The Fixpoint and Unfolding semantics are proved o be equivalent (w.rl
success set)

We assume the reader to be familiar with the concepts of Togic programming {see [L1 877}

2. The NGHC (Nested Guarded Horn Clauses) language.

In this section we present the basic definitions of NGHC, The main new feature of NGHC is its concept of guard.
In fact any clause can have m layers of guards. Each guard is a pair 1] O {input constraints | output constraints),
where the input and the output parts are separated by the commir (]} symbel This kind of guard is very similar to
the Ask and Tell constraints [S 88, KYKS 88]. Roughly speaking, let us consider the set of the variables of the head
of a given clause as the environment of the clauss, Then the input guards are expected not to inswntiate variables in
the environment. They express some conditions on the input values, that must be satisfied. If these input conditions
are satisfied by values received from the environment, oulput guards compute, by means of unification atoms, values
that can be exporied 1o the environment. The unification primitive of NGHC is defined as in FGHC. Unlike the
language FCP(:,7) [KYKS B8] NGHC unification is not atomic and the commit is done before the tell part of a
guard. NGHC is then closer to the GHC model. Unlike GHC, FCP(:,?) and many other languages, the NGHC input
constraints are not defined by a suspension rule which depends on the goals and therefore on the extemnal envircament
of the clause. In fact input constraints are defined using the onc-way unification primitve [G 86] as in PARLOG.
This, together with the many layers guards, gives rice to nice semantic properties, namely the existence of a
complete (ie. always applicable) set of unfolding rules and, consequently, the existence of an unfolding and an
(equivalent) fixpoint semantics.

The one-way unification primitive (<) was defined in PARLOG as follows,

Definiton 1. {One-way unificarion) (G 87). Let s and t be two (irst order lerms which do not share variables.Given

the goal s St

1} If there exists an mgu 9 of t and s such that 9 does not bind variables in s, then the call s < 1 succeeds with
c.as. 8.

2) Ifrand s can be unified only by binding variables in s then the call 0 = suspends.

J) Otherwise the call o < fails.

Definition 2. Let Iy, I, .., I, be n sets of one-way unifications atoms and 01,09, ..., Oy n set of standard

unification atoms. Then § = [I04, ..., InOy 1s a unification sequence, or, for shor, a sequence. An L0, is an
element of the sequence. The generic I is called inpuws guard and O owput guard. Empty, i.e. always satisfied guards
are denoted by the atom frue, *

I the foliowing Var(T) will denote the set of variables in |, where I can be a term, a guard, a sequence or a set,

Definition 3. Let S = 1110y, ..., [0, be a sequence with =11 ;=54 - Am(i},i=Sm(i),i) @nd let H be a set
of variables. 5 is an admissible sequence w r.¢. Hiff the following conditions hold:

i Var({syj. ., Smipild o Var({ty . .., Uiy, it} = €.

g} Var({s) ;... smep, i VarlH oy wOpu L w T WO i=a, '

Definition 4. (NGHC language) A NGHC program is a finite sel of clauses of the form
H - 10, 12103, ..., 1510y « By, .., By, (nm 2 0)
where H (head), the Tj's (input guards), the Qy's (output guards) and the By 's (body atoms) satisfy the following
conditions:
t) His the applicanon of a predicate simbol of arity k o k distinct variables.
i) 1 is a conjunction of one-way unification atoms and 0; is a conjunction of unification atoms, i= 1, .., n.
i) 111019109, ..., [5/0y, is an admissible sequence w.r.t Var(H),
iv) None of the By's is an unilication or one-way unification atom.
A unit clause is a clause of the form: H :- 11107, 1510, ... A0y
A goal clause 15 a clause of the form: =By, .., By (m=1}) +

2.1 Operational semantics of NGHC.

The operational semantics of NGHC is similar o the onc given for FGHC. The definition of computation fule
can abstracly be described as in case of FGHC by considering the suspension rule defined by one-way unification
instead of the one defined in FGHC. Given a program w and a goal G of the form - By, ..., By, the execution of

G is the (possibly parallel) reduction of G o the empty goal, using the clanses in w. Computed answer substitutions
can be defined as in the case of FGHC. The elementary reduction siep in NGHC is nondeterministic AND-parallel
resolution and the elementary atomic action of NGHC is the binding of a variable 1 a term. The definition of the
additional rules that must be sagsfied by NGHC executions is different from the FGHC one. In fact for NGHC the
[ollowing rules have to be satisfied:

Sequential evaluation of guards,
The evaluation of [; precedes the evaluation of 0, 1 £i < n. The evaluation of [; | O; precedes the evaluation of

[jIDj.liicjsn.

Rule of suspension.
The evaluation of I = (1) £5, ..., sy < t,] is performed by cvaluating the atom (11, v o lp) (5], wr s Sp) 88

specified by the definition of the primitive <. Thercfore, as in the case of FGHC, if the evaluation of the guard [;
suspends it can later be resumed only when the conditions 1o successfully evaluate (1, ..., t5) S (51, 8,) arc
satisfied,

The most important difference between NGHC and FGHC (and in general between NGHC and existing
committed-choice concurrent logic languages) is in the swcture of nested guards. Because of this structure, the
commitment is also quite different. In NGHC the commitment is done by levels as specified by the [ollowing rule,

Rule of commitmen;,
Let us consider all the clauses whose head unifies with A. All these clagses are avaluated in parallel, and are

competing for the reduction of A, [fe= H :- 1110702107 ... I5)Op « B is one of the competing clauses and we
are evaluating Ty and the evaluation succeeds, then ¢ trigs (o be selected for the execution of A. To be selected ¢

must first confirm that no other competing clause has been selected for A. If this is the case, ¢ is selected and the
execution of G commits at level k 10 ¢, according to the followin g two possible cases:

i} ifk=nthenc is sclected and the execution of G commits to ¢, o
i) If k < n the commitment is stll nog completed. But, any clause whose prefix until level K is different (a

—_ 3 -

part from variable names) from H:- 110, ..., Iy 10 _1 is disregarded.
Notice that the evaiuation of the output guard O; stans after the succesfull evaluation of T, and, if it result in a
failure, the evalpation of A fails.

2.2 The strong normal form of NGHC programs.

In this section we define a strong normal form for NGHC programs, and in section 3 we will show a
normalization procedure which wansforms any NGHC program to an equivalent (w.r.L. success set) one. There are
two main reasons for defining a sorong normal form, to have a minimal representation of NGHC clauses and, as far
as possible, to delate wrong clanses, Le. classes whose evaluation always fails. This minimal representation is useful
to define the semantics of a program. In fact, as sketched in the inrodection, our notion of intepretation, and hence of
madel, is that of a set of NGHC unit clauses. Hence, by considering sets of NGHC clauses in strong normal form,
we obtain inerpretations and models which satisfy some desiderable minimality property. Let us consider a fow
examples.

