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Abstract
This paper describes an explanation-based learning system under incomplete

knowledge. We propose an explanation method using abduction and induction. If the system
fails to explain a goal and to explain examples, it makes a hypothesis by abduction. In this
way, there are many candidate hypotheses. The system uses a few criteria to eliminate
candidates. Selection of hypotheses thatare in a consistent explanation is explained by
induction using a background theory and has minimal generation cost. After explanation
generation, the explanation tree is generalized according lo operationality criteria. As a

result, it generates assumplive macro knowledge.

1. Introduction

Knowledge acquisition bottleneck is onc of most difficult problems in the building
of knowledge bases of expert systems. There are two ways to build knowledge bases. The
first way is interactive knowledge acquisition: a human expert is interviewed to extract his
knowledge. The other way is knowledge building by wunderstanding observed
information. One way to understand something is to try to explain it. EBL(Explanation-
based learning)| Mitchell 85][Mitchell 86]isa learning method which uses explanation of
examples. However, EBL makes only macro knowledge for effective inference; it doesn't
make new knowledge that solves new problems. In order to use EBL, a complete domain
theory must be preparcd before learning. Normally, however, it is difficult to prepare
complete knowledge before learning. Therefore, a learning system fails to explain
examples. This situation is a trigger which makes other learning occur. Impasse
situations of chunking in SOAR[Laird 86] and frustration situations of FBL[Suwa 89] are
like failure situations of explanation. Abductive cxplanation is a kind of explanation
method which uses hypotheses. In this explanation, a hypothesis is made by
abduction[Charniak 86]. A hypothesis is new knowledge il it does not derive inconsistency.
There is a shortcoming in abduction, which generates many candidates as hypotheses to
explain examples. Itisimportant to select meaningful hypotheses from all hypotheses by
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abduction. This paper introduces a hypothesis selection method which considers the
operation cost of generalization and specialization of a domain theory. In this method, a
hypothesis is selected syntactically using the following criteria.

(1) An explanation has no inconsistency.

(2) A hypothesis made by abduction is explained from concepts of version
spaces[Mitchell 77] which werc generated from facte and deductive conclusions of
the domain theory.

(3) An explanation should be selected that has the lowest total cost of hypothesis

generation

To consider the relation between gencralization level and meaning of concept
representation level (such as structure information of objects and attributes of objects) , this
method ean also deal with semantic hypothesis selection.

After abductive explanation generation, to generalize this explanation tree,
an assumptive macro knowledge is obtained by KBL.

In ICOT, a knowledge acquisition system, EPSILON[Taki 87], has been
developed as an interactive knowledge acquisition system which creates an initial
knowledge base based on an expert model represented by primitive operations. EPSILON
has been implemented on PSI(Personal Sequential Inference Machine). The learning
method by abductive explanation is developed as a learning module of EPSILON which
extracts an assumptive knowledge afler initial knowledge base building.

2. Abductive Explanation

When we want Lo explain something but there is insufficient information, we
make hypotheses. These hypotheses are either wuncertain knowledge or assurmed
knowledge. The following sections describes how to assume knowledge for explanation. In
the discussion, we assume that background theory, a goal and examples are given in
learning process. This background theory is not enough to explain the goal with examples.

2.1 Explanation under Incomplete Knowledge

In knowledge acquisition, it is important to understand observed data and given
examples. Understanding examples means to give an explanation as to why some
examples are given to realize a goal. Usually we explain a physical behavior by stating a
physical law. In this case, the physical law is background knowledge and we explain the
behavior as a goal with physical situations as examples. If some physical situations or a
few physical law are unknown, we cannot explain the physical phenomenon, However, we
can make assumptions to try to explain that phenomenon.
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(Example 1) Explanation about a broken bridge
When we find a broken bridge, we wonder how the bridge broke. We
didn't see it happen, so we must guess, . We assume that bad weather
broke the bridge.
An explanation:  Rain fell.(assumption)
The river rose.
The bridge spans the river.
The swollen river was very strong.
The river pushed against the bridge.
The river was stronger than the bridge.
The bridge broke.

Assumed information is a hypothesis. There are two types of hypotheses: one of
them is in a given hypothesis set which includes uncertain knowledge (we don’t know
whether the knowledge is true or false), another is generated by advanced reasoning (such
as analogy, abduction or induction). The assumption of the weather in example 1 isan
uncertain hypothesis. We know candidates for the weather; rain, wind, snow, fine and
cloudy. We select a candidate from this finite hypothesis set. This gives us a macro
knowledge: if it rains, a brid-gr.-:- may break, This process is like EBL without using

hypotheses.

