ICOT Technical Memorandum: TM-0720

TM-0720
PDSS Manual (Version 1.64e)

hy
K. Taki & 5. Uchida

Mav, 1989

1989, 1007

Mita Kokusar Bldg. 21F 03 456-3191 -5

IC DT 4-28 Mita 1-Chome Telex WCOT J32u64

Minato ku Tokyo W Japan

Institute for New Generation Computer Technology

PDSS Manual

(Version 1.64¢ |

20/2/89

Iustitute for New Generation Computer Technology

Fourth Laboratory

Copynight {C) 1988,8% by ICOT

Contents

1 What is PSS e e e e e e e e e e e e e e b

L]

2 KLl Language Specification
w1 Cutline
v Shoen ... L Lo

*2] Shies-en Generation o e T T

e B ae bBD

d 29 Control Stream L L.

ot

223 Heport Stream

23 Priorty . ..o o fi

B Synlax

241 Module definition - - . . 0 0L Lo oL L.

[2B A

242 Ulanse opdermg . . . L e
2.5 Diata types %
26 Dullt-in predicates | s 9

261 Tvpe checking . . . 0. L. e 10

202 Comparison oL _ . S o n

A Arnthmetic operations L. . Il

264 Vecror predicates . e

265 Atom/String predicates o i

266 Seeond order Duuetion : : R L |

DT OSEreAm SUPPOFT . . L. Lo

2468 Special /O functions P £

269 Other predicates L e ... 15
25 O Macres Lo Lo . o O 1
271 Constant description maceos © . 0 0 0 0L O £
2. nification macros . - . . - - . .. o . o L

=

P
-Z3

2
3 Arithmelic |'.uru]a.'—1r'rm'|rt PR 0 0 o h e h e e e e e e e e e e e e s 16
4

Arithmetic operation macros . _ . L L oL L . . T |
& Conditional branch macros . . . o 00 0oL 0000000 e 17
6 Maeros for implielt apguinent passing .. oo Lo oo oo . LB

T Macro hbrary ... oo 0000 e e e e e e e e e e e e e e e, 22

et B { S S
=1

=]

3 Micro PIMOS . 0 0 0 0000 oo e e 24
31 Command mrerpreter . .. L. L L oL o .
.11 Command input format R
312 Commands . e e _ . |
3.2 /O functionso 28
32,1 Command stream ailachient e e e e e e M
3292 Command hst o0 0000000 .|
1.3 Directory management -
541 Acquisition of command stream . . .
342 Commands . . e .

44 Device Stream for 1/0
+4.1 Securing Device Stream

442 Command

15 Uode Mﬂ.Tla.gl;"j'n_thl_ e e

d.6 Dhsplayimg Exception Information

4 PDSS Uptional parameters

4.0 Usage under GNU-Emacs,

4.2 PSS on stand-alone

4.5 Optional parareters .

5 Tracer
2.1 Principle of aperation .
3.2 How to read the display
5.0 Commands . - .

6 Dead-lock detection =,

Appendices
Appendiz-1 170 devices |

Appendix-2 Cade dovice . o

Appendix-3 PIMOS common uiilities

Appendix-4 Reserved module names . . .

Appendix-f Reserved operator names

Appendix-G List of built-in predicates |

Appendix-T Exceplion codes
Appendix-8 Reserved Sho-en tags
Appendee-d GNU-Emacs library

Appendix-10 Using command procedures for compiling

Appendix-11 Sample program

Appendix-12 - What to do il & bug is found out_ .

41

45
45
Gl

56
o
a7
af
il
£1
63
fi4

1 What is PDSS

OS5 which stands for PIMOS Developiment Support System, i a K11 system to develop the PIMOS, PDSS
1= widely compatible witle the KL1 svstens found on Multi-PSI V2, besides implenwniation details, execution
speed, ote. The main differences are enumerated below . This is still an approximate list | as the Multi-PS1 VY
specilications are not fised yes

o Sowe of the functions implemented throngh software (¢ g atom managerent | are treated by the compiler.
Sore atom related operations are availlable as bnilt i predicates,
o Code managemeni s done by compiler.

e The only resoures knewn by PSS i3 the number of performed reductions

The I/0 devies streant has a different form
® Becaose PDSS s a single processor system, there is no processor pointing function for process dispersion.

o The priceity ealeulations rules are also a little bit Jiferent

Another function of PDSS s to provide tools for the development of parallel programs. To this end, PDSS
hias been written in a sivle which ensures portability and it will be installed onto vanons UNIX! avetems. We
tried to builld PDSS as a handy development tool. We expect it to be improved along the development of
PIMOS

PSS consiste mainly of two parts @ one 1s the language processing system which executes KL1 and the ot her
15 the user interface systemn. called Miera PIMOS. Micra PIMOS is a single user, single task operating system
which provides 1O and code management funetions Lo its user. Iis description i= held in chapter 3. Figure]
shows PTISS conliguration.

User Program

Micro PIMOS (KL1)
]
rode man &g'-‘:'mf'lflt
exception handling
comtnand interpreter
comipiler

KL1 processor _
{C language) Multi Windows
. {Frmacs)

UNIX

Figure 1. PDSS configuration

In figure |, we see that a multi-window environment is provided through the GNU-Emacs full-screen editor.
Its library has besn weitten in Emaes-LISP.

In PDSS. 1/0 and code magement funriions use a special built-in stream, called device stream. Specifications
of this stream can be found in Appendix-1 and Appendix-2 Anyway, the average user doesn’t have to use
device stream directly, as most necessary facilities are provided in Micre-PIMOS libraries

TUNTY is & trademark of Hell Lahoratories.

2 KL1 Language Specification

The langnage specification of the K11 dialect executable on PTISS lies in this chapter. Note that there may
Le differences hetween this specification and ones found on other systems, such as Maolt-PST V2.

2.1 Outline

K11 a language based on GHC (Guarded Horn Clanses] which mareover embeds some extensions related to
Ok deseription, modular programming, otc. kL1 also has some restrictions, due to implementation lonitations,
Its main charastersies are now deseribed :

Sequentiality of guard

Unification of head parameters and exesution of guard goals are performed sequentially, from left Lo nght.
Iu the following example. suspension accurs until variable X is instantiated. Note that the following predicate

does not agl,

Goal: ?- pla,X,b).
Clausa: pla,c,d) - true | true.

Cyard restrictlons
Oinly buikt in prl"di':'ilti'.‘i can be used within the glmrt!. These predicales are described i section 2.6,

FEaualiny of vartables

Equalny of untound variables is not checked in the guard part. Suspension accurs in the following program,
until variables X and Y are instantiated, sndependently from the execution order of the goals of the topmost

o lause

Goal: T K=Y, plX,Y).
Clause: p(A,A) :- true | true.

Mendule r?.|EIL11.1!Lu.lj!._u

Clustering clauses in several modules allows iwodular compilation and debugging. In the current version, to
each file eorresponds a unigque module.

Shio-en

An onginal functional umit, called Sho-en. has been introduced. It is possible to control the execution priority
and resouree alloration of each Sho-en, OF itsclf 1s construeted as such a Sho-en.

Exception handling

Handling of exceptions cceuring during the execution of a program is described in KL1, using Sho-en and
wecond-opder predicates.

&] ure 1I.-H.I1d Ii"‘E

All failures are considered as exceptions within KLI and execution of a program can be resumed using
exception handling facilities.

2.2 Sho-en

A Shooenis the minimuni unit of resource manageient | priority mansgement and exception handling which
exists i the language. Two streams. called contral and report streams, are connecied to each Sho-ep. The
rontrol stream is used 1o control the Sho-en, and can carry various commands. The Cepart stream carries
misrniation and requests coming from the Sho-en. Users of Sho-en can handle exceplions if they write prograns
wierpreting the information from the report stream.

parent Sho-cn

current Sho-en

. el
o © c @ confrol stream
child Sho-en o 1
—-— — B B
o —t TEQOEL stream

Figure 2 An mstant pictire of some Sho-ens

Hesouree imanagement functions

The resource managed by PDISS is the number of perforimed reductions. 1 can be seen as a roiigh mesure
of the computing tume and memory usage. For all guals which belong to the same Sho-en, it is possible to
spwcily the maximum number of reductioms. By defanlt . the system assigns the muximum possible number of
reductions. When the She-en s generated, e when il starts, this anonnt (or the defaull amount) 1s attributed.
When reduetion alloration is exhansted during the course of execution. an exceplion resource_low is inserted
i the report stream of the Sho-en. It s possible to inerease the reduction resource via an add rescurce(f)
connmarnd o the control streans, as explainsd later

e resource comsumption control is performed in a discrete manner © mdependently from the maximun
vsber of allowed reductions. there is a system dependent reduction granularily accarding to which control is
enertesls Typically. o few thonsands reductions. Resourer control can be 2o a5 a reenrsive allocation process
Swhew a Sho-en starts, it i alloeated, say, 2000 reductions. Whew this number s exhavsted, a 2000 reductions
resiaees i subdracted from te parent Shoeen and added to the current Sho-en. This may trIgEer a recursive
provess sl which reduction allocation s eventually done at the debis of some grand-father Sho-en, During
Hins proweessand ondy st thi= tie . the geaximmm adloeation bt i< clecke =R

Iricomily srmagenend

Midher fanetion of the Sho-en s prionity management. Fach Sho-en holds & record of upper and lower
pricrily hounds, for iiner goals. Goals cannot be execoted with a priority hevond upper bound and below
lewwerr Bownal, Priority specification is deseribed in seeling 2.3,

2.2.1 5ho-en Generation

Shoen generation s perlormed using the “Sho-en” system nodule, which contains the predicates execule/T
anl execute i Below, code is a tiree clensents sector - {module-name predicate-name, number-of-args|.
arguments i+ i veclor with arguemts of the goal. (In Molti-PSI V2, code dala bype i used for the code

arginmment.,

axecute(module-name, predicate-name, argument, minimum-prierity,
maximum-priority, tag, contrel, repert)

executelcode, argument, minimum=priority,
maximum—prierity, tag, control, report)

Above, minimum-pricr ity and maximum-pricrisy hold the values used to calculate priority bounds within
which goals are cxecuted as shown in J. Tag s a bt mask used to filter the exceptions received by the Sho-en.
Contrel stream 1z unified with contrel. and report stream 12 unified with repsrt. The mmitial state of the

generated Sho-en 1z suspend, and the allowed reduection ccunt is not set,

[ex] ‘Sho-en’:execute({primes,do,3},{1,300,PRIMES},0,2,-1,CONTROL , REPORT)

high

maximin priority| Smar] ——

priority of goal which generates Sho-en((Cp) —— —
Mazx

i maximumn priovity of new Sho-en{ N Smaz) — -
156

minimum priovity of new Sho-vol N Swin) ——
1M in
MR prorityi Smin] -]
low

NSmar = (p - (O~ Smin) x zﬂﬁ'

N Smin = Smin + (Cp — Smin) x Min

i
0 < Min < 4006 Min = minimum priority within Sho-en

0= Min+ Mar < 4000

Maz < 4006 Mar = maximum priority within Sho-en

18

Figure 3 Caleulation of Sha-en Prionty

2.2.2 Control Stream

Below are the commands which can be inserted in the control stream. When the control stream is closed,
the Sho-en is abandonned. Conversely, if the nser does never close the stream, exscution of Sho-en itself never
slops.

start

Activates goal execution in the Sho-en.

stop
Suspends goal execution. Previous command causes execution to resume.

mbvort
Abarts goal cxecution once and foe all In particular, start command cannot resume execution.

iilld-l‘t'!ﬂ! IJ]'L'I..‘{ H.l..‘l] l.l(.'l.i.l.ll:l}

Adlils Reduction 1o the current pumber of allowed reductions. A negative integer means infinity.

allow _resonrce_report
This command 15 an answer 10 the exception resource_low. This exception cannot he reported again

until this command 15 inserted.

statistics
Asks statsties abour the Sho-en, Information s inserted in the report stream.

2.2.3 Heport Stream

Ll foliowing micrmation can be found i the report stream,

.'il'kIIEHI.'Ll-'I.‘IHI]'It"‘FIT Fl1r"ﬁﬁF|g+"F~ fis l"l']l'l“'l.'lnl sLream I,'I:Iﬂ'l_l[lal]l.'l!-_r

Here are the reaponses to commands put m the control strean,

atarted

Start message has been received.
stopped

Stop message has been received,

aborted
Abort message has been recelved.

resonres_added
Add_ressource message has heen received.

rmmmrm:-repnrt-nllm&d
Allow_resource_report message has been received. Exception resource_low can be reported again
after this message.

statistics started
Statistics message received. The statistic information itsell is reported onee collected .

Here s the mformation reported whenever Sho-en status changes.

terminated
Execution of Sho-en has finished . If abert had been Heql prcv'lcrualy, Lhis MESSAEE indi:ah:a I.]‘]at I.I]'P,‘
execiution has been aborted, Otherwise, it indicates suceess of all goals.

resource_low
The number of performed reductions is close to the maximum allowed amount, or this amount is not
sufficient. When Lhis exception oceurs, Sho-en state becomes suspend. No other rescurce_low reporl

can oeeur before thal allow_resource_report is inserted in the control steeam.