Example 1.

el) pX.Y) - XY} S fig(Z) b)) | {fiZi= (RKN] (2 < fla(M)] [{M=b)

c2) mXY) - (X <g(Z). Y=b] | (Z= fiK}}, {K < giM}} | (M=h].

Because of NGHC operational semantics definition, ¢l and c2 are equivalent. Therefore ¢2, which will be shown w
be in strong nortmal form, can be considered a minimal representation of ¢ 1. Notce that cach vanable X of ¢2 occurs

on the left part of at most one one-way unification or unification atom. +

Example 2.
c3) XY X £g(Z), Y= b} | {£= fIK), W=a]. {X=p(g(M}] {M=b}.
ed) piXY) X S gZ) ¥=b) [rue , (K Sfla)] | true.

c3 and c4 are legal NGHC clauses but not in strong normal form. We can easily note that both clauses always fail, In
fact, in 3 after the evaluation ol the first input and cutput guard, X is bounded to the term g{[{Z)), while the second
input guard requires X £ g(g(M)}). In o4, instead, the atom K £ f{a) in the second input guard will never succeed,
gince the variable K cannot be instantiated. Therefore in 2 minimal represenation, considering only success cases,

the two clauses can be deleted. .

Example 3.

e5) pXY) - rue [(KX=a], rusl {Y=5].

of) PX.Y) = {X=a] | true, {Ysb} [true,

Obviously clauses c3 and ¢f are equivalent to clauses o7 and c8,

&7 MXY) = rue | {X=a.¥=h).

c8) p(X.Y) - (X<a, Y<b} | true.

which are the srong normal forms of clavses ¢35 and cf, +

Definition 5. (NGHC strong normal form). An NGHC program in strong normal form is a finite set of NGHC
clauses of the form:
H :- 1§10y, 12109, ... Ij10p + By, o , By, (nm 2 0)
where the [j's , the 0y 's and the B's satisfy the following conditions:
i} The I;'s are sets of one-way unification atoms of the form X < t with X variable and t term. The O;'s are se1s of

unification awoms of the form X = t with X variable and 1 term.
ii} There are no one-way unification atoms or unification atoms in 13104.172105 ... [10, having the same variable

as left term fori= 1,2, ..,0.

iii} Let V; be the set of variables defined as follows: V; = Var{H v 1) v Oyu v ... w i1 w Oj.1). Then the lefi
terms of all the atoms in Ij,i= 1,2, ..., n, are variables occuring in V; and the left terms of atoms in O; are
variables occuring in V; UVar(L)).

iv) Variables which are left terms of atomsin [, i= 1,2, ...,n do notoccur in
04 L 1104410 -+ 1§10, By, By,

Variables which are left terms of atoms in O; do not occur in
Li+1'0541s -~ 1300, By, o, B

v} There does not exist an element [;10;, i = 2, .., n, such that I; = srue.

There does not exist an element IjIO-.j = 1,...,n-1, such that {}I- = IFlie.

2.3 Embedding FGHC into NGHC.

It is possible w embed FGHC in NGHC by performing the following steps:

i} Transform an FGHC program in a equivalent (FGHC) program in strong normal form as done in [I 88] (with
sume modifications). The FGHC strong normal form is quite similar to that one given for NGHC {in FGHC
there is only one guard layer and there are no one-way unifications).

i) Once we have an FGHC program in strong normal form, we can replace wnification atoms in the guard with
one-way unificatons w get an FGHC program.,

Here we are not interesied in the details of this ransformation. Let us consider just an example of such a
ransformation,

Example 4. Let us consider the FGHC program P
P = { pXYZ) - X=f(Y), | Z=g(X), Y=h , g(Y.Z)

Qb ZY - true | true. }
The equivalem FGHC program in strong normal form is:
F = {piXYZ) - X=fiKjY=K [Z=g(fib). K=b, g(b.e(fb))}

GAY} -X=b Y = {2}, | true. |
From this program we can get the equivalent NGHC program simply by replacing = by € in the input grard:
P ={ pXYZ) - (XK}, YSK} | {Z=gifib)} & qifibh.e(fib)))

XY} = (Xh, ¥ SAZ))) true. |
Notice that we can subsitute a unificauon alom with a one-way unification atom to get an eguivalent NGHC
program, only if the ofiginal FGHC program is in swrong normal form. In fact, the program obtained from w by
performing the replacement of =by < only, is the following program w1 (the second clause of w has been normalized
W have variables in the head):
P = (p(XYZ) = (KSfY) | {Z=g(X), Y=h] « q(X.Z)

qiX.Y) = {Xsb, ¥ <fIZ)] | true.)
This program is not a legal NGHC program. Morcover P is not equivalent to P since the goal p(R(b),Y Z) succeeds
m P and fails (because of a deadlock) in the original program P,]

3. The nermalization of NGHC programs.

Any NGHC program can be transformed into an equivalent (w.r.t. succass set) program in strong normal form. In
the previous examples 1 and 2, ¢2 is the normalized version of c1, while the normalized version both of ¢3 and ¢4 is
the empty clause, Let us now consider a non unit claose.,

Exampie 5.

e} pXX) - (fIXY) €fgZ)b)) | (fiZ)= ffiK)} « gqX.Y).

Clearly when we evaluate the body of the clause, X is bound 15 g(f(K)) and Y to b. We can then consider the
following clause ¢2 which is in strong normal form and which is equivalent (w.r.L success set) to cl, as the
normalized version of ¢ 1

2} pIXY) - (X Sg(Z),YSb) | (Z= K — qe(fiK)}bl. +

Letus formally define a normalized sequence as follows,

Definition 6. Let § be a sequence and let H = [X{, - Xp]) be a set of variables, 5 is normalized w.or.t H iff
PIXY. o Xy)= 5 is an NGHC unit clavse in sirong normal form, where P is any predicate symbol. +

In the appendix we define a NORM(S,H) procedure which derives from a sequence S admissible w.r.t the set of
variables H, an equivalent sequence $; which is normalized w.r... H. Using the procedure NORM(S,H) it is

sraightforward to define an algorithm which transforms an NGHC program to an NGHC program in strong normal
form.

Definition 7. (Normalization of an NGHC pragram). Let ¢ be an NGHC clause

o= pfxl,XQ R xr}-.' IIID]‘ IEIDZ. [IHIO“ — B-'I — ,Bm.