(Example 2) Explanation about a flying beetle
Tom knows that small insects can fly but he doesn't know that a beetle
can fly. One day, a big flying insect crashed into Tom's head. Tom saw
that the insect had a horn.Tom was surprised to see such a big insect fly,
Tom assumes that any insect can fly.
An explanation:  Tom knows that small insects can {ly, so he induces
that any insect can fly. (assumption)
Therefore, that flying object is a big
insect.(assumption)
The big insect has a hora. So Tom identifies it as a
flying beetle.

A hypothesis in example 2 is generated by inductive inference. Tom thought that
a concept of "flying small insects" was generalized and a concept of "flying insects” was
generated. He eliminated the size attribute of insects. This example shows that
hypothesis generation is important to explain examples under incomplete knowledge and
this hypothesis is generated only if it is necessary.
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2.2 Explanation by Hypothetical Reasoning
In explanation with hypotheses, there may be inconsistency. Hypothetical

reasoning deals with inconsistent reasoning during hypothesis selection. A formulation of

a hypothetical reasoning{Pool 88] is as follows.

B: a background theory, H: a set of hypotheses, E: examples,
G:agoal, h: a subsetof H

heH
BUEKG
BUEULHKG
BUE Uhk 4

We eliminate the first formula and add the hypothesis generation formula.

BUEKG

BUE UG |< h (Induction)
BUEUAKFG

BUE Uhi- 1

This formula is shown in induction[Genesereth 86]. We use the latter
formulation. We think that this formulation is suitable not only for induction but also for

abduction and analogy.

Figure 1 shows an explanation system using ATMS[de Kleer 86] as hypothetical

reasoning.

Goal: bird(tweety)
fly(tweety) has(tweety, bill)
SUCCESS FAIL

has(tweety, wings)
SUCCESS
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2.3 Generation of Hypothesis by Abduction

There are two kinds of candidates for hypotheses in this framework. They are fact
from knowledge and rule form knowledge. We deal with the fact form knowledge as
hypothesis. It is difficult to generate hypothesis deductively. This problem contains when,
how and on what to generate hypotheses. When a reasoning process fails to make an
explanation, this situation is a trigger to make a hypothesis. Abduction is the process that
generates explanations. Abduction has the following form.

Given "if a then b"
G]’:VEH Flbl‘

Infer"a

A prolog-like abduction form to use Horn clause is shown as follows,
Given b(X) - a(X)
Given b(c)

Infer aic)

Here is an example which makes an explanation by abduction.
(Example 3) Explanation about a bird, tweety
Background theory: bird(X) :- fly(X), has(X, wings), has(X, bill).
Examples: has(tweety, wings)
My(tweety)
Gual: bird(tweety)

—]_p Hypothesis generator Q———’

Baﬂkground the.ﬂry ] Gew

: \ :rfl_j;]:;-:;t];;s_l_sn_s l
: Examples : \ b mcmmc—m——= J
ATMS Deducmve inference

F‘Ig‘ure 1 The explanation system
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Given bird(X) :- fly(X), has(X, wings), has(X, bill)
Given bird(tweety)

---------------------- (ABDUCTION)

Infer has(tweety, wings), fly(tweety), has(tweety, bill)

"has(tweety, wings) and fly(tweely)" are known. Therefore a result of abduction is
"has(tweety, bill)". If there is the hypothesis, "has(tweety, bill)", then the explanation of
example 3 is established,

3. Selection Abductive Explanation

Il we use abduction for any explanation, we can explain anything. It is
necessary to select good hypotheses in order to generate better explanations. Selection of
hypotheses means selection of explanations. This section describes an evaluation as selection

criteria,

3.1 Selection Hypothesis
We define the following criteria to select hypotheses,

(1) An explanation has no inconsistency.

{2} A hypothesis made by abduction is explained from concepts of version
spaces which are generated from facts and deductive conelusions of the domain
theory.

(3) The explanation with the lowest total cost of hypothesis generation should be
selected

The second criterion selects hypotheses which are explained by induction. If there are two
hypotheses in an explanation, the total costis the sum of both hypothesis generation costs.

3.1.1 Types of Hypothesis

To begin with, types of hypothesis in the explanation system are introduced.
Necessary hypothesis is dependent on a sequence of explanation. In example 3, if a goal
concept is bird(X), there is a difference between rule 1 "bird(X) :- fly(X), has(X, wings),
has(X, bill)" and rule 2 "bird(X) :- has(X, bill), fly(X), has(X, wings)".

In an inference using the rule 1, when "has(X, bill)" is checked, the value "X" has
been unified to "tweety" which was fixed at checking "fly(X)". Therefore, a result of
abduction in this caseis "has(tweety, bill)". On the other hand, when "has(X, bill)" is
checked in the case of the rule 2, the value "X" is not fixed. The result of abduction is
"has(X, bill)". After reasoning, both explanations are the same. In the second case, as a

-result, "has(X, bill)" is "has(tweety, bill)". This shows that necessary hypothesis is
"has(tweety, bill)" in both cases. We call this result of abduction "has(tweety, bill)" a basic
6 —
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hypothesis and the result "has(X, bill)" a temporal hypothesis.