Statistic inf .
Hepe, we get statistic information about the She-en, whenever collection has been done.

statistics{Indo)
Unifies the statistie information with Infe, which is a vector of one element, indicating the number of
reductions performed. This number inclodes reductions performed by children Sho-ens.

L xreplion informnti ol

Here is the deseription of cxceptions which can be reported by a Shoen. Some of them can specify the
handling process for the exception. These have NewCode and NewArg arguments. If an exceplion condition is
detected by PDES. the following goal is generated within the Sho-en to handle the exception. Then, system
watls for the unification of this goal with NewCode and NewArg.

exception_handling({Module,Predicate, Arity} Argv) :- true |

apply (Module, Fradicate, Argv) . % goal execution
exception_handlimg([J,) :- true |
true. % nothing done

failure(Code, Argv. New Code, MNewArgv)
All guards of some goal failed. Code is the cude of that goal, and Argv its arguments. The new code and
arguinents of the goal chosen by the user, in place of the failing goal which caused exception, should be

unified with HewCode and NewArgy.

unification failure(X, Y, NewCode, NewArgyv)
Unification of X and ¥ failed in the body of some clause in the Sho-en. NewCode and Fewhrg have the
same meaning as above

exception|{ ExceptionCode, OpCode, Arpv, NewCode, NewArgv)
Faceplion occured in & built-in predicate, within the body of some clause. ExceptionCode s a positive
mteger which indicales the type of exception. DpCode is a positive mieger which indicates the aperation
code of the built-in predicate and Axgy is the argument. NewCode and NewArg have the same MEeAning as

ahowve,

exception(ExceptionCode, Code, Argv, NewCode, New Argv)
Fxception occurred in Sho-en. ExceptionGode has the same meaning as above. Code is the code of the
goal which cansed exception and Argv is the argument. FewCode and NewArg have the same meaning as
ahowve

exception(ExceptionCode, Number, NewCode, NewArgv)
ExceptionCode has the same meaning as above. Number is an integer indicating the device type which
caused exception. NewCode and Newhrg have the same meaning as ahove.

raised{ Type, Info, NewCode. New Argv)
Huilt-in predicate raise/3 has been executed in the Sho-en. Type and Info are the parameters used in
this predicate.

deadlock({Type, Caller, LockedGoals)
Lieadlock has been detected in Sho-en. Type is an integer indicating deadiock type. Caller is the code
of the predicate which causes deadlock ur garbage congestion. LockedGoals is thie list of codes of goals
i deadlock.,

2.3 Priority

In KLL, it is possible Lo specify the priority at which each goal is executed. There are logical and physical
priorities, and each goal can have its own logical priority. There are different levels of physical priority in the
system, and the scheduler converts lugical priority into physical priority when it connects goals to the goal
stack. (As physical priority is less accurate than logical pricrity, user should not expect scheduling to reflect
exactly the logical priority.) Upper flower limits of priority in the Sho-en are also logical.

Friorily of a goal is specified relatively to its parent goal, or relatively to the Sho-en it helongs to. The former
method is called “relative self specification in the belonging Sho-en” and the later is called “rate specification
in the belonging Sho-en™ .

Fiaafe bl LI i“-:':-\.‘l‘-iﬂ“ n the IH—_‘]II“E]‘“E Hhrb—rn

Gioal prioriy is speeified by a value relative to e upperiower linut of the belonging Sho-en. It s writlen

a= tollows
Goal @ priovity{*. Hate)

In this vase. the goal priority s computed as follows

{1 < Rate < 4096)

| . e it Hate
) 1T " W - e L] =
ower-tmut + fupper fuwil - lower-Bmit) xc

Helative self specification i the helonging Sho-rn

Cical priority is specified by a value relative to the logical priority of the parent goal. This priority caunol
exverd the upper flower limnt of the Shoeen

Goal @ pricrity{$. Rate)

Flos time. priority is computed as follows . sssuming that 7p is the priorty of the calling goal

Cp+ (upper-limit — Cp) x l?:;? M= Hate < 4040G)
Fir .
Cp—(Cp - lower-hnnt) x i:il;:: {—4096 < Rate < 0)

Far example in the following program, suppose that the pricrity of goal is Cp, the prority Np of goal q is

caleulated below

Gaoal: - p.
Clauge: p = true | g @ prierity($, -100).

high

1l}:]:-r.r-|i'.r|ji1,|; Hu_p‘ll —_—

P priority ({"p) -]
—

q pricrily { Np)

. 4096
Np—p=(Cp— Sbp) » =0

lower-limit {Shp) -

lrvwr

2.4 Syntax

Dhifercnces between GHO and KLI are deseribed here. Main differences are concerned with -_.
e Module definition

o Clanse ordeting

e Priority specification

o Macres deseriplion

The wweres are descrihed later in this dorument.

=1

2.4.1 Module definition

The following = a modole definition :
1 - module module-name.

This declaration must appear at Chie bead of any module. Furthermore, any Prr:diﬂ‘{ﬂr‘- defined 1 this module
Pt used outside of 1t should be declared as follows
;- public predicate-name/number-cf-arguments, =« v
Note that predicates executed by a buili in predicate apply aud those specified at Sho-en generation must
he declared public. Melhiple definitions of a predicate, spreading over several clauses, cannot be split by the
definition of a different prodicate. Doing otherwise causes display of Lhe nessage “Assembler: Doubly defined
lahel.”.

A poal whose definition pertains to a different module can be used as indicated helow .

module-name : goal-name

2.4.2 Clause ordering

Compilation of KL1 pragram goes through clause indexing, in order to maximize efficiency. This may in
return change the order according to which clauses are selected for evaluation. 1f clause evaluation ordering is

a necessity, the [ollowing statements should be used
Scheduling order

The statement alternatively\indes{alternatively} can be used lo separate two sets of clanses, the first
of which shouild be scheduled with a higher priority. However, if all clauses in the first set are suspended or
[ail. evaluation of clauses in the second set starts,

fool [X1XX]1,2) :- true | p(X, XX, Z).

alternativaly.
foolX, [Z122]) := true | g(X,Z,ZL).

Lvaluation order

The stherwise’index{otherwise} statement is more straightforward : clauses [ollowing it are evaluated
anly if all of the preceeding clauses faled. Suspension does nol Lrigger anything i this case.

foo{[XI1XX]) ;- X==a | pal{k,XE}.
foo{ [X1XX1) - X==b | pb(X,XX}.

LI I
otharviae.
foolX) - true | g(X}.

2.5 Data types

Here are the data types supported by PSS -

Unhouwwd varsables ook, B, T, _, _abec
Litegers (Range =24%31 to 244311} - 123, 16°ACE, 8'37
Alons e abe, "ABCY

Lists [1.2,2]1, [11x]
Vertors (possibly of dimension 0] {fa,¥Y.bk, £(X), {3
Strings (possibly void seeees Hahgt

When s iuleger o forniai 'y s used, the radix base s 1y vary between 2 and 36, with classical convention
low figures. Note that this produces a syntax ervor on the Prolog buased compiler. T'he form radix-base#number
should be used instead. Note that the number 1= expressed as a string(e 5. 168#"12aC")

As well onthe Prolog-based compiler. ™, 0" s considered as a list of 8 bite character code An R Pression

of the form strings*. " should be used to generate a st ring

leednnification of twe steings occurs if the sicings have identical length and eontenis

2.6 Built-in predicates

Voo now give the st of the buill-in KL1 primitives supported by PDSS. The following s an exainple of the
format we gse

vector{ X, "Size) = g
1 T

Call formar Valid docation for orcurence

In this case. G means that the predicate can appear w the guard of the clause. Some predicatos can ocour
i the body, i which case the letter B is used. GB denobes predicates which can occur in both places.
Resides, arguments with a ° are outputs, whereas other argumients are ||g[:uL5,:|, Omne should take this inve
arcount, beeause binding an cutpul argument with an already instantiated variable MAY CHUESE SUSPension,
Also, unification occuring in the guard is passive, whereas unifieation in the hody can Le active.

The symbol ® will somwtines appear aller G, B or GB. It means the incompatibility with the predicates on
Multi-PST V2 as folleaws,

G : Names are differemt.

[H L : Specification 1s differnt.

G #%& : Op Multi-P5I V2, this is not a built-in predicate but a functiom of
operating system. Specification is different.

G =»*xx : This is not supported on Multi-PSI V2.

Fur some of the predicates described therein, input parameters should verify some domain constraints.
Typically, 1o divide a number by 0 15 not a very sound operation. If a domain constrainl is not respected,
depending on the predicate position. two different things may happen : if the predicate is used within the
guard part of a clawse, this clanse fails. I ehe predicats is in the body, an exceplion orcures,

The following syntax for arithmetic macros i based on DEC-10 Prolog. Macros not listed here are described
1 chapter 2.7,

1l

scomparigen-f> ::— <fl» <comparison-o> <fi>
“numerical-o> = <variable>» “:z% <fi»

<f1> = 4f2r | <f1> <pumerical-ol> <i3»

12> pe <f3» | <f2> <pumerical-o2> <f3>

wt3s o= <termr | <termr <numerical-od> <term:
sfactars o= <integer> | "({" <fi» "}
CCOMPAriEQR=0> 1= "2 | "W | nyam | owesn | ro.=t | omghoe
fnumerical-olx = el |omom e e e]y
<aumerical-oZ> = Mat | NS | omggn | oraan

<numerical-ed> = “med"

2.6.1 Type checking

Unless otherwise specified, if an inpui variable is still unbound while calling the following predicates, sus-
PENSION GConTs,
waiti X} 0 G
Az soon as Xis bound, this predicate succeeds.
atomiX) o G
As woon a3 X is bound, if X i an atom. the predicate succeeds, otherwise 1b fails.
integer(X) it G
As above, replacing atom with integer.
list{X):: G
As above, replacing integer with list.
vector{X, “Size) i G
As soun as X is bound, if X is not a vector, this predicate fails. If X is a vector, this predicate succeeds
and Size is unified with the vector sine.
vector(X. “Size. "WowVoctor) @ B
This primutive works more or less the same. unless if X is not a vector. In this vase, eXCEpPLion ocours
rather than failure. Alsn, NewVector is unified with a copy of X. This is useful to duplicale a vector and
avold inter-process references. which are a pain for the garbage collector,
string(X. "Sizc, "BlementSize) @0 G
This predicate succeeds if X becomes a string. Otherwise it fails. In addition, Size is unified with
the number of characters in the siring, and ElementSizs is unified with the length of each character,
expressed in hits,
string(X, “Size, “ElementSize. "NowString) = B
This primitive, like the vector/3 primitive. makes s copy of the origunal string, Sinece this is a body
prunitive there will be an exception if X is bound to somettung different from a sbring.
atomic(X) ;1 G **** -
This primitive succeeds of X is bound to an atom, an integer or a string. It fails otherwise
['] This predicate may be removed wn luture version. 11 is anyhow noi supported on Multi-FPST v,
unbound{X, "Result) :: B **

This primitive always succeeds hut whey evaluated, if X is unhound, Result is unified with success
Conversely, if X is hoond when this primutive is executed, Result is unified with the atom failure. This

Prinubive never causes suspension .

2.6.2 Comparison

Unless otherwise specified, as in the previous section, whenever the following predicates are called, if one of
the input variables is unbound, suspension occurs. Alsa, for the fullowing predicates which are concerned with

1

unegers, il one of the mpui variables is not an integer. failure oceurs.

Ohur resder will pote the presence of macres after the definition of each predicate.

less_than{ Integerl. Integer2) 2 G
A ome could have guessed . hesides suspension or [ailure cases enumerated above, this predicaie succerds

o snd only if Integerl is less than Integer.

Y« ¥ <=> less_than(X,¥Y)}.
¥ » ¥ «=» Jlese_than{¥,%).

(TLRL _'l'_‘{ﬁ._'.l[il]]t .[I'Ihi".t{_‘i-'!rl . Int-:'.gf'rﬂ } e

Hire, EFCATET OF |~|_||,.'a] 15 1he I:‘C-.'_|:|||r-_i.lr crunel e,

X »= Y «¢=> not_less_than(X,Y},
¥ =< ¥ «<=» not_less_than(¥, X).

egnal|{Integerl, Tnteger2) o G
Here. numerical squality is the condition. Note that input parameters have to be integers.

X =:5 ¥ <=¢ wquall{X,Y).

not _equal{ Integerl, Integer2) o G
Thie tiine. the predicate succesds F the two input parameters are different integers.

I =\= ¥ <= not_eguall(X,¥).

not _unified (X, ¥Y) o G ¥
If ¥ ar ¥ are structured, Ui not_equal predicate is of no help. So. this predicate chacks that X and ¥ can
he unified. it 15 the rase. the predicate fails. If terms cannot be unified the predicate succeeds. If there
are unbound variables in any of the terms, suspension veenrs.

I \= ¥ <=> not_unified(X,¥).

'] If £.¥ are structured terms. wniliability checking s limuted in depth. If terms are unifiable until the
depth limit, predicate will fuil, altheugh a ditference may exist deeper in the siructures.

2.6.3 Arithmetic operations

I mput variables of the following predicates are windefined at call time. suspension oceurs. If inputs are not
witegers, failure or exceeption occurs, depending on whether the predicate is used in the guard or the body of a
o lanese,

[!'] For the particoiar case of the fiest four predicates thereafter. overflow s ot detected on PLSS. On
bt 'S VY it canses failure or oxception, like type mismatch,

add(Tutegorl, Inteper?, “Newlnteger) 2 GB **
Tl result of the addition 1= unified with §esInteger.