We defing the clause c_Mor resulting from the normalization of the clause ¢ as follows.,

i 16 NORMI(1410y, 13109, .., 19000 3, (X4, ..., XpDh = fail then ¢ Nor= rrue (empty clause),

iy I NORM((T}104, 12104, ..., IglOp) (X4, .., Xg]) = LLNer10_Nory, ..., I_Nm“mID_Nnrn{i} # fail then
c_Nor = p(X}, X7, .., Xp) I_Nor l0O_Nory, .., [_NorglO_Norp « By, ... By
where By =B; 8, =1, ..,m, with® =0, 058 ... oy By, and o = {X/1] X=1e 1_Nor;}, B;= (X | X<ie
O_Nor;}, =12,h,

If w iz an NGHC program, we define the normalization ofw as the program resulting from the normalization of

every clause in w., *
It is possible to show that a program and its nommalized version are equivalent w.r.l. success set. In fact the

following theorem holds.

Theorem 1. Let P be an NGHC program and let P be the result of the normalization of P. Then the evaluation of
Gan PP succecds with c.as. 0 iff the evalvation of G in P’ succeeds with c.as. 6, where ' is a variantof 8.+

P15 not equivalent to P as far as failures are considered. In fact a poal G can fail in P and not in P (see example
2). TF we are inlerested in the success set semantics only, deleung Failures docs not matter. Therefore we can usc
normalization in the definition of the unfolding rules for NGHC, and then we can safely use unfolding lor giving a
succes set semantcs to NGHC programs, IF we were interested in failures too, we could keep the always failing
clauses detected at normalizavon time in a separate set, and from this get the necessary informaton abour failures.

4. A further reduction for NGHC programs in strong normal form.

We have shown how o obizin the minimal version of an NGHC clause by means of normatization. If we consider
programs instead of single clauses, it is possible 1o define a further reduction by climinating clauses which arc
redundant, 1o obtan a minimal version of an NGHC program. Let us consider an example.

Example 6.

cly piX Z) 2 [X<fiY) Z<f(b))} (Y=a).

el piX L) - {E=fK)} | {K=b, X=ffa)].

The program w = {c1,c2] and the program ' = [¢2] are equivalent w.r.L success set. In fact for any goal, since
clause ¢2 is "less constrained” than cl, if the input guard of c1 is satisfed the input guard of c2 is satisfid too.
Muoreover the substiluuon computed by ¢l is the same as the one computed by c2. Therefore we can delete clause cl

in program w obtaining an equivalent (w.r.L success sel) program, +

In the following we define a relation of subsumpiion between NGHC clauses in strong normal form, which is an
extension of the usual subsumption for first order formulas. By means of subsumption, we define an equivalence
w.r.l success set among NGHC programs in sirong normal form, By means of this equivalence relatdon we can
reduce, as in Lhe previous example, the namber of clauses of an NGHC program. This is particularly wseful wo
control the explosion in the number of clauses, when unfolding a program.

Definition 8. Let 5 and t be first order werms, ¢ subsumes* 5 and (t 2 5) iff there exists an idempotent

substitution 8 such that t8 = s and B does not bind variables in s. *
Motice that this definition is a special case of definidon al.

Definition 9. Let ¢j, ¢; be two NGHC clauses in strong normal form :

¢ = PX] oo Xpn) == T 1105 1+ oon T (i) 1 Oy i) Body;

€= PXy o Xm) 3 15,1105 1 + o Tingj) | Ojingj) < Body;,

which share variables X, ... X, only. ¢ subsumes €5 (% 2¢lause) iff the following algarithm ends succeséfully.
Letoyy = (X/tIX<te I). By = (X1 X<te Oy}, h=12, .. .n(i) and

% h= (Xil Xste [), By p = (Xt Xste Ojp),

a} For s = 1.2, ..., max{n(i),n{j)}

0 X1 Xem) @i By o B Bien Bis 27 (Xp oo s X0t g By - @01 B 50
i) f_-x| 5w § xlﬂ}u’jJ ﬂj] sas u.LE EJ,S =" {X; R }Em} ﬂi.l Bt,l a ﬂ:i.,S Bi,s’

by (Xys o X ey g By @ gy Bing) P = i Xmd 51 B 1 - %5065y Bjng)

where p is a variables renaming.

e} (Body))pd = I:H’.'Hi'jr'j} where pis the same of step b) and & is a renaming such that
Dom(@) ~Varllulj ;w0 1w ... Ul Ojpw Cod(p)) =@ and
Cod{&) ~ Var(H 1wOjiw ... wijhuOjpw Codip))=@ where
Dom{{X /iy, ..., Xpftnl) = (X, ., Xp) and Cod([X1A1y, ..., Xpfin}) = Var({1y, 12, o, g 10 *

The following theorem shows that we can safely eliminate a clause ¢j from a program P if there exists another

clansze gjin F such that € 20 lause 5

Theorem 2. Let ¢ and ¢ be clauses of the program w and let ¢j 2000 ¢j- Then il the program w' is w [{gj],

w’and w are equivalent w.r.t. sucoess sal *

Definition 10, {Minimalizaiion). Let P be a set of NGHC clauses in strong normal form. We define MIN(P) as
the szt MIN(PY = (o oc P and there does not 2xist 2’2 P such that & Zelause S *

Minimalization will be used in the definition of unfolding. The correcmess of such transformation follows from
the previous theorem, which can obviously be extended 1o show that a program P and MIN(P) are cquivalent w.r.L
SUCCCES 561,

5. Unfolding rules for NGHC programs.

In this section we define the unfolding rules for NGHC programs. Because of the definidon of NGHC, namely
bocause it has scveral layers of guards, this definition is quite easy and natural, Our set of rules is complete, ie, our
wnfolding rules are always applicable, and it is possible o prove that the unfolding of a NGHC program P is an
NGHC program P which is equivalent w.rt. success set to P, Since it is possible 1o embed FGHC in NGHC, our
rules can be used for FGHC also (by first wransforming an FGHC program into an NGHC program). In the literature
there are several attempls to define a set of unfolding rules for GHE like lanpuages[FOF 87, FOM 87, U 881, but
none of the attempts results i a complete set of rules. We believe that the GHC syntax is not powerful enough to
express s own semantics, which has 1o be preserved in the unfolding process. Namely, the FGHC operational
semanlics defines, lor synchronization reasons, an order in the evaluation of guards of different clauses, and
sometimes it is not possible o reduce this sequence of guards 10 a unigue guard, Therefore, ithe only way to express
synchronization in these cases is 1o keep separaie clauses. Leg us consider an example from [L 88a]