If there are a basic hypothesis and a temporal hypothesis from an item by
abduction in an explanation, the temporal hypothesis is more general than the basic
hypothesis and the basic hypothesis is the most special hypothesis in the explanation.

3.1.2 Version Space and Hypothesis

Knowledge in the background theory can explain only concepts that are more
specific than itself. Generalized knowledge is necessary to explain a hypothesis. Sets of
generalized knowledge are represented by version spaces made from the background theory.

Normally, the induction function decides an upper and lower boundary of a version
space using positive and negative examples of a concept.

If the background theory doesn't include negalive examples, version spaces of
concepts in the background theory have no upper boundarics. Therefore, the most
generalized form ofan item hasits own predicate name and arguments that are represented
by valuables, This means that the predicate name is not generalized. The lower boundaries
of those version spaces are defined by facts that are deduced from the background theory.

A concept in a version space which explains a basic hypothesis is called "a
support concept for the basic hypothesis". The most specific concepts of support concepts is
called "the least generalized support concept”. The least generalized support concept is one
of concepts made from the basic hypothesis and facts in the background theory by least
generalization.

(Exaumple 5) The least generalized support concept

The least
generalized
support concept

has(X, Y)

/

has(fish, Y) has(X, fins)

N/

has(fish, fins)

has(dolphin, fins)

A basic hypothesis

Version space
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In example 5, "has(fish, fins)" is the lower boundary of the version space,
"has(X,Y)"is the upper boundary ofit. "has(X, fins)" and "has(fish, Y)" are concepts in the
version space. If "has(dolphin, fins)" is a basic hypothesis, "has(X,Y)" and "has(X, fins)"
are support concepts for the hypothesis because these unify to it. A least generalized support
concept is "has(X, fins)".

If "has(beetle, horn)" is a basic hypothesis, a least generalized support concept is
"has(X, Y)". If "eat(dolphin, fish)"is a basic hypothesis, there isno support concept for this

hypothesis in this version space.

3.1.3 Hypothesis Generation Cost

This section describes operations for predicate modification. Each operation has
the same cost and is identified as 1 point. Three operations are defined here. The first
operation, argument generalization operation (G-op), exchanges a fixed argument to a
variable. The second operation, argument disconnect operation (D-op), eliminates a
dependency between two variables. The third operation, argument unification operation
(U-op), unifies a instance and a variable.

(Example 6) Operations
G-op: has(dolphin, fins) -> has(X, fins) or has(dolphin, Y)
D-op: has(X,X) -> has(X)Y)

U-op: has(X, fins) -> has(fish, fins)

In example 5, total cost of generation "has(dolphin, fins)" from "has(fish, fing)" is 2
points. This generation process consists of "G-op: has(fish, fins)-> has(X, fins)" and "U-op:
has(X, fins) - > has(dolphin, fins)".

4. Assumptive Macro Knowledge Generation
In this section, this explanation function isintegrated into EBL. We can obtain
assumptive macro knowledge by abductive explanation-based learning,

4.1 Explanation-Based Learning and Incomplete Domain Theory
EBL is a learning about efficiency of knowledge. In EBL, complete domain
theory, goal concept, learning examples and operationality criteria must be prepared.
EBL explains a goal using examples and domain theory. An explanation tree is generalized
by operationality criteria. EBL doesn't learn new knowledge. Before learning, itis hard {o
prepare a complete domain theory. If a framework of EBL under incomplete domain theory
were developed, it could learn new knowledge and efficiency of knowledge usage. There is
some incompleteness in the domain theory as follows.
(1) Completeness: There is some lack of knowledge, so some examples cannot be explained.

_B_
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(2) Soundness: There is some wrong knowledge, so wrong examples are explained.

(3) Consistency: The domain theory contains inconsistency, so inconsistency is detected in an
explanation.

(4) Over-generalization: Knowledge is too general, so it explains negative examples.

(5) Over-specialization: Knowledge is Loo special to explain positive examples.

We aim to develop this framework using abduction and induction. We aim to develop an
explanation system which deals with incomplete knowledge (1) and (5). It makes assumplive
explanations and genecralizes explanations. As a result, it generates assumptive macro
knowledge which contains hypothesis as a new knowledge and usage of the hypothesis.

4.2 Assumptive Macro Knowledge

A basic hypothesis is very special for learned knowledge. A least generalized
support concept is a support hypothesis for a basic hypothesis. Therefore, we use the least
generalized support concept as a hypothesis to learn new knowledge. If the support concept
is denied, the basiec hypothesis is also denied. The support concept may explain other
hypotheses different from the basic hypothesis. However, examples and an explanation are
special cases, The learning system must learn more general inconsistent knowledge. We
define assumptive macro knowledge shown in a following form.