7 o-= X+ ¥ «=> add{X Y, ,Z).

subtract{Integerl. Integer2, “NewlIntcger) :: GB **
Tl result of the subtraction is unified with Newlntegesr

7 .= Y - Y <=» subtract(X,Y,Z).

multiply(Integerl, Integer2, *NewlInteger) :: GB **
The result of the multiplication is unified with NewInteger.

7 .= % &Y <=> multiply(X,¥,2).

11

divide(Integerl, Integer2, "Newluteger) 2@ GB **
Here NewInteger is unified with the division result. If Integer2 is bound to 0, failure or exception

CRCC RS
Z:=X/Y <=» divide(X,Y.Z).
modulol Integerl, Integer2, "Newlnteper) :: GIR

Here NewInteger 1= unified with the rest of the enclidian division resnlt. If Integer? i Lound Lo 0.

1:d'-'lijl.lr"' £ar f"xl'L‘F'll..lrlll OIS,
Z:=Xmod Y <=> podule(X,Y,Z).
minus{Integer, " NewInboger) o GB ****
NewInteger i= uailied with Integer wilh sign exchanged
'] Overflow is not detected on PDSS. On Mubu-PS] V2, this predicate is not supported.
shift left{Integer. Shift Widil., "MWewlntoger) :: GB
WewInteger i= unified with the result of logic bitwise shift. ShiftWidth should be in the range [0.31] or
failure fexception will ocrur

2 =X £« ¥ <= shift_left(X,Y,2).

shift _right(Integer, SiithftWidth. "NewlInteger) :: GB
Same stutl, for a right logic shift.

2 := X > Y <=> shift_right(X ¥ 2}

and{Integerl. Integer2, "Newluteger) ;1 GB
WewInteger is unified with the resoit of a bitwise logic and operation.

Z:=X /Y <=» and(X,v,Z).
or{Integerl, Integer2, "Newlnteger) @ GB
T'his time, it 15 a bitwise or..
2= XN Y «=> ar(X,Y,Z).

exclusive_or{Integerl, Integer2, “Newlnteger) :: GB
cand now an exelusive or.

Z :=Xxer Y <«=> exclusive_or(X,Y,Z).

complement(Integer, " Newlnteger) : GB
This unifies NewInteger with the 2's compliement of Integer. This is equivalent to exclusive_or (-1,
Integer, Newlnteger).

¥ = %X} <=> complement(X,Y).

2.6.4 Vector predicates

If amw of the input variables of the following predicates is unbound al call time, suspension occurs, as usual.
Three of the following predicates are creating or duplicating vectors. The memory necessary o perform this
oprration s horrowed from the heap area. If the later is exhausted, an exception aecurs,

new_vector(” Vector, Size) = B
This predicate unifies Vector with a freshly allocated vector, filled with zeros. The size of this vector is
given by the input parameter Size, which should be positive or null. Otherwise, exception will oeeur.

vector element{ Vector., Position, "Element) = G
This predicate is used to extract one element from a vector. Position indicates the rank of this element,
starting from U. Element is unified with the result of extraction. If Positien is not a relevant integer or
if Vector does not hold & vectar, failure occurs,

12

vector-element (Vector, Position, "Element. "NewVector) :: B
This i the same pronve, with in addition a copy of Lhe original vertor. This is useful to avod multiple
references which could nupair garbage collector vperations. This time, as this is a body predicate, if
Fosition is not o relevant nieger {or if Yector lias a funny structure) exception ceeurs instead of
fanlire.

set_vector_element{ Veotor, Position. " OldElem. NewElen, "NewVect) :: B
This predieate sn addition 1o the function of the previous one. allows the modification of an element al
the specified place.

2.6.5 Atom/String predicates

Az wsual o an pt variable is unbonud while calling one of the following predicates, suspension occurs.
Also b the operation domain of owe of the following primitive is violated, exception/failure oceurs. depending
on wheiher the primitive appears i bady or guard, In particalar, care should be taken to feed string-type

oligerts o scring-conesr e predicates

new_string(”String. Size. FlementSize) :: B
This predicate unfies String with a freshly created string. The string i filled with zero. Size specifies
the length of the string. and ElementSize sperifies Low many bits contains each character, from 1 to 32

string_element (String, Position. “Element) :: G
This predicate b= useful 1o cxtract one chararter from s siring. Pesitien of Lhe first clinracter is ().
Flement is unified with the resali.

string-clement{String. Position, * Element. "NewString) :: B
This predicate works the same, but it also makes a copy of the input string. The point 15 again to lighten
the task of the garbape collector.

set_string_clement String. Position. NewEloment. "MewStrng) :: D
Tius predicate is used to pateh a single character in a string. The result of the substitution is unified
with NexString.
(11 One should be careful to give as NewElement a character with the relevant number of significant, buts
Bils in excess are masked snd discarded

substring(String. Position. Length, “SubString, "NewString) :: B e
Here, what we get i s substring extracted from the ariginal siring. The original string is copied, inta
NewStrang. by the way. One has to be careful to suppply meaningful start position and length, The
result i unified with SubString

set_substring(String. Position. SubString. "NewString) :: B *%==
This time. wi- can replace a substring, like we could replace a single character. If SubString has not
the sanme bitwise fyvpe as String. exception oecurs. The result of substilution is unified with NewString.
Fxreption also ocours if the lenglh of Substring + Position excends length of String.

append_string(Stringl. String2. "MewString) ;: B ***
This predicate umfies with NewString the result of concatenating String?2 afier Stringi. 'I'hese input
strings should be of the sane bitwise type. Otherwise, exception occurs.

make._atom(String. “Atom) :; B ***
This predicate transfories a string of 8-bits characters into au atom, whose name matches the string
contents, This aton is unified with Atem.

('] On Multi-PSI V2, this ix not a built-in predicate but a function of aperating system.

atom_name(Atom, "String) 2 B *¥**
This predicate conversely unifics String with a 8 bits string which contains the name of the atom

('] On Multi-PS! V2, this is not a built-in predicate but a system predicate.

13

atomenummberi Atom, Number) 2 B
Basically, w the systemn, an identification numiber is wsociated with eacly atom. This predicate unifies
Number with the il corresponding to the mput ftom,

266 Second order function

apply (ModuleName, PredicateName, Args) :: B **
This predeare i used o mvose a predicate whose nane 5 known after 2ome computation. [[any
of ModuleName. PredicateName or Args are unbound at call thoe, suspension ocours. I module or
predicate are nol atoms, or i Args is uol a vector. exception oecurs. Otherwise, the predicate with
name Fredicatelame (witlhin the moduls identified by ModuleName is called, with arguments speeified

by Azgs.

2.6.7 Stream support

merge{In, " Out) = B
Fhis primitive can be used to merge one or more wpud skresns (In) and unily the result with Qut. A
vector of streams. 1f given as one of the input. 35 divided into its steeam components. The fillow ing i= o
partial definition of this predicate -

marge([], 0} :- true | 0O=(].

merge{[A1T], O) :- true | O=[alNO0], merge(I, NOJ.
merge{{}, G} :- true | O=[].

merge({{I}, 0} :- true | merge(I, 0.

merge({T%1,T2}F, 0) :- true | mergel{Ii, IZ, 0O).
merge({I1,I2,13}, 0) :- true | merge(I:, IZ, I3, Q).
merge([], I2, 0) - true | merge(IZ, 0OJ.

merge(I1l, [1, 0) :- true | merge(I1, 0)

merge([A{I1Y, 12, O) :- true | O=[4|¥NO], merge(I1, I2, NO).
merge(Il, [AlI2], €} :- true | O=(AINO], merge(I1, I2, WO}.
merge({}, I2, 0) :- true | merge(IZ, 0).

merge(T1, {}, 0) - true | marge(I1, OJ.

merge({I13,14}, T2, 0) :- true | merge (I3, I4, I2, 0).
merge{{I3, 14,15}, I2, O0) :- true | merge(I3, 14, IS, I2, O}.

merge_in{Inl. In2, “In) :: B
This prinutive unifies In with the veclor of streams {In1.In2}. This s ooly useful on an older version of
the compiler which did not support statements of the form In={In1 In2}.

2.6.8 Special I/O functions
read_console(" Integer) 11 G
This predicate unifies Integer with a numnber read from the console window.

['] The language processor is halted during this operation. This predicate is used mainly for debugging

[ERY o RAR]

display _console{X) 1 G
This predicate displays the current value of X on the console windaw, even if this variable is unbound.

put-console{X) = G
[f X 15 an inleger, this primitive puts the equivalent ASCL churacter on the console window, I X is an

14

Sebits character strmg, the string s put on the screen. 16X is undefined . or has a funny tyvpe. the predicate

doss nod lung. Ne dine feed or carriage return is added.

2.6.9 Other predicates

I an input variable is unbound when calling one of the following predicates. suspension oceurs,

vaise{ Tag, Type, Info) ;: B
Thas predicate causes Tag o be logically sod-ed with the tag of all ancestor Sho-ens. starting from the
current Slo-en until the wop, recursively. This provess slops as soon as [he result of the and operation is
not zero. In this cage. a mwssage is inserted in the report stream of the current Sho-en. This MICESAEE 15
unilied with @ raised[Type Info NewCode, Newhrgv). If Tag is nol strictly positive, exeeption oceurs. If
Type i= not o ground-tern, saspension ocenurs, :

consine_resonree| Red) ;0 D
Thi= predicate enulates the consumption of compuiing ressources, as if due o actual reduciions. Ked

s the yumber which s added 1o the count of perforied teductions. If this couni exceeds the allowed

mExitn, the ressource_low condition oreurs, If Red is nol an Iteger, exception orours.

Bosh (3. Width. ~Value) :: B **
This predicate unifics value with a hash code computed according (o X and Width The result is i

[(LWidth-1] If Width is not an integer, exceplion cecurs.
(1] i X st ap iteger but a vector, the fiest clemwent of the veetor widd the veetar length are used for
hiash code caloulation

current_processor(” ProcessorNumber, "X, "Y) : B
This predicate unifies ProcessorBumber with the processor number of the processor executing this pred-
wale. X and ¥ are unitied with the coordinates of this processor, depending on the topology of the
connection network. On PSS, which emudates execution by a simgle processor, ProcessorNumber js

wiified arbitrarily with 0, and ¥ and ¥ are unified with 1.

2.7 Macros
For ease of writing, several categories of macros have been introduced i KLI.

Macros for the description of constants.

o Macros for arithmete comparison,

* Macros for conditional branch,

® Macros for the declaration of implicit arguments.

In the current versjon, users cannat define their own maceos,

2.7.1 Constant description macros

Lhe following mweros generate constant numbers.

Bases"character-string”
This macro generates an integer number. in the inleger Base specified hefore the sharp sign. The base
must be from 2 to 36. Figures ean be taken m [0.9] and [a/A 7/Z]. as most commonly.
string#"character-string”
Tlus wacro can be used to generate a string of default type. Within PDSS, default type is ASCI stored
as 8 hits characlers. On Muiti-PSI V2, characters are taken within the JIS Kanji set, stored as 2 bytes

characiers,

ascii#'character-string™
Fhils b wiseful to assert that the generated string = coded in ASCIL within oue byte characters.

#"character"
This maceo genesaies a character, using the defanlt representation of the sysiem In this agpect, 1t 18
stntlar to the string macre mbroduesd above.

c#'character”
This macre asserts generation of an ASCIT character, stored as a single bhyte.

ascii#character—atom
Tleis has the same effect. but the character is emered as an atom, not between deuble quotes, (ex
ascii#'[*].

wayl] f

M= macre wenerates o line feed in ASCH stored as one L

keyier
This v co generates @ carciage eeturn. in ASCH stored as one hyte.

2.7.2 Unification macros

left-hand = riEht-ha.nd.
This nmaas o performs unfieation of left and right hasds 1 can be used in body and guard.

laft-hand .~ right-hand
Fhos i squivalent 1o not_unificd{1eft~hand, right-hand). This marro can be used only in guard part
of a clause.

left-hand := right-hand
This miaera unifies the left hand with the right hand. but if arithietic macros feature in the right. liand,
evaluation takes plave This macro. which can be used in guard or body, is siuilar to the “is” operator

of Prolog.

2.7.3 Arithmetic comparison macros

Avithrretae comparison operators can be used in guard, in place of built-in predicates. Dut arithmetic macros
i bothe ands of the comparisen are naot evaluated when huili-in predicates are yzed,

You ran ase the following comparison operators |

| Pnnnr..»_ :jpr:ralc-r] Expanded pat-im

| X <Y | bessthan{X.Y)

| 700 X >»Y | less_than|Y X}

I =< ¥ | nolless_thani ¥y . X)

| =Y | not_less_than{XY)
==Y | equallX.Y)

E == ¥ | not_equal{ X Y)

2.7.4 Arithmetic operation macros

Arithmetic macros are using +,-,=,/. Expansion is done according to the following rules :
e The right hand of the := macro is evaluated, and the result is unified with the left hand (as for the “is”
aperator of Prolog).