Example 7. Let w be an FGHC program containing the following clauses:
il HX.Y):-rue{X=a.(aX)
) WXY) - Y=b]irue
The existing unfolding rules do not allow the unfelding of ¢l using c2. In fact, the clause c3
[k} 5X.Y) - ¥Y=b {X=a
which could be the result of the unfolding of c1, is equivalent to ¢l only in the deadlock-free version of FGHC [L
88]. However, in the real FGHC case, ¢l and ¢3 are equivalen: only if we consider goals consisting of a single call o
5. In facy, if s ocowrs in conjunction with other goals, the order of evaluation of the unification atoms X=a and Y=b is
relevant o synchronization. For example, in the program
P={ cl) sXY):-rrue)X=a, fal)
2} ofX.Y} e F=b | true.
ed) p(XY):-X=aY=b]
the goal s Y),p(X,Y) succeeds, while it fails (because of a deadlock) in the program obtained from P by replacing
clause ¢l with c3. The comrest unfolding of ¢l should be the (non FGHC) clause
&3] HXY)=true /| X=a, Y=§8]true
which tells us that in the evaluation of s(X,Y) firs the (output) unification atom X = a is evaluated and then the

-7

{mput} atom Y=b, If we consider < instead of = in the guards, P becomes an equivalent NGHC program P* and in P,
the unfolding of ¢ is really the NGHC claose:

ofi) SXY) - true { {X = a), [Y 28] | Irue, *

Wotice that it is not possible (o solve this problem by simply defining an extension of FGHC which allows
several layers of puards (as in NGHC) and kecps the suspension mie of FGHC. In fact such a rule depends on the
goals (guard unilicaton cannot bind vanables which appear in the goal) which are not known at unfolding time. Let
us now consider the standard definition of interleaving, an then the one of unfolding.

Definition 11. Let 51,59, ..., 5, be n sequences with §; = ljll{)jl. Ijnl[j} K}jn(_i}- The interleaving
§51 008z Al il 5g is the set of sequences:
INT = { Sjp | i) Sing Is a sequence made with all the elements of all the sequences S,S,
i} the element IthDjh precedes I—ik IGti'l-_ for 1= h < k< n(j), 1=j<n,
i) UplQdy precedes T 104 for 1= h < n(j). 1k < (i), I£i<jSn.] +

Definition 12, {{infolding Rules), Let ¢ be a clause in the NGHC program w
= piYy ., - Yk 1100, 1510s, .., IO + My, Mas L M,
LetHbetheset H= (Y, .. Yy}, The unfolding of ¢ w.rt. w is the set Unfic,w) of clauses defined as follows:

i) Ifz =0 (cisaunitclause; then Uniic,w) = [c)
i) fz=>0let ALL-INTIc) be the setof clauses defined as follows:
ALL-INT {e) ={p(Yy Yi)i- 1107, 9109, 510, 5_int
¥
'Gll... Glgu). G"]. 'st{ﬁj [P Crml, anhy Gmstm}- El- -y Es

such that
3] {pil:l.l o= 1.1_.;:{])'].. - pm(lm]... th{m}” 15 a subsct of [M]. Mz . Mz]

i) C=(cy, ..., &g) is a m-tuple of clauses in w where

cj = pj(X) ... Kgpjy) == Ppiddy, ., By 10055y = G - Glygy

i) (B, ... Bg) = (My, My .. Mg} / (ot thgay) o s D (0™ 1))
iv) 5_int 15 a sequence of the interleaving:

(tue 1 Ocay 1. 1l]IDII. v I]n{f} ﬂlnu))l

(ue | Ocay_2, 121107, ..., 122 1022y) W

1:. frue | DC-&"_II!' [m 1_|‘:.'lm].F ey Imn{m} |Dmp{m})]
where Qg j = (X' =ty , o, Kigg)= g(iy! }.

We define Unf{c,w) as the set of clauses resulting from the minimalization and normalization of the clavses of
ALL-INTig;) for cvery clause ¢j , i. e

Unf{c,w} = MIN[c_nor | ¢_nor is the normalizaton of e_int, with ¢_inte cle w ALL-INT{cl) }. ¢

It 15 sraightforward o note that every clause in ALL-INT(c) is an NGHC clause. We can then consider the
normalization of such a clause and Unfolding is well defined.

Definition 13, Let P be the NGHC program [cy, ... ¢y). Then its unfolding, denoted by Unf(P), is the collection
of clavses UnfiF) = v, _; Unfic,P). +

Example 8. Let us consider the NGHC program
P ={ uXY):- Y=k rue

rX.Y) - (X =al | {Y=b]

s(X.Y) o= true | {(X=a] — tfa,¥)

@X.Y) - true | rue — XY, 50X ¥). J
The unfolding of P is the following program
P= (X)) - (Y =b] | true

nX.Y) - (X <aj | {Y=bj].

SX.Y) - true [{X=a), {Y b} [irue.

XYl (X £a} | [Y=h] ~ sfab)

gix.¥) - true [{(X=a , Y=b] « tfab)

gfX,Y) - true [{X=a} ~ ra.YitaY).] *

The definition of unfolding guaraniees that the unfolded version Un{(P)-of an NGHC program P, is an NGHC
program in srong normal form. It is possible 1w show that P and Unf(P} arc equivalent w.r.L the success set. In fact,
the Tollowing theorem holds,

Theorem 3. Let P be an NGHC program and let Unf{P} be the resuli of the unfalding of P. Then the evaluation of
G in P suceeeds with cas. 8 iff the evaluation of G in Unl{P) succeeds with c.a.s. 8 such that 6 is a variant of 0.,

6. Unfolding and Fixpoint semantics.

As previously sketched. we are interested 1o unfolding more for semantics concerns rather than as a program
trunsformanon technique. As pointed out in [L 88a, LM 88], if the unfolding is well defined, i.e. if the resalt of
unfolding a logic program written in the language L is an equivalent logic program in the language L, and il the
unfolding rules can always be applied, we can talk about the infinite unfolding of a logic program and we can use this
w characterize the meaning of a program in an altemative way. In fact, if we collect the unit clauses that are derived
at zach unlolding step of an intinite unfolding process, we obiain a set which defines the unfolding semanuics of the
program, and which in [LM 88], for pure HCL programs, is shown 1o be equal o the minimal §_Model minimal
Herbrand model with variables, see [FLMP 88]),

This method for giving a semantics of logic programs starting from purely operational argoments, is particularly
useful when we arc faced with extended logic languages. In fact, most of them exhibit a well understood operational
behaviour, whereas it is often difficult to find a declarative counterpart. By the definition of an unfolding semantics
we can subsequently derive a fixpoint semantics, defining a suitable notion of model or interpretation. In particular,
as shown in [L 88). the rnight notion of interpretation should be ane which allows to observe the interesting
operational properties. [n this sense, standard Herbrand interpretations are not adequate [FLMP 88]. Therefore we
consider interpretations which are sets of unit clauses. This allows to obtain a fixpoint semantics which is equivalent
Lo the unfolding semantics, and, therefore, to the operational semantics.