Knowledge generated by EBL:
goal(X1, ..., Xn) - pl(Xi, .., Xj, ..), p2(...), ..., pm(...). --(1)

Hypothesis: h1{Xk, dolphin).
Assumptive macro knowledge (represented in default rule form):

pli..), p2(...), ., pm(...) M: h1(Xk, dolphin)

goal(X1, ..., Xn)

Unless "h1(Xk, dolphin)" is not denied, a horn clause (1) is available,

5. Semantic Hypothesis Selection
The assumptive macro knowledge is generated syntactically. This section shows
how we can express semantics about generalization and specialization.

5.1 Generalization Level of Hypothesis

The least gencralized support concept is generated from the background
theory and examples by generalization. However, there are some limits for generalization.
These limits decide the upper boundaries of version spaces made from known knowledge

— g —
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such as negative examples. These constraints are dependent on application fields, For
example, structured mapping theory|{Falkenhainer 87] controls analogical mapping between
two cvents. It maps structure information but not attributes of objects in these events. In
order Lo control generalization levels of special predicates, this system allows the user to
limit version spaces of predicts which are defined in a set of special names or have a fixed

number of arguments.

5.2 Operationality
In order to generate operational macro knowledge, EBL generalizes an

explanation tree about its structure. In our learning method, there are two relations between
4 hypothesis and an operationality criterion.
(1) An operationality criterion is more special than a hypothesis.
In this case, the hypothesis exists in macro knowledge. If this macro is used in
an inference, this hypothesis must be explained by deduction. This type of macro
knowledge is normal knowledge but not default knowledge.

(2) An operationality criterion is more general than a hypothesis.

In this case, the hypothesis doesn't exist in macro knowledge. It is eliminated
from the explanation tree by an operatinality criterion. Therefore, this macro is
independent of knowledge whose generalization level represents the hypothesis.
The hypothesis is no longer necessary to explain the macro knowledge. However,
if the hypothesis is denied, the macro knowledge loses its generation
cause/reason. This type of knowledge is represented in assumptive macro
knowledge form.

6. Related Works
Our research is a kind of EBL under incomplete knowledge[Doyle
86][Rajamoney 88]{Uchihashi 89]. A characteristic of this learning is to explain by abduction
and induction, The research of abductive explanations in natural-language interpretation
in SRI[Stickel 88] also discusses abductive explanation and assumption cost. Its
explanation is based on abduction, We use abduction to make a basic hypothesis and decide
least generalized support concept using a version space. Therefore, our explanation is based
on induction, The integration of EBL, and ATMS or hypothetical reasoning [Atsumi 88]is
developed for making consistent explanations. Our system also uses ATMS to check
explanation consistency. A default rule maintenance system[Araragi 89] uses a trigger when
an inconsistent explanation is found. It modifies a default representation of a default rule.
Our system doesn't maintain default rules, but eliminates inconsistent explanations and
macro knowledge. The learning method to generalize explanation trees with the
integration method of similarity-based learning and operationality criteria is
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developed[Yamamura 87]. Our system uses induction to generate explanations but not to
generate a generalized explanation ree from some explanation trees. A model inference
system[Shapiro 81] uses a refinement tree to specialize predicates with six strategies. The
current version of our system uses only ihree operations to generalize and  specialize
knowledge. Its next version supports the following operations.

List generalization operation 1: has(X,[Y|Z]) -= has(X,Y)

List generalization operation 2: has([X[Z],Y) -> has(X,Y)

Implication eliminate operation: has(X,Y) :- has(X,Y)-> has(X.Y)

This system deals with fact form hypotheses. The inverting
resolution/Muggleton 88} method might be useful to generate rule form hypotheses. Our
method generalizes the background theory and examples to make version spaces and
specializes a least generalized support concept to explain a basic hypothesis. This reasoning

is akind of analogy.

7. Summary
This paper discussed a learning method about how hypothetical knowledge is
exiracted, This method uses an advanced reasoning which generates abductive
explanations and selects hypotheses according to checking costs of hypothesis generation.
A basic hypothesis is made by abduction when an explanation is not generated. A least
generalized support concept is also derived from the basic hypothesis and version spaces
which are made bya background theory and examples. This support concept is explained
by induction of known knowledge. A assumptive macro knowledge is made from the
explanation with this support concept. This knowledge is available unless the support
knowledge is not denied. A current version of this method deals with facts as hypotheses.
It is necessary for us to develop rule generation methods to explain examples and an
integrated knowledge acquisition system (EPSILON/2) which consists of an interview
system and a learning system.
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