» Bolh hands of comparison macroe are evaluated and compared to each other.

e lu the case of implicit argument macro <=, result of evaluation of the right hand side is unified with the
argumend specified by left hand side,

16

& “(expression) is used 1o explicitely require rxpansion of the expression.
ex; pL (Xaye1)) bevomnes add (X, ¥, 40, add (A L1,8) . p(B).
Macros embedding constants are svaluated during compilation.

The tollowing table sunumarize which operators can be used. The higher is the prionty, the lower 15 the
precedence. 1 s always possible o make aowrm by using {).

Priority | Operator I Substituted pattern | Generated buili-in predicate

. i+ 7 7 add{ X Y .20
| a0 -7 z subtract{X.Y .Z)
| - X L P subtract(0.X.2)
SRV | Z orl X%, F)
b SRR Z and(XY .Z)
X xor Y i exclusive_or| XY, 4)
- ey z nJuJLipJ;r{.‘--;..‘r,E]
400 P P 4 divide (X Y .7}
oo Y Z shift _lefti X ¥ Z)
Ao Y Z shoaft right{ XY 7}
0 E med ¥ i mdnln X.Y,4)
teru-like | V(K) z compiement| X.2)

Backquoting can be nsed toanhibit expansion

e ""(term)

Expansion 1z totally diabled.

s "{term)

Ol expansion of the topmost nacros i inhibited, for a pested term.

2.7.5 Conditional branich macros

The foilowing is a notation which allows conditional execution within a single clause, as in DEC10 Prolog :

foolX,¥) = true |
{ X=:=0 -» p(¥,Z};
X >0 -> ql¥,2);
ohherwise;
true -> r(Y.Z)),
s(X,Z).

If the goal on the left hand sile of => 12 a condition and if this condition is satisfied, then the goal on the right
hand side 12 executed. The preprovessor generates the following KL1 clauses, from the above example :

fool{X,¥) - true |
‘$foo/2 0 (X, Y,.2),
alXx,zZ).

i8foo/2/00 (X, Y,2) - X=:=0 | pi¥Y,Z).
1$foo/2/0° (X, Y,2) - X > 0 | qlY,Z}.
othervise.

r$foo/2/0 (X,¥,2) = true | r{Y,2).

‘Ihe predicate *$foo/2/0' has heen generated by the preprocessor. More generally, predicates starting with a
dudlar sign are generated by the preprocessor. The user should not use the same convention!

['] Only built-in predicates may be included in a conditional branch,

17

['] The Frolag-based compiler does not support nested conditions, whereas the KL compiler does.

2.7.6 Macros for implicit argument passing

It is very unconvenlent to rewrite arguments which appear recurrently in the head of several clauses. To
lighten this tedium, implicit argument support{through macros) has been provided.

Twa kinds of parameter declarations are possible, depending on the scope which is desired. The first one is
global, i.e applies to several modiles, whereas the second is local to a single module -

i— implicit arg-name : type { , arg-name : type , * * * }.

t= local_implicit arg name : type { , arg-name : type , =+ + + }.

llere, arg-name {atom) is the name of the implicit argument. Type can be : shared, stream, oldnew or
string.

The global mmplicit declaration can appear only once in a2 medule, right after the public declaration. Loeal
declarations can appear several Lmes in a module. Each time it appears, it invalidates the previous declaration.
To suppress the usage of all implicit arguments, ase the follawing

i~ local _aimplicit.
The name space of loeal and global srguments are the same, so that different names have to be used.
Using ~=> in place of : -, means that a predicate uses implicit arguiments. They are inserted in the predicate
arpuinenls list, before arguments explicitely given by the user. Exact order ie as follows
L. Global arguments
2. Lowal arguments

3. explicit arguments (order 15 not changed)

[ex]
- module tast.
= pablic XXX,
1= implicit a:oldnew, b:shared.

plX) --> true | q(X), r.
W Here, a and b are added to the argument list.

= local implicit d:oldnew.
Wh At this peint a,b and d are added.

:= local_implicit d:shared, e:stream.
Wi From this point, a,b.d and e are added.
%4 The type af d has changed, from oldnew to shared.

t— local_implicit.
% From this point, only the global arge. a and b will be added.

18

T acress a global argurnent in a clause. & moust be put before the argument. 15 the argument i@ a strng or

A VL0 e
Barg-name(position)
b dpilate or aceess one of its elements. The first element has pesition | The [ollowing 2 a presentation of

eaih Tv e, Wity somie l‘.".\f?li'l'l[]ll"ﬁ.

shawed argnanent typoe

oo upedare ol o sliaeed argument securs within a given clause. all goals of the clause share the same instance
of the argumeat, This = illestrated in example af below 17 Lhe value has 1o be updated in the clause, use the

follwing svnrax
farg-name <= new-value

The pew value s effective after update. That means that Lhe sespeetive position of npdate statement and goals
e elanse detertiines whetler the old argument value or the wew argninent value is used. This is illustrated

i -'xs1||||1|-':-~ ".t_l 1o el).

lex] definmition: :- implicit counter:shared.

al before expansien: p --»> true | g, r.
after expansion: piCnt) = true | giCnt), r(Cnt).

b} before: p --» true | kcounter <= &counter + 1, g.
after: pilnt) :- true | add(Cnt,1,Cnti), gl{Cnti).

c) before: p --> true | &counter <= Ecounter+l, kcounter <= kcounter®2, 4.
after: piCmt) - true | add(Cnt,1,Cnt1), multiply(Cnti,2,Cnt2), qflnt2).

d} before: p --> true | &counter <= &counter(2}, q.
after: plCnt) :- true | set_vector_slement(Cnt,?, Elem,Elem,_), g(Elem).

stroam argument type

This tvpe s prowided to ease cutpul stream management. ¥ no update oecurs within the clause. the streams
carning feom goals are merged into the argument stream. This is illustrated below, in example a). To update
Lhae stream 1o imsert eletnents, the following syntax should be used

karg-name <<= [element 1, element 2, - J

This i= illnstrated below, in example b). Note that the relative position of the update within the clause
conditions the tnaertion order. although this may be of little importance for streams.

[ex] definitien: :- implicit windew:stream.

a) before expansion: p --> true | g, r.
after expansion: p{Win) :- true | merge in{Ini,In2,¥in), g{lIn1), r{In2).

b) before: p --» true | dwindow <<= [putb(“gazonk")], r.
after: p{Win) := true { Win=[putb{"gazonk")|Wini], r{Wini).

oldnew argument type

This type calls after a pair of arguments, in a similar fashion to Prolog’s DOG, except that arguments are not
restricted to difference hists. As an i‘xm’nplv, when UEINE A Verbor as an updala.hle Lable, Lo imp:r_we efficien Cy,

one often restricts the number of references ta 1. To this end, the olduew argument type is useful. Also, if you

19

use this type of arguiment for a difference Gist, there is a notation to concatenate elements to the list, like for

the stream tvpe
karg-name <<= [element 1, element 2, -]
If the argament s as nteger, use the bllowing for update
barg-name <= new value
Il argurnwent is & vector. use the following -

[element update(i}]
karg-name(position) <= new value

[element reference)
karg-name{position) %Y cannot also appear on the left side of <=

[element update(2)]
darg-pame{positien} <<= [element 1, element 2,]

update L update(? ean be used i body part only, as they use the built-in predicate set ovector element /5
Reference can appear in guard, where it appeals 1o vectorclement /3, or in body, where it uses vector-element /5.
The relatsseshep between homonymeus clements i= similar to Lhal of DOG {from left (o right. top to bottom).
Ses exanple a). b and £ below,

In {1}, replacenient s done at the specified position. as illusteated in examples ¢) and d). In (2], the right

siie lish is inserted in the ditterence list, New tail is set to the location specificd by position. See example e),

Phere 15 alzo a way to refer the current old value of some argument
karg-name {old)
This iz useful in particular to access Lhe value of 2 counter, This is illust rated in example g) below.

[ex] definition: - implicit mutter:oldnew.

a) before expansion: p ——> true | q, r.
after expansiom: p(0ld,New) :- true | qi0ld,Mid}, r{Mid New).

B) befere: p --» true | Emutter <<= [nahal, r.
after: pl(0ld,New) :- true | Old=(naha|Mid], r(Mid,New).

c) before: p --> true | kmutter(3) <= maha, T.
after: p(0ld,New) :- true | set_vector_ slement(0ld,3,_ ,naha,Mid), r{Mid,New).

d} before: p --» true | kmutter({1} <- Emutter(3), r.
after: pl0ld,New) :- true |
get_vector_element(0ld,3,Elem, Elen Midi),
set_vector_elemsnt(Midl,1,_,Elem,Mid2}, r(Mid2,New).

#) before: p ==» true | #mutter(2) <<= [naha,uhi,she], r.
after: pl(0ld, New) :- true |
set_vector_element{01d,2, [naha,uhi,ehas|Cdr],Cdr Hid),
r{Mid,New).

1) before: p --> troe | Emutter <= Emutter+i, r.
after: p(0ld,New) :- true | add(01d,1,Mid), r{Mid, New).

B} hefore: p{E} -> tree | X = [amutter{old)1XX], &mutter <= Emutter+i, BLEX).
after: plOld Kew X - true | 2=[Did!x1), add(0ld,1,Mid), p{Mid,New, XX}

SIriLE ArguInent type

Phies works brsteally as the proviows sope vaerpt that predicates string_element /3 and set_string _element /4
are wsedd instend of veetor-based predicates

Automatic generation of terminating processes

When o wser-defined goal b= called o rthe hody, the following nmfications are antomatically perforned.
depending an the tvpe of declarcd argunients
shared LI EL R '\-"Tl'.”'-H ome
streatn Wvpe o Unification with rhe st [J.
obdiew tape Ol aned Sew are unified

siring tepe o O and New are gnified.

Tuplicit arguments expansion conteol

W yers call o predicate with oo dmplicis argunents fom s predicate with iuplicit arguments, use donble
lspawes « {4 F.lr-'-r|'i-: atel F }rin order to suppress argurnent addition. See example bolow -

i~ module test,

= public gosO0.

moamplicit input : stream,
cutput : oldnew,
counter : shared.

go = true |
merge {(FILEout, FILEin),
file:create(FILEin, “del.del™, 1),
Tile:create{Answer, "/tmp/mivadel”, w)
Loop(FILEout, Answer,[J, 100 ,).

fl

logp(_} =-> Ecounter =< 0 | true.
otherwise.
'.Innp{.ﬁ.:l -» true |
Bcounter <= kcounter - 1,
kinput <<= [getec(X}],
{{ check(X, Eoutput, kcounter) }},
loop(Al.

check(ascii#a, On,0t, Counter) :- true | Oh~[putt(Counter),nl|Ot].
otherwvise.

check({_, Oh,0%t, _) :- true | Oh=0t.

In the previous example. three global implicit argnments are declared. with types stream, oldnew and shared.
Predicates using --> instead of :- are regarded as having three implieit arguments and are converied at
preprocessing time. As an example, loop predicate is expanded as fallows -

loop(In, Oh,0t, Cat, 4} :=- Cut =< O | In=[], Oh=D%t.

octhervise.

21

loop(In, Oh,0t, Cnt, &) :— true |
€ntl := Cat-1, In={gete(X}{Ini],
check (X, Oh,Om, Cnt1),
loop(ini, Om,0t, Cnzi, AD).

Note that the check /3 predicate, wsed between braces. has ne implicit argument, and is expanded as a predicate
of arity 4. In order 1o use some of puphat arguments when calling this predicate. & has to he put hefore the
names of the implicit arguments which are explicttely specified 10 the call

('] Can implieit arguments take any value, declared types notwithstanding. As a matter of fact, the macra
proceszor anly expands_ If the programmer is not careful enough, errors may be difficult to detect.

2.7.7 Macro library
Macras in systemn’s lbrary ro b used should be declared at the top of the module. Declaration Eoes as
follows
o= with_macro macro-definition-name.

where macro=definition-name is an atom.

The macro defimtion files are Jocated in a systemn dependant divectory. I this file, mmeros are defined as

[iellemas

frleio#narmal =3 0.
fileio#end_of _file =>
fileio#read_error =» 2
fileio#write error => 3.

[u the current version. the lefi part from the sharp sizn muet be an atom,

2

3 Micro PIMOS

Micres PIMOYS 05 s very simiple operating system which provides vacious secviees [or KL1 users on PSS, It
1= basicathy designed for single user, single 1ask operations. Services supported by Micro PIMOS {ollow
o Commmeaied Interpreter.
o 10 Vunetsons {windows, files, ete)
& odde Management.
& Dizplay of cxeeption Information.
O Aero PIMOS all consmands given to the conunand interpreter are executed within an unit called “task’
Flie task s opleniensed using Sho-en functions deseribed a0 section 2.2

U1 Bivs 235500 i exception tag are resorved for Micrg PIMOS, When using tunctions of Micro PIMOS, user
st ol anedify bits 2030 in tag of his Shieen. Beside commands, a way 1o use Micro PIMOS functions is to
issie regiests 1o Miero PIMOS through the user's goal which superrviges the Sho-en.

Al 04 bus) 47 (4 hits) 23 (4 Dils) 0

Lsnguage (RLL | Micre PIMOS | avallable o Lhe user

Figure 4. Shocen exceplion lag

3.1 Command interpreter

Whet Micro PIMOS srarts. o command interpreter is created to provide user with an interface 1o PDSS

When the command interpreter is invoked, it ssues a prompt sud waits for the next command. Default
prompt is | 7= aor [debugl ?- when debugging mode is on.