Example 9. [f we consider programs P and I of example 8, we note that further unfoldings of P* derive the
programs P and P™:
Br= [WX.¥Y) - Y £b) | true.

nX.Y} - (X sal | {Y=b].

XY} - true | (K=al, ¥ =5} | true.

G Y) e true [(X=a, ¥Y=b},

QX Y) - -true | (X=a, Y=b] & tfa.b).

G(X. X} - wirue | (KX=al, [Y <b] | ruse— ria.b),
F= {4X.¥) = (Y £8) | true.

RX.Y) - (X =a} | {¥=b),

SXY) e prue [(X=a], ¥ = b} | true,

'qrxr}’} o 'Ilr"'ﬂ.lII [III=“ " f=b}‘ .nj
P is a model of the program P. In fact, P shows, for example, that the goal 7-s(X,Y). fails, that the goal 7-s0{b).
succeeds compuung the substitution (X=a), while the goal 7-g(X,Y). succeeds computing the substittion (X=a,
¥'=b). In other words P is the unfolding semantics of program P. L

Example 10. Consider the NGHC program W:
W= {rXY):- (X <a] | (Y=b].
SX.¥) - (Y= b} [{X=a).
qfxry.} - rue | true +— ffx.n- XY j
Two successive unfoldings of W produce the following program:
W= [r(X.Y} = (X <a] | (¥=b).
s(X.Y) = (YS b} | (X=a).
XY} - (X sal | {Y=b].
qiX.Y} .- (Y=b] [(X=aj. }

which 15 the unfolding model of W and which shows, for example, that the goal 7 :- s0X,Y). and the goal 7 :- g(X.,Y)
Fails, while the goal 7 :- g{X.b). succeeds computing the substitution (X=a). .

As already menticned, the right notion of interpretation is that of a {possibly infinitg) set of unit clauses. Let us now
formally define our rotion of interpretation. Afterwards we will define the unfolding semantcs based on this noton.

Definition 14. Let Ap be the set of all the NGHC unit clauses in strong nommal form, defined by the function and
predicate symbols occumming in the program P. Let =* be the equivalence relation delined as follows: fcle2 P
thencl ~* c2iff ¢l zclmuseﬂ and c2 = T— cl. The interpretation base Bp is defined as """."'-*' Le. the quotent

set of A with respect 1o the equivalence relation ~*. 4

Definition 15. A guarded interpretation for a program P is MIN(IT} where [is any subset of Bp. The sct of all the
guarded interpretations of P is denoted by Ip. +

Lemma 1. lp is a complete lattice with respect 10 the partal order s* defined as follows:

irXY e Ip, X=* Y iff for cach cys X there exists cy€ Y such hat Cy 2. jgpee X

The botwom clement of Ip is &, the wp clement is MIN(Bp), lub and gl are defined as lub(X) = MIN{((X)) and
g2} = MIN(~(X)) where X CIp. +

Definition 16. Let P be an NGHC program. The following is an indoetive definition of a collection of programs
which are cquivalent :

Pp=P

Fiy1 = Unf ().

Moreover, given a program P; in the previous collection, let us denote by U the (guarded) interpretation:

Ui={A 1110112107 .. [;0q | A 1110115109 ... 150y is a unil clause of B;). +

Definition 17. (Unfolding semantics). Let P be a NGHC program. Then the anfolding semantics of P, denoted
by U(F), isthe set U(P) =, U 3
Definition 18. Let P be an NGHC program. The mapping Typ on the set of guarded interpretations of P is
defined as follow:;

Typll = [A:- 1 01 J5105 ... 110, & H, suchthat Jaclausec= A:-Ty 10 ,.... Ty 0« Binp,

such that (A :-)1 01,1910 ... I;/Op) & Unf(c.)) }. ¢
The following arc standard results which allow to define a fixpoint semantics based on Typ.

Theorem 4. Typ is monotonic and continuous. *

Theorem 5. There exists the least fixpoint of Typ ife (Typ) =Y ne Tup™ @) =Typ T 0 ¢

Definition 19. (Fixpoini semantics). The fixpoint semantics Fix(P)} of an NGHC program P, is the least
fixpoint of the ransformation Tyjp associated 1 the program P. +

The following theorems prove the equivalence (w.r.L the success set) of the operational, the Unfolding and the
Fixpoint semantics . Before discussing them, let us recall which is the meaning of a guarded interpretation. It shounld
be clear, from our discussion and from the examples we have shown that, given an NGHC goal, we can "execute” it
in a guarded intepretation since a guarded interpretation is an NGHC program. For instance, the execution of the goal
q(a,Y) (example 10) in the model succeeds with ¢.a.s. [Y=b] exactly as the evaluation of q(a,Y) in the program P
does. Therefore our equivalence results show that if the refutation of a goal G in the program P derives the ¢.a.5. 6, (2
variant of) such c.a.5. can be oblained by executing G in the model. The following theorem holds for atomic goals,
but can easily be extended to generic goals.

— 10 —

Theorem 6. (Equivalence between the Operational and the Unfolding semantics) Let P be an NGHC program and
A = aity,..ty) be an atomic goal for P. Then G has a reluation with c.a.s. § iff there exists a (onit) clause cl =
(X) 121 1O e by 1Oy belonging 10 UYF) such that the (sequential) evaluation of the goal A in the

program {c1} succeeds with c.as. O, such that 8 5 a variant of 8. ®

The following theorem shows the eguivalence between the unfolding and the fixpoing semantics.

Theorem 7. (Eguivalence between Fispoint and Unfolding semantics), Lel be P a NGHC program. Ther U(P) =

Fix(P). &

References.

[34] L. Beckman, Towards a Formal Semanucs [or Concurrent Logic Programming Languages, Prooc. of
the Third Imi. Conference on Logic Programming, Lectures Motes in Computer Science 225, Springes
Verlag, {1086), 335-349,

[BK 83] 1.W. de Bakker and J.N. Kok Uniform Abstraction, Atomicity and Contractions in the Comparative
Semantics of Concurrent Prolog. Prooe. of the Tnt. Conference on Fifth Generation Computer
Svstems, Tokyo (1988), 347-355.

[BEPR 89T F.5. de Boer, LN, Kok, C. Palamidessi and J.M.M. Rutten. Semantic models for a version of
PARLOG. To appear in FProc. of the Sixth Int, Cony, on Logic Programming, Lishoa, Porugal,
1989.

[T 8] P.L. Curien. Categorical Combinators, Scquential Algorithms and Functional Programming,
Research Notes in Theoretical Computer Science, Piuman, London, 1986.

[CG 86] KL Clark and 5. Gregory. PARLOG: Paralle] programming in logic, ACM Trans. on Programming
Languages and Systems & (1986), 149,

[vEK. 78] M. vanEmden and R.A. Kowalsks, The semantics of predicate logic as a programming language.
Journal of the ACM 23 (1976), 733-742.

[FLMP 88] M. Falaschi, G. Levi, M. Martelli and C. Palamidessi. A new declarative semantics for logic
languages. Proc. Fifth Int'l Conf. on Logic Programming. The MIT Press, Serics in Logic
Programming, {1988), 993-1005.

[FOF 88] H. Fujita, A, Okumura and K. Furukawa. Partial evaluation of GHC programs based on the UR-Set
with constraints. Proc, Fifth Ini’l Conf. on Logic Programming, The MIT Press, Series in Logic
Programming 1988, 924941,

[FOM87] K. Furukawa, A Okumura and M. Murakami. Unfolding rules for GHC programs. In D. Bjorner,
A.P. Ershow and N.D. Jones, cditors, Workshop on Parnal Evaluation and Mized Computation, GL
Avemnaes, Denmark, October 1987, In Mew Generanon Compuning, 1988, 143-158.

G 87 5. Gregory. Parallel Logic Programming in PARLOG: the Language and its Implementation,
Addison-Wesley, Reading, MA, 1987,

(K] J. N. Kok. A compositional semantics for Concurrent Prolog. Prooc. of the Symp. on Theoretical
Aspects of Computer Science, 1984 (r. Cori ed.), Lectures Notes in Computer Science 294, Springer
Verlag 1988, 373-388,

[KYKS 88] 5. Kliger, E. Yardeni, K. Kahn, E. Shapiro. The language FCP(:,?), Prooc. of the int. Conference on
Fifth Generation Computer Systems, Tokyo 1988, 763-773,

[L. BH] G. Levie A new declarative semantics of Flat Guarded Hom Claoses. Technical Repart, ICOT, Jannary
1988,

[L 88a] G. Levi. Models, Unfolding Rules and Fixpoint Semantics. Froc. Fiftk Int'l Conf. on Logic
Pragramming. The MIT Press, Series in Logic Programming 1988, 1649-16635.

L1887 I.W. Lloyd, Fouadations aof logic programmeng , second edition Springer-Verlag, 1987,

[LM 88] G. Levi and P. Mancareila. The unfolding semantics of logic programs. Dipartimento di Informatica,
Universith di Pisa, Techn. Report, TR-13/88, June 1988,

[LP 85] G. Levi and C. Palamidessi. The declarative semantics of logical read-only variables, Proc, 1985
Symp. on Logic Programming. TEEE Comp. Society Press, 1985, 128-137,

[LP 871 G. Levi and C. Palamidessi. An approach to the declarative semantics of synchronization in logic
languages. Proc. Fourth Ind'l Conf. on Logic Programming. The MIT Press, Series in Lﬂgn: .
Programming, 1987, 877-893,

[M 88] M. Murakami. A declarative Semantics of Parallel Logic Programs with Perpetual Processes. Prooc.
af the Int. Conference on Fifth Generation Computer Sysrems, Tokyo 1988, 374-381.

[P 23] C. Palamidessi. A Fixpoint Semantics for Guarded Hom Clauses. Technical Report CS-R8833,

[PM B8]

(S 85]

[S 87]

[5 87a]

[5 88}

[Sh 86]

[5h BE]

[5h 89]
[TS 84
(L7 87]

[U 87a)

(LI B8]

Centre for Mathematics and Computer Science, Amsterdam, 1988,

D.5. Parker and R.R. Muntz, A theory of directed logic programs and streams. Proc. Fifth Ind'l Conf,
on Logic Programming. The MIT Press, Series in Logic Programming, 1988, 620-650,

V.A. Saraswat. Partial Cormrectness Semantics for CP(3, |, &), in Prooc. af the Conf. on Foundations
of Sofrware Computing and Theoretical Computer Science, LNCS, 206, 1985, 347.368.

V.A. Saraswal. GHC: Operational semantics, problems and relationship with CP(1,l) in TEEE Tnt.
Symp. on Logic Programming, San Francisco 1987, pp347-358.

V.A. Saruswat: The concurrent logic programming language CP: definition and operational semantics,
in Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming
Lampuages, Munich, West Germany, 1987, 49-62.

V. A, Saraswat, A somewhal logical formulaton of CLP synchronization primitives, Proc. Fifth Ini'l
Conf. on Logic Programming. The MIT Press, Serics in Logic Programming, 1988, 1298-13314.

E. Y. Shapiro. Concurrent Prolog: A progress report, In W, Bibel and P. Jorrand, editors,
Foundamenials of Ariificxal Iniellipence. Lecture notes in Computer Science 232, Springer-Verlag,
1986, 277-313.

E. Y. Shapiro. Concurrent Prolog: A progress report. In W. Bibel and P. Jorrand, editors,
Fundamenals of Artificial Intelligence. Lecure Notes in Computer Science 232, Springer-Verlag,
1986, 277-313.

E. Y. Shapiro. The Family of Concurrent Logic Programming Languages, Techn. Rep., The
Weizmann Insttute of Science, 1989,

H. Tamaki and T. Sato. Unfold/Fold transformation of logic programs. Proc. 2nd 'l Logic
Programming Conference. Uppsala, Sweden, 1984, 127-138.

K. Ueda. Guarded Hom Clauses. In E. Wada, editor, Proc. Logic Programming ‘85, Lecture Notes in
Computer Science 22, Springer-Verlag 1986, 168-179. Alsoin E. Y. Shapiro, editor, Concurrent
Prolag: Collected Papers, chapter 4, the MIT Press, 1987,

K. Ueda. Guarded Hom Clauses: A parallel lagic programming language with the concept of a guard.
ICOT Techn. Rept. TR-208, 1986, Revised in 1987, Also in M. Nivat and K. Fuchi, editors Proc.
Programming of Future Generation Computers, North-Holland, 1987, 441456,

K. Ueda, K. Furukawa. Trasformation rules for GHC Programs. Prooc. af the Int. Conference on
Fifth Generation Computer Systems, Tokyo 1988, 582-591.

Appendix.