Ihe command imterpreter starts by executing the file "~/ pdssre® (iF 1t exists) as a command file. User can
selup o convendent working envirorment via this file. About command file, refer to command take /1.

3.1.1 Command input format

It 1 passsible 1o write one or more eomemands in o command line or command file. Depending em the delimiter,
comimands are execuled as follows

& conunn §7,)
Commands both before and after the delimiter are execuled in parallel.

o senneolon |7)
Waits Tor the sernupation of vommands before the delimiter. and then execute rerAning conunands.
(sequential execution)

o vertical line [="}
After executing the conwuands hefore the delimiter. displays the value of varisbles after this sign. The
delimiter hetwern variables 15 a comma, and all stands for all variables.

Lists of commands may be embedded m) o form nested commands.

[ex] | ?- comp("bench”);(stat{banch:primes(1,300,P})|P), save(bench).
% After compiling "bench.k11", executes the goal ‘bench:primes’
% and saves the code in parallel. During the executicn of the
% goal, reporta statistical information and indicates
% the value of variable P’ after tarmination.

23

3.1.2 Commands

Ilere are the connmiands supported by the command interpreter, in its corrent version. Some of the commands
expect files to have an extension. Il no extension is found, operation is done with the defanlt extension, following
the specified filename. Strivgs or atoms can be wsed to specily filenames.

Built-in predicates

The command interpreter can execute the huilt in predicales which can be described in the body part as a
corunands. Deseription using := and arithmetic macros iz alao possilile,

Basic commanmls

ModuleName: Goal
Exeentes Goal in the modile ModuleName . Muximum number of reducrions is set according to the value
of eovironment variable reduction. If the number of perforned reductions crosses the limit, the user
will e asked whether Lo continue or to abort,

help
Displaya the list of available help commands.

help(Type)
Duspiays the list of available commands specified by Type as follows -
I builtin, 2: basic, 3¢ code, 40 dir, 5 debug, G env, all.

EE‘
luvokes GO over the hreap area,

gefall)
Invokes (30 for both heap and code areas.

take(FileMN ame |
Executes the command file epecified by FileName. ‘Lhere is ne restriction as to the iype of command
which can be used in such a file.

%oor /4 4/ are available to mark comments, as in KLI program.
cputime
Display the CPU tinw since PDSS started. Unit is millisecond.
cputime(" Time)
Unifies the CPI! time since PDSS started with the variable Tima. The result is an integer and unit is

milliseeond.

apply(CommandName, ArgsList)
Executes CommandName upon each element specified in Azglist. ModuleName:PredicateName is also
possible for CommandName.

stat
Displays the current memory status,

stat{ Commands)
Displays the execution time (CPU time) and reduction count of Commands.

window (10Stream)
Opens a new window. About commands which deal with 1/C) streams, refer to the section 3.2. Window
name is set antouatically.

add-op{Precedence, Type, Operator)
Add an operator to the window of cornmand interpreter.

remove_op({ Precedence, Type, Operator)
Deletes an operator from the window of command interpreter.

24

operator| Operator)
Prisplay s the definition of the operator Dperater in the window of command interpreter.

operator{ OperatorName, " Definition)
Uinfies the detinition of operator Dperataor. (forae e | Precedence, Type]) in the window of command
imerprerer with Definition.

hialt
lermunates PS5 ALl windows are closed antomnatically,

Code compmnds

conpd File ™ ame)
Compules the WL sowree file (with extension . kl11) FileName and loads the result into code area. Trace
pnside = oolf for the gewly foaded nodule.

cornp{ FileName, OntFileName)
Compibers the KL souree file {with cxtension (k11) FileName and outputs the result into the file (with
extension Lasm] CutFileName

compile FileNane)
Compubes the KLL source fle {with extension . k11) FileName and outputs the result into file (with
extension . asm) FileName. L'hen. loads ot into code area and saves into file (with extension .saw)
FileName ¢an also hold a list of Gles

load{File™Name)
Leads the previously saved fle FileName {with extension .sav) inio code arca. IF such a file does not
exist, pssembler file (extension is . asm) is loaded into code area. Trace mode of the newly loaded module
i-‘.'- |.|||T

dlaad{FileNarme:)
Ar above. bat trace mode of the newly loaded module is on.

ﬂ:—l'l'l-!‘f M'III.IIII.PNEIIIII\}
Saves The executable code moduls HeduleName to the directory sprecified by environment variable savedir.
By defanlt, the directory 12 =/ PDSSsave. It can be changed with the “chosavedir” command. ModuleName
is also used o determine file name. Extension is . sav.

save] ModuleMNarme:, FileMName)
Saves Lhe executable code ModuleaName (o the file FilaName (with extension .BAY).

save_all
maves all loaded modules (except the ones which have already been saved by the save({ModuleName)
command p into Lhe dirertory specified by environment variable savedir,

vh_savedir{Directory)
Changes the default directory for auto_load and auto_save, to the directory specified by Directory. The
existence of directory is checked

ﬁhtillg
Dnsplays information about loaded miodules.

listing("Modules)
Cenerates a list of all loaded module names and unifies it with Modules.

public{ ModuleName)
[hsplays a calalog of public predicates within the module specified by ModuleName,

public{ ModuleName, *Public)
Creates a list of information about predicates declared as public, and unifies it with Public. Each element
of the list is a 2 elements vector of form {predicate name atom, arity}.

il

Mhrectory conumands

ed{Directory)

Changes current directory ta the directory specified by Directory
pwid

Pnsplays the pathname of current directory,
pwd{ " World)

Pnifies the pathname of corrent directory with Werld,
ls{ WildCard |

Displays the pathname of file WildCard.
ls(WildCard. " Files)

Ureates a list with the pathnames corresponding to WildCard and unifies it with Files.
ronf WildCard) .

Deletes the file corresponding to WildCard from the directory.

Debug commands

trace{ ModuleName)
Sets the trace mode on fur the code of module NoduleName. The debug mode is set to on.

notrace| ModuleNam:)
Sets the trace mode off for the code of module Modnl eNams .

spy{ModuleName, PredicateMName, Arity)
Enables spying of the predicate PredicateName/Arity in the module ModuleName.

nospy (ModuleName, PredicateName, Arity)
Disables spying of the predicate PredicateName/Arity in the module ModuleName.

spying(ModualeName)
Dhsplays the list of the predicates currently spied in the module ModuleNams.

spyingi ModuleName, “Spying)
Creates alist of the predicates currently spied in the imodule ModuleName, and then unifies it with Spying.
Fach element of the list iz a 2 elements vector formed as {predicale-pame-atom, arity}.

debug
Sets debup mode on.

nodebug
Sety debug mode off,

backtrace
Sets display mode on for backtrace information (deadlock information).

nobacktrace
Sets display mode off for backtrace wformation (deadlock information).

varchk({FileName. Made, Form)
Cheeks variables in the KL1 source file (with extension .k11) specified by FileName in the mode Mode.
The result is displayed on the window in the format Form. FileName can also be alist of filss. The
definition of Mede and Form follows :

Mode: o orone oo Dhsplays variables which appear once in a clause.
mormrt - Displays variahles whise MREB is set,
aorall e [hsplays variables of both one and mrb modes.
Form:: & or short - Cutputs claunses as a single line.

1orlong - Outputs clavses using line feeds and indentation,

26

varchk{ FileNawe. Mode)
Cliecks varmbles i mode Hode and displays in leng format,

varchk{ FileName)
lecks variables ur mode one and displays in leng format.

xreefl FileMame. Bode)
Perforins o cross reference cheek upon the KL source file FileName {with extension *.k11") and displays
reall on Ui windionw . FileName can also be a st of filenames. In this case, references across modules
are also checked. Hode can be taken amongst the following values

¢ o check Checks nnl_'.' prmllcalc calls.

1 or 115t e Dgtpuls the reference list (table of definition /reference of predicates}),
8 or systam v Datputs the predicates referring to PDSS modules.

boor builtin - Outputs predicates refeering to built-in predicates.

aorall oo Uuntputs all of above predicates

List <o Dutputs a reference hist for apecified clements

Where List can include -
* Module name.

* Built-in predicates.

¥ User-defined predicates.

short o Checks with no display of predicate information,
ghort (Moda) - Chiecks according to Mede with no display of predicate information.
arcf{ FileMNanmie)

Cherks the cross-references in check mode.
xref{ FileName, Mode, OutFile)

(Checks the cross-references and outputs the hist to OutFila. Any mode s available except check.

profile{ Module Name, Mode)
Displavs how many times the predicabes which are defined in the module ModuleName were called and
suspended. ModuleName can also be a list of modules, Mode can be chosen as follows -

cor ¢call - Sorts according to call count and displays.
s or susp - Sorls according to suspension count and displays.
other atoms - Displayvs following the order of appearance within the code,

profilef Module Name)
Lxecuies profile command m call mode.

reset-profiled Module Name)
Resels counts of calls and suspensions for predicates defined in ModuleName. ModuleKame can also be a
st of modules

l v roH e it oA d&

These rommands can be used to change values of environment variables for the command interpreter. The
following environment variables are used :

7

mame (atom) |

meaning,

world Pathname string of current directory,
trace Mode of tracer {on or of £). Initial value is off.
| backtrace Diaplay made of backirace {on or aff) Initial value in on.
modules List of module names in which commands are searched.
reduction Upper limit of the number of reductions assigned when the task was created. The basic allocation I
unit 15 10000 reductions. (0 < number <0 100000, [nitial value i3 16000}
i ucounter Coonmter weed 1o create the names of work files or waork windows,
!‘ savedir String with the pathaame of directory in which save /1 and save_all will produce their effects.
_i Imitial valoe 15 =/, PD&Ssave
loaddir hist of pathnames of directonies to examine when anto-loading code.
Initial valoe 1= [/ . FU88save, pathnage of library directery, ...J
- Note: There are more than two library directories, which may differ from one machine to ancther.
_ﬂ-ﬂ_f-ﬂ_lﬂad Flag for autoloading []II;I ar nu.! -l.;'l.i-L;lTl]'l.ll.' 1= yes, o
plength Maximum length of structure which can displayed in the window of Lhe command interprater.
: I Imitial valoe 1= 10,
! pdepth | Maximum depth of structure ;ri\ii:h can be displayed 1::[5: window of the command interpreter.
Ipitial value 15 5.
pvar Insplavs modes of varables in the window of command interpreter. The value is nu or na.
im: works as 1,2 and na works as A B.C,) Initial value is nu

setenvi Name, Value)
Sets the environment variable ¥ame afier Yalue, Environment variable is set after thal Name becomes an

alom and Value becomes a ground terim

peleny [Name, " Value)
[Tnifies the value of environment variable Name with Yalue.

printenv{ Name)}
Dhsplays the value of environment vaniable Name,

printenv

Displavs the values of all environment variables of the command inberpreter,

reseleny

ftializes all envircmnent variahles of the command interpreter.

3.2 I/0 functions

Micro PIMOS offers two types of 1/0 services . window and file I/ services. To use them, Micre PIMOS
predicates are provided, which give access to command streams. How commands can be mserted in these
streams s now described, [1 cleses a command stream and, by Lhe way, the associated [/ device. Commands

are ingerted in command stream by a merger

3.2.1 Command stream attachment

Windows

window:create(Streamw, WindowName, “Status)
Creates a window with name WindowName (8 bits string). Compand siream s upified with Stream.
Statuz 15 unified with the following terms ;

success coees Window suecessfully ereated.
error{cannct_create_window) - Failure : window cannot be opened,
arror (bad_window_name_type) - Faillure : ¥indowName is not an & bits string.