In 1he following, we define a NORM procedure which derives from a sequence S admissible w.r.t. the set of
varnables H. an equivalent sequence 51 which is normalized wort. H, i.e. such that p(X; . .. Xp) :- 5; is & unit

NGHC clause in strong normal form. The normalization procedure s an extension of the one defined in [L 88] for the
case of FGHC programs. The essential difference is in the definition of the normalization of an input guard since in
FGHC (input} guards contain standard unifications and the constraints on the possible bindings of variables are
expressed by a suspension rule, while NGHC input guards consist of one-way unification atoms. Before showing the
procedure, let us give a few definitions,

A1 Definitions.

Definition al. [PM BB]. Let s and 1 be first order werms. ¢ subsumer 5 (1 2 5 iff there exists an idempotent
substitution @ such that 18 =5 . .

Definiton al. [PM 88]. Let s and { be first order lerms. An orderer of 1 over 5 is an idempotent substitution
such that 1 8 2 s8. 8 is a most general orderer (mpo) of tover g T for any other orderer o there exists a substimtion J
such thut 8 0= a.

Definition a3, (PM 881 Let § be a set of first order terms. An impartial substitution for S is an idempotent
substitution 8 = {X/ uy, ..., Xpfuy | where u;, I <1< n, docs not contain variables of any term in 5. *

It 15 easy show that if two terms s and { are uniliable, they have a mose general impartial wnifier (mgiu). Namely
if tand s have an idempotent mgu & = [N/ uy, ..., Xy/u,] and p is a subsutuion which renames variables in {uy,

<. Mg} with variables not in s and t, 8 p is a mgiu for tand s.
The following theorem shows how to obtain an mgo for t over s computing the most general impartial unifies

{mgiu} for tand s,
Theorem al. [PM B8] Let @ be a mgiu for s and ¢, Define 8 [s,0 = [®/u 1X/u € § and X is a variable that
appears in t}. Then 8 (. isamgoof sovert (ie. 58 .0 =49 5.0y .

As already menuoned the NGHC interpretation of an input guard I; = {sy<ty,...5 Sl iss <1 wheres =

(810w » 3p) @0d £ = (13, ... by). For the definiton of NGHC itis Varty, .. ly) ™ VAR (51, ..., 5, = @. We can
then consider the normalization of the one-way unification atom s = ¢ where ¢ and s do not sharc variables,

As pointed out in [PM 8], the primitive < defined in PARLOG is semantically very close to the partial
ordering of subsumption among terms (2). In fact, if we consider idempoient substitutions as we do, s € t succeads
iff t2 5. In particular, when s and t are two terms that have no shared variables, we can use theorem 1 (o get an
mgo of s over 1, without binding variables in s, since in this case 5 8 [s4] =5 Wie will usc this fact to normalize a

ECneric CONSUraint s £ L
In fact, we normalize an atom s < t, where s and t do not share variables, computing an mgiu 8 = Bgq v (8-

8 s L]} [or 5 and L. If such an mgiu does not exist, the evaluation of 5 £ t always fails, hence the normalization of 5 =

t (and of the sequence containing it) results in the fail value. If t o s we can already succesfully evaluate the atom s <
Lie (6-8 [s.t)) is only a variable renaming. Then the atom (equivalent w s £ t) resulting from the normalization

of s=tis frue and B[s.n] (8-8 [5.111_1 is the substmdon obmined from the evaluation of 5 = © which has w be
passed to the rest of the sequence. Otherwise, if 5 o t, (a simplified version of) st @ [.1] is the normalization of 5
=1 and 3[5 (] 15 the output subsutution. We can simplify s <t @ [s.t] in a straightforward way w obtain an atom

(X1. ... Xg) ={my, .., my) which defines n atoms in strong normal form, since we have, by construction, s 3t

a [S.l]'

Delinition ad, Given wo erms { = r{tl, oy In)and 5= ﬂ'_r.l, - .f.n}, a subterm t* of t corresponds in s 02

subterm 3* (ol) il either
H{t* =y and s* = 5) or

2) (1* is a subterm of t;, s* is a subterm of 5; and t* correspands in 5 1o 5*). +

A.2 The NORM(S,H) procedure.

The following NORM(S H) procedure, given a set of variables H and a sequence 5, admissible wr.t H, retumns a
sequence S_INor which is normalized w.r.L. Hor fail. In the procedure, normalized means nomalized wrt H.

hegin

Let H be a set of vaniables, $= [0, ... [)0, a sequence admissible w.rt, H.

5_Morj =I_NorqI0)_Nary, ... [_Norgy}0_Nory, 5y 18 the sequence resulung from the normalization of 1j10y . LI0;.
5_Rem; = [_Remy;lO_Remy, ..., T_RemgiO_Remg is the sequence o be normalized after the normalization of 110y,
w2 5104 We define 5_Remy =10y, .., Igl0q, 5 _Nory =[]

Fori=1..

. n perform the following steps {n the specified order):

a) Let 5_Rem i= I_Rem;l O_Rem;, ..., I_Rempl O_Remg.
If I_Remj = ':sl..i S S R PR Semi) i < lm(i}.ij =@ let 1= e dmiing)R
=Sy ju o+ Sppeiyits T = Var(th and S = Var(s). Then:
1) iNormaiizing {_Remy) If tand s are not unifiable then STOP and NORM(S H) = fail, otherwise let Abea

3

miost general impartial unifier 8 for {S_Norj, 5_Rem;].
Let 8¢ 1= (Xfue 8 | X eVar(T)] beanmgioof s over t, ie. s8¢y 2 18, and, since tand s do
not share varables, s o 10 [5.1] - Let

L_1={Y <mlYeVar(s) and ¥ corresponds in 1 8 {s.4] 1o the lerm m},

i Z=A B where

A= {'r'j < MI ‘:’j <Me I 1, ‘r'j e Hw Var{S_Nor), M is a vanable, it doesn't exist Yi=m e |1
with ¥; € Hu Var(S_Nor), Y #Yj and the vanable M in (= w0} the term mj] and
B=(YjsMIY;<Me [i_1, Misavariable, Yje Hu Var(S_Nor;)}. Then we define

I; Nor =[_INE_ 2

{Cases of failure). The procedure siops with NORM(S H) = fail. f cne of the following cases hold:

i) there exists X<m € [;_1, such that m is not a variable and X ¢ H « Var(S_Norj).

ii) There exist X<Y, Z=n € [;_1, such that X € Hw Var(S_Nor;). Ze Hw Var(S_Nor;) and Y appear in
m.