28

1] When the window 1= ereated. it s not in visible state, Use commmand shew to make it appiear.

windlow iereate] Stream. WindowName)
Cpeares aowindow with pane WindowName (8 bits string) Conunand stream is unified with Stream, I7

Phes winidow eammat b ereated. $he whole 1ask 13 aliorted

{1 When the window is ereated, i1 8 not in visible state. Use command show 10 make it apprear.
.-i Vs

filoeveate| Stream. FileName. Mode, *Statos)
Chpens lile with name FileWame (~ bots string) with nuowde Mode Mode is an atom chosen among @ r for
treacl @ Tor write and a for appewd. LThe eominand strean of 1his il s unificd with Streas. Status is

inafiecd with ome of the following fernes -

success s Dpen suecess{ul,

erroricannst ocpen_file! - aunot open Ll Tile
error(bad_file_name_type} - - FileName i= nol an 8 Bits siring
wrror (bad_open_mode_type) - Made 1= nol aton

error (bad_ocpen_mede) - Made i~ an sionn other than rw or a.

filezcreatel Strean. FileName, Mode)
Oprns a file as the previous coimand . Stream. FileName and Mode have sune meanings. but if apell

o= nent sweeeed, the whaole task 15 ahorted

3.2.2 Command list

Commands allowed in streann are now listed. These conunands are rommon to windew and file, wnless

etlierwise specilied

Inpur cormmands

gete{ Char)
Reads an ascii character from 170 device. Value 35 between 0 and 235, Char is anitied with the result of
inpuT. |5an end of file, Char = wmified with the atom end_of _file.

getl " String)
Heads one line from 1/0 device. This line is converted inte an % bits string. unified with String. 1'pon
endd of file. String s unified with the atom end_of_file

gothi " Buffer, Size)
The numiber of character Size s read from 1/O and converted into an 8 bits string. which is unified with
Butfer. Il a rarriage return or an end of file s encountered. only characters read hefore are ronsidered
as ingut . Upon end of file, Butfer 15 unified with the atom end_of _file.

prtt(Term)
A string comtaining one term s read. (A term ends with .+ OUR or . + space) These characters are
analyzed and itransformed o s term, which is unified with Tera. If an error oceurs during analysis, if
mput deviee is a window, error is output on this window and term input is resumed . [f injrul deviee 1s a
file. error s displayed on the command interpreter window, then next term is read from the file. At end
of file, term 15 unified with end_sf_file.

goeilt{ " Term, "NumberOfVariables)
This command i very similar to the previous one, but variables in the term are analyzed then output as
EVAR(N,VK). N is the variahle number (0 < N < NumberOfVariables) and VN is the variable name (8
hits string). NumberDfVariables is unified with the number of variables appearing in the 1erm. Upon
end of file. Term is unified with end_of_file and NumberOfVariables is unified with 0.

pall

[1 end wof Ble has been encountered during the execution of previous conmands | surcessive input comanands

will reteirn end of file

Chapnt comimands

e Char)

Ohutputs on the 10 device the character with ASCTT code Char . hetween U and 253
putliString)

Outputs the 8 hits steing Strang on the 170 device and adds a new line character,
put b Buffer)

Chaeputs 8 hits string Buffer No carrimge return 1 added.

putti Term, Lengrh. Depth)
Chutputs term Term. I structuree depth excesds Depth (= 0] or length exeeeds Length (> (), remalnder
i= output as ... This is sinular to Prologs write,

['] Atoms are not qUOI-:"t'I. 20 that the result of this command may be wnswited to further read using geit

o get fe

putt{ Torm)
Similar to the previous command, but default vaiue is used for depth and lengtis

putto Term. Length, Depth)
Fhis i similar to putt /3 command. but atoms are quoted when necessary.

puttg] Term)
Thiz 1= similar to putt/1 command. but atone are quoted when necessary.

ul
Charputs & new line characier.

tabif ™)
Outputs B {0 < N < 1000} space characters
('] Ou Micre PIMOS. /0 15 blacked, for efficiency reasons. Buffers are lushed only in the following cases -
® BufTer iz full.
o flush conmmand has been received,
o /O devier 5 closed.

(i L case of windows) some fnpoat or show fhide command is received.

Centrel of mput format

Output imitations for stracture in putt/1 and putty/l commands can be changed as follows

print_length{ Length)
This command chauges the default lengeh limit to Length {Length >). Initial value is 10

print_depth({Depth)
This command clianges the default depth limit to Depth (Depth = (1), Initial value is 10,

priont_var_mode{ VariableMode)
Thiz command is used to change the output format of terms describing variables. VariableMode is the
new mode which must be nu or na. Initisl value is na.

na - Name Mode @ SVAR(N.VN) — VN (Variable name string) is output.
EVAR(N) — A B ... is output.
nu - Number Mode @ SVAR{N,VN) — _N {Variable number) is output.

EVARIN) — N (Variable number) is output.

a0

Chatput buHer conimnnds

Tl following conmvnnd rontral oo pun boffer paramerers.

flushi Statns)
This vonmnaand Huslies charaeters el badler - Alter copletion, Status i3 unified with done.

Lodler dengt i Bodfer Lengtl)
This ol |||-'n|,=;r'-- et bdler lI‘JIl_.‘;l.JI lov Bufferlength (= U). Trotral value 15 L12 hyies for a

winedow annd 2000 hyies for files,

Chpepad o=
e folleswing conpnands are relared o aperalors for parsig,

acdad op{ Preceedonee, Type. UperatorNamee)
Thi= connnasd adds an e tator wilh precedence Precedancea (| < Pracedence < [20)l}, tvpe Type {an
atone chosen nong fx. fy. xf v xfy. xfx, yix) and nane Operatorfame (o)
remove-op Precedonce, Type. OperatorName)
Fhis coreand renpoves an D rAlor, Parameters have the same J||-=~a.|1in;_>; as i the previons cormimand
aperator] OperatorMName. " Definition)
This corrmmnd reture o lisr Definitien of operators mateling nanw DparatorName (atom). Each element

of Pl dist s e Toen prevedenee . 1vpe
Crroiped processing of commamnds

Aol Conmmmandd s
This commnand gronps the hst of conunand CemmandList within a single command. Even though merger
vt Looisert commiatds o the stream, sequence of commands 10 CommandL st is preserved

Control commanid

close| "Statns)
Closes T/ operation. Ie i ot possible to send other connnands afier that one. (Ounly [J can be sent to

close Llee strenn | Scatus is wiified with atom success

LN il
Lhe followimg comands are effective only lor windows,

shiow
An hidden window will show up when this command is executed.

hade
A vislhle windew will he hidden when this commsnd @ execated.

clear

Clears the window space,
beep

Hings the ternunal bell,

prompt{ (ld, New)
Changes prompt string displayed in executing gett or getft command. 014 s unified with current
proanpl strimg (8 biks siring) and the new prompt becomes Kew (also an # bits siring). The initial prompt

is n7-,

31

3.3 Directory management

The dircetory services of Micro PIMOS are available throngh the directory conunand stream. This stream
s avalable via s Micro PIMOS predicate. in a similar fashion to 170 services.

Chperations on the divectory are done by inzerting commands nto this stream. The stream can be closed
with [1.

3.3.1 Acquisition of command stream

{:Iin-'r:t.ur:,r:{:r-:-*:-lt.{-’.{Strt—uun. Dareetory Mamwe, “Status])
Avcesses the directory paned DirectoryName {# hits steing) and unifies the command stream connected
to the directory with Stream. Status can be unified with the following tesins

success e Access suceerided
error(cannet_access) 0 e The di.rm'Lur:.‘ cannot be accessed,
error(bad_directory_name_type) - DirsctoryName is not an & hits string,

4.4.2 Commands

The fellowing commands can be mserted into the commeand stream.

pathname| " FathName)
Usfies the full pathoane of the direclory {8 bils string} with PathName.
listing(WildCard, "FileNames, ~Status)
Creates the hist of pathnames of files corresponding to WildCard and unifies it with FileNames. Status

can be unitied with the following terms :

SUCCESS senees Lial successfully created.
error{cannot_listing) - List cannot be created.

delete WildCard, "Status)
Dieletes fles corresponding 1o WildCard (8 bits string) from the directory. Status can be unilied with

Lhee [ellowing ternos

BUCCeSSE o Theletion successful.
arror(cannot_delats) oannot delete the file.

open{ Stream. FileName. Mode, - Status]
Opens the file FileName (8 hits string) with imode Mode (atom r for read, w for write or a for append) and
unifies the comnmand stream connected to the file with Stream. Statue can be unified with the following

Lerms :
SUCCess ceen Open successiul,
arror{cannot_open_fila) - (lannot open the file.
error{bad file name_type) - - FileName 1= not an 8 bits string.
error{bad_ocpen_mode_type) - Moda is not atom.
arror {bad_open_mode) oo Mode is sn sbom other than ©w or a.

3.4 Device Stream for I/0O

T'o use Input/Cuiput device functions directly from Micre FIMOS, one can use the libraries now described.
The purpose of the functions therein i to describe other O8 than Micro PIMOS [es PIMOS) in KL1. Average
user does need device streams shown below, '

These deviee streams are supervised by Micro PIMOS. 5o if a wrong command is inserted, it only results in

the Falure of neer Lask | Uhe bangasge processor s unaflected,

32

3.4.1 Securing Device Stream

Usor can exiract wodevice streanm froos ero PIMOS by nsing the following predicates. mpimos_io_device

caln alse be used as a modale nanwe
mpimos _window_devicerwindow s Stream |
I nifues thie stream which has a functon of window devies with Stream.

anpirnes file_device:sfiles{ Stroeam)

Unifies the stream wlich bas & feoetaon of file device with Stream

napirmos titer cdevice timer(Streain)
Upifies the stream which has o funetioe of tooer devies with Stream.

3.4.2 Command

Fhe connnands which can be sent to cach devies stream. stream of opeped window, fle and divectory are just
the same ms entionned e Appendin 1o As to the 1O connnands for filef window streams, only the commands

shown below are allowed.
 Window
lopat Ckndy gerl) Line, Statws, Cded s avadlable.
gote /4 geth /1 gerthkn /1 are not available.
Otpat Only puthi Buffer, Status, Cdr) is availahle.
pate S30 poth f30 putt /5 are not availahle.
« File
Input Owly gethi Size, Bufferm "Status, Cde) s avaibshle,
pelc/d, getl/S, petikn/4 are not available.

Cratpul Onoly putbi Buffer, Status, Cdr) s available,
pute 5. putl /3, putifs are not avalable,

3.5 Code Management

The principal functions for code management o Micro PIMOS now follow.

o Functions 1o mansge the name and information (bike the catalog of public predicates and spied predicates)

uf]LI-&'ILit‘d I'll'l.l-dl.llt':‘: H.I!d. 'dibi.'l‘lni_'p LI]i:‘i IIHFLZWJIIH' 1CHD upan r:r:;u:.'e.l.

o Autoddoad function of modeles which are saved by save(MeduleName) or save_all commands from the

command interpreter.

The directory fram which aute_leoad is performed s decided after the environment variable leaddir of
command interpreter, User had hetter make a directory ~/ . PDSSsave to use the auto_load function, because the
default value of first element of both leaddir and savedir is /. PDSSsave. The value of envitonment variables

can be changed. User can disable the auto load function by setting the environment variable auto_load Lo ma.

3.6 Displaying Exception Information

The KL1 exceplions handled by PDSS are shown an section Appendix-7. On Micro PIMOS, information
about an exception which bias occurred within the wser task is displayed on the window of command interpreter.
‘U'he task in which exception has occurred is immediately stopped and its resources (windows and files) are
released

Other exceplions, reported by Micro PIMOS. are handled by Micro PIMOS. Those are consequent to an
llegal command to the window, trving to open a file thal does not exist, ete. In those cases, as in the case of
language definition exceptions, information is displaved on the window of command interpreter and the task
is imimiediately stopped. All resources of the task are released.

4 PDSS Optional parameters

PSS e smally ivcked under GNU-Lasacs, This miay be seen as the lest way Lo use PDSS from an
execnlion cuviienhwnt poliet of view ., as all PINS fanerions are avallable. Tt iz possible 1o execnte PISS o0 a

stared wloaie bases, barane this eose. soane Iinetions disapyaear.

4.1 Usage under GNU-Emacs

Leaeall PSS wgeder CXD <Fanaes seqed 1he following eonanand. Libraries are aptomatieally loaded and PSS

slarts,

meta-X pdss e farn

P speecely ot ions, type cirl=1 before 1iwta-X . Option contents are described later,

ctrl- L mueta-X pdss efeen

PSS OGption”: | parameter | refurn

Wihen LSS stars a window naned “console window™ 15 ereated. This window = nsed to frace execution
amd Tor inpot fdisplay al ronsole Theno several modules are loaded, including runtine support and Miero
PIMOS, Then, Miceo PIMOS starts Adter that . rommand interpreter windlow 15 created and wails for nser
cotinands .

When operaton = done within GNU Eogace, IPDSS opat is asyochoonous. Therefore the whole svetem does
not hold when input sceurs, Thers 1s an exeeption Lo Lhis Tor eonsole inputs while fracing, In this case. system
balts until input comnpletion. 1 is possible 1o contral IS5 by sinking contral kevs ue the window. These kevs
are defined s GNU-Emaes Ehrary, Besides following commeands. a complete list of supporisd keve can be

foonaed in A nelix-9,

cirl ebrl- 2 Lurns on trace Hag.
ctel £ enrl ¥ Sends interrupt conde |
In Micra PIMOS 1his aborts task
crel-Cerel-T 0 0 Seneds mtereapt code 2
Lo Miera PIMOS, this prints number of reductions performed so far
eirl 71 w0 Starts G
enpl-l o Abarts PSS,
eirl-Cretel-RB o Dienersates a window butter enu for PLSS.
cipl-d T ESC o Reesecutes PISS svsiem
crrl-(7 k ¢ Remwwves conbents of corrent window.
cirl-Cetrl-R 0 Deletes cantents of the window created by PDSS.
crel-C" erl-Y 0 Keprints the jast input string,
cirl- erl-F o - Prints manaal of buitlt-in predirates
ciel-(" f : Primis wanmal of conmman:d i:l1-r~r;1rc~11'r.

[') When a PSS window 15 reoved b eirl-X k. subsequent execution resulis are nol gl,mrauu1.r-eu-:| iy loer

meanmghul.

4.2 PDSS on stand-alone

To use PINGS without GNU-Finacs, type the following comnal

pdss | parameter | refurs

Orutside of GMU-Emacs, all messages to windows are merged. I any window waits for some input, the whale
syalern slops. Window control kevs are not available but, on the other hand. keyhoard interrupt is sipported.

4]

If eirl-c s typed. cne can enter control commands afier the prompt.

4.3 Optional parameters

Optional paraeters can be specified at start, o modify the execution environmens, Possible parameters

fuollow
=hNNR o Size of heap area 15 BNE. Detault s 200 keells.
-cNHN Size of code area 12 BN, Deflault iz 300 khytes,
file name 0 Uses this file instead of the standard startup file.
/-t -+ Uses start up file or not. Defanlt 15 to use it
=y © This option chaouges U win variables appear docing trace. By delault, vari- -

ables are printed using their name. If =v option is used, they are identified hy
their relative position to heap bottom. This may changs after each GO, 80 be

careful,

~-bHEN - Scheduling politics for goals are changed 1o breadili-fiest, NOF gives depth Limi
fror TRO.

-a o Inhibits timer mterrupt, Thiz is used when debugging PDSS iteelf. under dbx.

Thers are two ways to speeify these options :

e Options ran be given when starting PD5SS. They are treated as arguments of the PTSS commuand.

example-1]

FDSE Option 7: -h300000 -cBOOOO =-v (Execution under GNU-Emacs)
example-1]

[UNIX]% pdss -h300000 -c50000 -v (Exacution on stand aloma)

o Clptions can alse be apecified through an enviconment variable.

example)
[UKIX]Y setenv PDSSOPT "-h300000 -cBOOO0 -v"
[UNIX]Y pdss

a6

5 Tracer

The tracer functions supperted by PTISS are now deseribed,

-1 Principle of operation

L

Basically. in PLSS. trace aperations can orour whenever a goal is in one of the following stades. These events
are ealled trace points
e Ceonl call.
& Suspension due to an aninstancisled argumen
o Fanl ol suspension.
w Cooal [anlure
Swap out (Uaused by interruption of scheduling of 8 higher priority goal).
There are two ways to operate trace in KLI : upon predicate execution or upon goal call.

lo trace upon predicate exeeution i= to trace when the code, which ones want to trace, is executed. In this
case, 1118 possible to specify trace mode for each module. In the sequel, this mode is called “code trace™. Tt is
Al Lo trace each predicate separately. This is called “code spying”

To trace upon goals is Lo lrace, of not 10 trace, deseendaant goals of cach generated goals. In the sequel, we
call this “goal trace” It also possible Lo linut trace to the descendant. grals of specific goals. This is called
Toal spving”.

Let’s see some example. In the following program. we assume that p(X) 5 in trace state and p(Y) is not.
Then. q(4,B} and (B} which are called from p(%) are also traced Conversely, g(A,B) and r(B) which are
called hy p(¥) arc not traced,

Goal - plE). p(Y).
Clause: p(A} - true | g(a,B), r(B).

I PSS, 1t is possible ta specify before or during execution whether or not code trace is done. On the other
hand. goal trace status must be on at first; then, some of the goals can he untraced Only goals which have
Beth code truce status on and goal trace status on are actually traced.

Fhe four possible cases of spying are the following :
o (oude s spaed.

® {ionl 12 apied.

e Code or goal are spied.

o Code and goal are spied.

5.2 How to read the display

Trace diwplay contains 4 different information zones -

[0012] gALL *$ module:goal{al, a2, a3)
1 2 14

I. Ideutity of the Sho-en to which this goal belongs.

2, Type of trace event -

CALL o Trernene from goal guewe.

Call o (ioal calied during TRO.

SUSP @ Suspension due to an uminstanciated argument.
Susp Suspension due to priotity presmption.

RESU & End of suspension.

FAIL - Cioal fatlure,

SWAP = Swap out.

I =py flags .
* o Code of executing goal 15 spaed,
$ o Csoal s spied.
4. Cioal
Terms i argunent list which are potentially referred several times (MR is on) are appended with an x
mark,
Varables are shown as follows. according to their tyvpe

» Ordinary snbound variable -
First letter is upper case, or underseore, and s followed by a number.. %1, _23611,

o Some goal walls for instantiation of this variable -
Format is the same as an urdinary unbound variable, followed by a tilda... X1-, _23611°.

e Merger input variahble :
As ahove, replaciung tilda with carret... X1°, _23611°,

Lo adddition to thiz description, priority is displayed whenever it changrs.

5.3 Commands
The deseription of tracer commands has the following meta syntax

Command name & input format {argument} { [options])

Help = 7
Command help.

No Trace 1 X
Ko trace from now on,

No Goal Trace = x
Turns off trare for the descendants of current goal, 1e. goals called from this goal.

Set Goal Spy «: g
Spaes current gosl from now on.
Reset Goal Spy = G
Stops spying current goal, from now on.
Set Mudule Debug Mode :: d MODULE { MODULE ... }
Sets debug flag on for specified modules. By this mean, code trace is done when predicates from this
imodule are executed,

Reset Module Debug Maode :: D MODULE { MODULE ... }
Effects are opposite to the previous command,

Set Procedure Spy :: p MODULE:PROCEDURE | MODULE:PROCEDURE ... }
Sets trace on [or a given predicate in a given madule.

38

Reset Procedure Spy @ P MODULE:PROCEDURE { MODULE:PROCEDURE ... |
Eippasite of previmes conand.
Step s [COUNT]
Slaps again at pext teace poinl. [COUNT is given, stop occurs only after that COUNT trace points have
passedd . Here and w the following, COUNT can be considered as a repetition factor,
Step to Next Spied Procedure = sp [COUNT)
Continges uneil the next spied predicate is called, then atops,
Step to Next Spied Goal @ sg [COUNT]
As above, but we look Jor a spied goal.
Step ta Next Spicd Procedure or Spied Goal + ss [COUNT]
L this case. any spy rase causes stop
Step to Next Spied Procedure and Spied Goal :: 5§ [COUNT]
I ths ease, procedurs must be traced and called from a traced goal, Lo cause stop.
Skip to Next Spied Procedure = np [COUNT)
Thes works simmiarly to sp command, but no trace is done until slop
Skip to Next Spied Goal = ng [COUNT]
This works siinilarly to sg command. hut no trace is done until stop.
Skip to Next Spied Procedure or Spied Goal = ns [COUNT)
'his works sinularly to sa command, but no trace is done until stop.
Skip to Next Spied Procedure and Spied Goal :: NS [COUNT]
This works similarly to 55 comnand, but ne trace is done until stop.
Re-Write Goal @ w LENGTH [DEPTH)
This redisplays eurrent goal and argnments, with modified format Hmits LENGTH and DEPTE. This s useful
when arguments are large.

Where call from 1 where
Shows the names of predicate and module which ealled current traced goal. This is valid only for run-time
support routimes or built-in predicates (D code).

Momitor Variable : m VARIABLE NAME [NAME] [LIMIT]
Monitors the value of variable. whenever it is bound. If the value is a list or a stream, display oecurs
whenever the top element 1s bound. Using NAME. it is possible to assign a new identifier to the monitored
variahle. so that the value is shown under that name. LIMIT is the number of times valie can be shown
without stopping the system. Without this parameter, whenever a variable is bound, the value is shown
and the tracer waits for a user command
During display of value, whether the value is a list or not is distinguished .

mon#var-name =»> wvalue %% ... In the case of a list.
monfvar-name == value %% ~o Otherwise.

In this situation. the following commands are available -

? = Help.

x = Stops monitering this variable or list.

s [COUNT] it Goes ahead monitoring value without stop, for COUNT times.
w LENGTH [DEPTH] = Redizplays value.

m VAR [NAME] [LIMIT] :: Sets a different monitoring.

Inzpect Ready Queue :: ir [PRIORITY) .
Shows goals in ready queue. If PRIDRITY ie given, only goals with that physical priority are shown.

Inspect Variable :: iv VARIABLE_.NAME
Shows state of specified variable. When state is HOOK or MEOOK {goals are waiting for the instantiation

3

of this variable). shows the waiting goals. When state is MGIIOK (input merger variable), shows merger
output varahle.

Inspect Sho-en tree @ 1s
Shows Sho-en Lree sieacture at current time. Horizontal drawing axis s used to represent the par-
cnt febildren dependency, whereas the vertical axis is used to represent brotherhood. EBach Sho-en is
described using 5 characters @ the first one corresponds o the state of Sho-en and the remaining 4 to its

Ty, Possible Sho-en status follow :

H - Ready,
5 - .";iuﬁpf‘tldﬁd.
A o Aboried

Trace Shoon Lreo 0 s
Tuin cn/ofl the trace Hag of Sho-en tree structure. When on. tree structure is shown before and after
each modification(s.g. generation, abortion. termination). The format of the descriplion is the same as
for above command
Set ‘Pracer Variable :: set NAMFE [VALUE]
Tracer variable NAME is set to VALUE. if present. Otherwise, current value is displayed. Current tracer
variables and their defanlt values are now listed
pv - Priut variabie mode, If value is n, vanables are displayed alphabetically. 1f a
15 used . relative address are used.
pl o Pt leagth value,
pd o Prnt depth value
g o Gate switch which determines whether trace is done or not upon each trace
point. Value is made of five characters, each one with value n, t or 3. These
values correspond to “no trace”, “trace (no stop)” and “trace (stop)” respec-
tively. Characters correspond to points CALLfeall, SUSP/Susp, RESU, SWAFP
and FATL, respectively.

¢ Gale Switeh for CALL points. Value ig n, t or 5.
s o Ciate Switch for SUSP points, Value 1s n, T or 5.
r . Giate Switch for RESU points. Value 15 0, £ or s
w o Gate Switch for SWAFP points. Value s o, Lor s
t o Gate Switeh for FAIL pomts. Value 15 n, t or &,

40

6 Dead-lock detection

[n PSS there are 2 dead-lock detection mechanisms. One acts through global GC, whereas the other tries
to detert dendlork during execution. During GC. deadiock 1z always detected, whereas deadlock check done

during execition sonwtimes fails.

I the following, tvpes of deadlock detected in PDSS and tracer messages are shown

Dead lock detection occurred doring GO - Type=()

Ex'r1||||-|-~ < owleen I'JLl':CLlT.i.!'.Ig the fﬁ”m’-‘illg ;I:!,C-al H
Goal :: 7- add(X,_,¥), divide(¥,_,Z), module(Z,_,_J.
Following information is shown on the console window

GC 1 HEAP GREC PFREC SREC TOTAL CODE
Start 15595 kil 7 14 139182 T25
Deadlock: :pdes_runtime_body_builtin:meduleo(A™,B,C)
Deadlock: :pdss_runtime_body builtin:divide(D" ,E, A7)
Deadleck: :pdss_runtime_body _builtin:add{F™,G,07)

=xx Pregvious goal is deadlock root!

Shoen 13 terminated by deadlock!

Done 1067 56 3 14 18056 T8
GCed 14528 21 4 0 120224 a
cells records records records bytes bytes

The goal appearing before message “Previous goal is deadlock root?™ on romsale window 15 the root of the
data dependance tree There are some cases where several such trees exist and root is not unique in general.

Il there are loops siractures, there is no root.

Variahle referred only by itself (void vanable) waiting for instaptiation : Type=10

Example : In the following program, after execution of p(X). q{I:J s exeruted.

Goal :: 7- plX), glX).
Clawse-1 :: p{_} :- true | true.
Clawse-2 :: g{a) :- trus | trus.

Following information s shown on the console window,

www Deadlock cccurred. [auapﬂndl{ﬂﬂﬂ“ﬂﬂf!ﬂ-ﬂnﬂu]]
+ Goals waiting for HOOKoo/MGHOEKe to be unified:
Deadlock: :module:g{A”).

Waiting for instantiation of a variable which will never be instantiated by other goals : "Type = 11

Fxample - Tn the following program, after execution of p(X), q(X) is exccuted.

Goal :: 7- plX}, g(Xx).
Clause-1 :: pla) :- true | true.
Clause-2 :: gla) :- true | true.

Following information is shown on the console window,

sx+ Deadlock occurred. [suspend{HOOKoo/MGHOKo)]
w»*% Goals waiting for HOOKoo/MGHOKo to be unified:
Deadlock: :module:gq(A~)}.

Deadlock: :module:p(A”}.

Input variable of the merger, referred only by itself, waiting for instantiation : Type=12

41

FEsample o Inothe following progran. afles execntion of merge{in, Oot), q{X) s execuled.

Goal :: %= merge(ln, Oue), p{In), .
Clause-1 :: pla} :- true | true.

Fuollowing informaiion s shown on Uhe comsale window .

**+ Deadlock occurred. [suspend(HOOKoo/MGHOK)]
##4 Goals waitting for EOOXoo/HGHOEo to be unified:

Deadlock: :module:plA~).
Deadlock: :pdss_runtime_bedy builtin:active unify{4~,B").

1!‘-'1]'il.1.|.‘.-i"' 'i-'\-'i.]i.lilll I:Iil.-:; it E:U-iil \'filj[rill.g ﬁ'.:ur i[]S[--i.ll]lir].l-iUlJ.. -il.l]l'j W]lj‘.’i] i}i Urli.ﬂli‘lil “'![l‘: el 'l'Lllll.l. \'ﬂl’i.ﬂl}li_’. . T}-Pt“--zﬁ

Fxanple T the following progeaan . after execotion of p(X}, gf¥) = executed. This case alao oceurs of ¥

was ot vokl, but would turs vald az a resalt of the execution.
Goal :: 7- plX), gqlX,¥i.

Clause-1 :: plal) :- true | truye.
Clause-2Z :: g(&,B} :- true | A=B.