iii) There exist X<Y, Z<Y e ;_1, such that X, Y € Hw Var(S_Ner;).
Otherwise 1;_Nor is the set of (one-way) unification atoms in strong normal form resultng from the
normalization of I_Rem;. The elements of [j_2 can be eliminated as they are not real constraints.
{Passing the input bindings to the rest of the sequence). Now we have to pass o O_Rcm; and o
I_Rem;, |/0_Rem;, 1. |_RemglO_Remp the bindings defined by 'EI[M] obtained in the normalization
of T;_L. We then define:
O_Rem;_1 = 0_Rem; 8 [5.1] and

S_Remj, 1 1= (1_Remy, I O_Remy, 1, .., L_Rempl O_Remp)8,)
Moreaver, to obtain a normalizated sequence, we have o pass 1o O_Rem and to [_Remj, 11 O_Rem;, 1.
w + [_Rempg| O_Remy, also the bindings defined by T;_Rem. We then define:

O_Rem; 2= O_Rem; a and

S_Remj,|_2 = (1_Remj, 1l O_Remj, ..., [Remyl O_Remy) @ where

o= X/t |X<te [NoruB}w [M/YIYsMe A)

b) (Normalizing O_Remi). Now we have to normalize O_Rem; as previously modified at step a-3. Since

wl

O_Rem;_2 is a set of (normal} unification aoms, the normalizauon of O_Rem;_2 is similar 10 that one
considerad in [L 88] for the output unifications atoms of an FOHC clause, Therefore perform the following three
steps (in the specified order):

{) I there exist aoms of the form ty =19 in O_Rem;_2, where 1 is not a variable, perform the unification

of 1] and 15, which, if succeeding, results in a new set of unification atoms which replace the onginal

one. If such a unification fails then STOP, MORM(S H) = fail..
2) if O_Rem;_2 contains two aloms X = ty and X = t3, X=t3 is replaced, if possible, by the set of

unification atoms resulting from the unification of (y and 1y, As before if such an unification {ails then

STOP, NORM{S H) = faul.
3} MNow we can substitute O_Rem,_2, if possible, with a set O;_Nor of atoms which defines an equivalent

idempolent substitution as follows. Such a set is obtained by the following simple algorithm,
Let be Ay = D_ch‘ri_z = [Kl =My ey Xn = mn],
i Fori=1,. .n:
Il X;=me Aj; and m is a term which contains the variable X, then STOF, NORM(S, H)=fail.
Cuherwise A, = &0 X/m])
ii} Tf we can obtain &gy from the previous step, then we define
i_Nor = Ago /(0w D) where
C={X=te A)| Xe& Huo Var(S_Nor) w Var(I;_MNorm)} and
D= [X=Y ¢ Ap 1 X e Hu Var(S_Nor) o Var(l;,_Morm)} Y is a variable and Y ¢ H
War(_Nor) o '\-'ar[li_Nmm]l}.

¢) {Passing the output bindings to the rest of the sequence). Now we have o apply the substiutons defined by
Apet w S_Remjy 1 2 w obain 5_Rem;,y {the remaining sequence to be normalized). We (hen define
5_Remjzq = (S_Rem ;.1 _2)y whers
Y={XA (XK=t O;_Norj u [X 1(X=t)e C] w [YXIX=Ye D]

d) (Defining the normalized sequence). Finally we define the sequence §_Norj resulting from the normalization of
Iy 10 .. ;1 0. Recall that the already normalized sequence is 5_Norj_; = [“or(lO_Nory, ...,
I_Hnrnmlﬂ_ﬁurnm. 5_Nor; is defined as follows:

i if I,_MNor = O;_Nor = & (rrue) then §_Nor; = S_Nor; ;.
wh IfT_Nor=true then S_Norj=1_Nor IO _Nory, .. .I_Norp.q) I{D_Nnr“{j_”}& i Oy _MNor_A where:
O; Nor_A = [X=1t1(X=1e O Norand X & Var(O_Naory_1y) and & = {X/t | X=te O;_Nor\0; Nor_A}
i) If O_Norp(j.py = true then §_Nor; = [_Nor)10_Nory, ... I_Nory 1y § @ [;_Nor_A where:
I Nor_A = [X=t!(X=1e I;_Norand X & Var(I_Nory;.1y) and § = [X/t| X=te ;_Nor\l; Nor_A}
Ifi=n the procedure stops and NORM(S H) = §_Nory,.
End. *

A.3 Notes about the procedure.

i) Obviously, since s th T is different from 9 [s.1] only because if there exists a subterm 5 = £ ...X,
) of 5, there is a corresponding (as defined in definiton 10) subterm ¢ = (.4, .} in 1 8 [s.1) where 1, is
aterm. So the se1 131 atstep a-1 is well defined.

i1} The elements of the set [;-2 defined at step a-1, can be deleted since they do not define constraints, Moreover
notice that, because of the definitons of I;-2, we do not further redoce input guards similar to that in the
following clanse:
cl) piX.¥) - JXsfiZ), YS Z) | true.

In fact in this clause we cannot reduce the input guard o the single atom X<[Y), since the resulting clause

Y - X=f(Y) is not a legal NGHC clause.
iii) Cases of failure considered at step a-2 are those of this kind:
e2) piX) - {¥Ysf.0 7 .
e3) piX) - {Z<K, M<K} | ...
ed) piX) - (WY, XY /...

— 15 —

Clearly clauses ©2, ¢3 and ¢4 are always indefinilely suspended, since Y, Z, M and W cannot be instantiatad,
Hence these clauses can be desregarded when considering the success set only.

iv} The substtution o defined at step a-3, contains the bindings [M/Y | Y<Me A} because if we get rid of the atom
YEM, we lose the varable M from the sequence, and this visibility is important in defining steps a-1 and a-2 of
the procedan:.

v) The atoms in the sets C and D defined at step b-3-ii are eliminated sines they define bindings for variables which
are nol 1n the previous parl of the sequence. Of course (at step ¢) the bindings defined in C and D are passed 1o the
sequence still o be normalized.

The following lemma guarantees that after performing a step of the previons normalization procedure, we can
apply the procedure o the subsequence stll w be normmalized {i.c. the subscquence is still an admissible sequence).

Lemma al. Let H be a sct of vanables and § = [110, ..., I5l0y a sequence admissible w.r.t. H. Let s_Rem- =
I_Rema O_Rems, ..., I_RemglO_Remy be the sequence defined as in the previous procedure, ie. the sequence still
i be normalized after the application of one step of the procedure o Sin. Then s_Rems is a sequence admissinble
w.r.L H. *

It is strightforward to show that the sequence 5_Nor obtained with the procedure is a normalized sequence. In [act
can be easily proved the following lemma.

Lemma a2. Let H be a set of varizbles and lot § be an admissible sequence wor.t H, Then if NORM(S,H) =
3_Nor, 5_Mor is a sequence which is normalized w.r.t. H. .

- 16 -