Folliwing information ts shown on the consols window,

*s% Deadlock cccurred. [unify(HODKoo,VOID)]
*++ Unification cccurred in medule:g/2

=k*) goal walting for HOOKoo to be unified:
Deadlock: ;module:p(Aa”).

Merger input is unificd with void varnable : Type=21

Example In the following program. p{In,_) is executed after merge(In,Out).

Goal :: 7= merge(In, Dut), p(In,_}, q(Out).
Clause-1 :: p(A,B) :- true | A=E.
Clause 2 :: g{{_ICdr]} - true | glCdr).

Following information 1s shown on the console window

##% Deadlock w:ill occur. [unafy(MGHOKo,VOID)]
**» Unification occurred in module:p/2
*xx Merger input was abandoned.
*&% Goals waliting for merger output:
3995: module:gqla™).

Unifying two variables which have goais waiting for instantiation : Type = 22

Fxample - In the lollowing program, r{X,¥} is executed after p{X) and q({X).

Goal :: %= p(X), q(¥), r(X,¥),.

Clause-1 :: p{a) :- true | true.
Clause-2 :: g(a) :- true | true.
Clapse-3 :: r(4,B) - true | A=B.

Following information 1s shown on the console window,

s=#= Deadlock cccurred. [unify(HOOKoo HDOKoo)]
*a% Unification cccurred in module:r/2

*«+% Goals waiting for HOOKoo to be unified:
Deadlock: :module:p{A~) .

Deadlock: :module:q(B~).

42

Linifyving input of merger and varinble which has a goal waiting for instantiation : Type=23

Example - To the following program, q(X,In) is executed afier merga{In,Out) and p(X).

Goal :: %- merge(In, Out), p(X), g{X, In)}, r{Out).
Clawse=1 :: pla) - true | true.

Claunse-2 :: gl(A,B) := true | A&=B.

Clause-3 :: r{[_|Cdr]) :- true | ri{Cdr).

I.'Ii'.I”D-'-'-‘iI'I.g 'i.!llfl;_:lrluaf-:lon 15 &hown on |.]'||;~ console window.

**+ Deadlock oceurred. [unify{HCO0Koc,MGHOKe)]
#** Unification occurred in module:q/2
*** A goal waiting for HOODKoo to be unified:
Deadlock: module:p(a~).
*#3x (oals waiting for merger sutput:

3585: module:r{B°).

Unification of two merger imputs © Lype = 24

Example : In the following program, Inl=In2 is executed after merge{Inl,Outl) and merge(Ini,Out2)

Goal :: %= merge(Inl, Outl), merge!{lInZ, Out2),
plInt, In2), gqi{Outl), r{0utz).

Clause-1 ;: p(A,B) :- true | 4=B.

Clanse-2 :: gl{l_ICdr]) :- true | g(Cdr).

Ciause-3 :: r{[_1Cdx]) :- true | r{cdr}.

Following imfarmation is shown on the console window .

*#++ Deadlock will occur. [unify(MGEDKe ,MGHOKo)]
##x Unification oceurred in module:p/2
#3% Merger input was abandomad.
##+ Goals waiting for merger output:
3995 module:gqla~).
3986 module:T(B).

A varialile which has a goal waiting for instantiation is not referred © Type=30

Fxauple @ In the following program. q(x) is execuled after p{X).

Goal :: F- pl(X), q{X}).
Clapse-1 :: p(a) :- true | trua.
Clause-2 :: g{_) := true | true.

I".'D“l:ﬂ'r'l.nﬁ information is shown o the conscole window,

*#++ Deadlock occurred. [collect(HOOKood]
##+ Collect_value occurred in medule:q/l
*=x A goal waiting for HDOKoo to be unified:
Deadleck: :module:p{A~).

A merger input variable is not referrad - Type=31

Example : In the following program, p(In) is execuled after merge(In, Qut).

Geal :: 7- merge(In, Out), p(In), q(Out).
Clause-1 :: p(_} :- true | true.
Clause-2 :: q{[_lCdr]l}) :- true | glCdr).

43

Frllowing information s shown on the console window.

#s4 Deadlock will occur. [eellect(MGHODKa)]
ss# Collect value cccurred in madule:p/i
=% Merger ipput was abandoned.
#*x (Goals waiting for merger output:

3906 module:gla~).

44

Appendix-1 1/0 devices

PDSS provides window, file and tiner /0 devices. Comniands to these devices are inserted in streams. These
devices are defined in modules named pdss_window_device, pdss_file_device and pidss_timer device,
Thes specification 1= based upon “FEP Host /O Interface (V0.9)". Full features have not be implemented.
Some of the messages or commands are therefore dununy or illegal. Simer macro expression fep#xzax is not
available, 11 haz 10 be replaced with atom *fep#xxxx®,

Acgumisition of deviee stream

Device stream ran be ohigined by the predicates listed below, These predicates can be called only once after
the emulator has been invoked. Twice or more catls will cause “Device called twice” exception Lo occur.

pdss_window_devicerwindows({ Stream)
Linnfies Sgream with the command stream of window device.

pdss_file_device:files{ Stream)
Uiilies Stream with the command stream of file deviee,

pdes_timer_devies:files(S trowamm)

Unifies Stream with the command sieeam of timer device,
Dhevice congnrands

. Window device
Window deviee provides multiple window facility within GNU-Emacs. The following conumands can be
senl Lo Lhis device - I

create| BufferName. WindowStream. “Status. Cdr)
Upens a window with buffer name BufferName (R bits string). then unifies its command stream
with WindowStream. When window s opened successfully, Statue i unified with ‘fap¥ncrmal .
PDSS can’t open more than 16 windows at a time. Therefore, it fails when user teies to apen too
many windows In this case, Statue is unified with *fep#abnermal’ /0 commands and control
commands described Lelow can be imserted in the command stream of a window which has been
successfully opened. Note that reset/4 command must be applies before those commands o set up
aliort and artention lines. The window is aulomatically closed when its stream is ¢losed.

ereate WindowStroam, “Status, Cdr)
Create /3 without offer name is not available,

get-max_size(X, Y, PathName, “Characters, ~Lines, ~Status, Cdr)
Always returns Characters = 50, Lines = 40, Status = ‘fepinormal ',

2+ File deviee

This deviee provides standard facilities of UNIX files. The following commands can be applied to this
devies -

open{ PathName. Mode, FileStrcam, “Status, Cdr)
Opens file with path name PathName (8 bits string), mode Mode {atom: 'fep#read’ = read mode,
‘fepfurite’ = wrile mode, 'tep#append’ = append mode), then unifies FileStream with the
command stream. When the file is opened successfully, Status is unified with ‘fep#normal’.
Otherwise, Status is unified with ’fep#abnormal®. [/} commands and control commands can be
applied to a file which has been successfully opened (reset/d is also requisite for files. The file is
antomatically closed when its stream is clogsd.

directory(PathName, DirectoryStream, “Status, Cdr)
Opens directory with path name Path¥ame (8 bits string) and unifies DirectoryStream with its
command stream. When open s successful, Status is unified with 'fep#nermal’. When it fails,
Status is unificd with 'fep#fabnermal’. Commands can be inserted in a directory stream which

45

hias heein suecessiilly created (reset /1 is also requisite for directory.). A directory is automatically
closed when s sirean = closed
3 Tanwer devies
Lignr of vime of the tners devies = mpllserond. bt I.lj::-dﬂ-h":-‘- arv EH.'I.I.IEL]I_‘- I}t"Tffll‘l‘ﬂt—"L‘J pach second. The
l'nllnwing, conunands can be sent to the timer deviee
getocount] " Count. Status, Ccr}

fount i weified with the total elapsed milliseconds since 00:D0:00 AM. Status is unified with
"feptnormal .

on_at{Count, " Now., Status. Cidr)
When the Gime specified by Gount is reached, Now = unified with ' fep#uake_up’. Status is unified

with 'fepfnormal’ when the ronunand 15 uves

on_after] Connt, “Now, "Status. Cdr)
When duration specified by Gount his #lapsed. Now is unified with 'fep#wake up’ Status is unified

wilh 'fepfnormal’ whon the command s over.

Window. file and dicectors commands

1. Cantrel somunands: counon to windows and files

These are the commamds shared by window aned lile deviess

resnet{ A hortLine. ~ AttentionLine. " Status, Cdr)
Sete up abett and attention fines, The command should be ssued right after the 1/0) stream has
been generated. Lo abort an 1/0 request, AbortLine must be ynified with * feptabort® by the host.
Cinee undficd, abort line and atiention line must be set up again with reset/4 command. Otherwise,
the stream can still be closed with [1. AttentionLine is unified with interrepl code generated by
device (integer). Upon interrupt, 170 should be aborted or attention line shoubd be set again with
reset (4 cornmand,

next_attention{ ~ Attention, ~Status. Cdr)
Oinly attention line is set by this command. This command is used when user does not wanl Lo

abort I/O after interrupt.

20 Common mpur conmands

There are the commands which can he sent to window or file deviees working in read mode.

gete{ " Char, “Status, Cdr)
[ivads one character and unifies it with Char. When input is completed suceessTully, Statua is unified
with *fep#normal’. If end of file is encountered, Status is unified with 'fep#end of file'.
[T Not available on Multi-Ps1 VY FEP

getl"Line, ~Status, Cdr)
Heads oue line, converts it mto an B bits string, then unities it with Line Al this time, newline
cade is removed. When the input is completed suceessfully, Status is unified with ' fap#normal’. If
end of file 15 encountered, Status s unificd with *feptend of _file’.
[1] Mot available for files on Multi-P5S1 V2 FEP.

goth{Size, "Buffer, “Status, Cdr)
Reads the number of byvies specified by Size (inieger), and converts them into an 8 bits string,
unified with Buffer. If a newline is encouniered while reading from a window, wmput stops at
newline character. When the inpul is completed successfully, Status 15 unified with *fep#normal’.
I ened-of-file is encountered, it 15 unified with 'feptend_of _file'.
[1] Mot available for windows on Mull-FSI V2 FEP.

46

gettkul " TokenList. "Status. " NumberOfVariables, Cdr)
Frads a stong comstracted as one term then analyzes this string to extract tokens. The list of

generated lokens iz umfied with TekenList.

virrpihle = wvar(N,String)

atonn :atoml Atom)

integer 2 int{Integer)

ATFiNg ¢ ostring(String)

funcror - open(Atom)

special character | atons that has special character as print name.
el oend

When the inpul iz completed successfully, Status s unified with *fep#normal’ IT end of-file s
femnd, 1t s unified with *fep#end_of _£ile’ 17 an error occured during token analysis, Status is
otfied with *fep#abnormal

[1] W availabde cn Mulu-PSIEVE FET.

1. Common output comnpiands

These commands can be sent 1o window and file devices opened in write or append more,

pute{Char. ~Status, Cdr)
Writes the character corresponding to Char (integer| according to the ASCH code. Status is unified
with 'fep#normal '
['] Nol available on Mului-PS1 V2 FEP

putliLine. "Status, Cdre)
Writes string Line {8 bits string) and adds a newline character. Status is unified with 'fep#normal ’.
('] Not available on Multi-I"S1 V2 FEP.

putbfﬂuﬂ'nn “Status, Cdr)
Writes string in Buffer (3 bits string). Status is unified with ‘fep#normal’

putt{ Term. Length. Depth, “Status, Cdr)
Writes the terni specified by Term, whith maxumum length Length and maximum depth Depth. The
part of term which excesds Length or Depth is printed as Status is unified with *fep#normal ’,
Since this command wses output function for debugeing, variables in Term are written Jike A, B, C
with a symbal MBE or HOOK.
1] Nar available oo Mulu-FSI VZ FEP

4, Window contral commands

These commands are availabide only for windows,

closal " Status)
loses the window. Status s unified with 'fepfnormal’.

flush(" Status, Cdr)
Mo op. Status 15 unified with ‘fep#normal’ Data which have heen written are automatically
flushed, even if fush /2 15 mot issoed

beep(" Status, Cdr)
Hings the terminal bell. Status s unified with *fepf#normal’.

clear{ " Status, Cdr)
Erases contents of window Status is untfied with *fep#normal’.

show(“Status, Cdr)
Makes window visible. Status is unified with *fep#normal’. Since the window stays invisible after

creation, one has to make 1t explicitely visible with this command.

47

hidel " Statns, Cdr)

Makes window invisible. Status = unificd wilh * fepSnormal®.
activatel " Status, Cdr)

Sarpne s sl 32
deaciivate] Status. Cdr)

Sanw as lude/?
set_inside_size{ Clracters. Lines, "Status, Cdr)

Nooop Status - unified with *fep#normal’.
set_sizc| fep#manipulator’. "Status, Cadre)

o op. Status i= unified witl 'fepfnormal”,
setoposition] X, Y. "Status. Cdr}

Sooop. Statues s oanilied with "fep#ncraal .
set.position] fep#Fmuanipulator’. " Status, Cdr)

Nooop Status s ouified with *Tep#normal !
sel_tithe{String, “Status. Cdr)

Nooop. Status i+ unified with ' fepEnormal’
reshape(X. Y. Chararters. Lines. " Status, Cdr)

Nooop. Status s unified with *fepfnermal’.
reshape{‘fep#Fmamnipulator’. "Status. Cudr)

Mo o, Status = unified with *fep#nermal '
set_font{ PathMName. " Status, Cdre)

Nooop. Status is unified with ' fep#normal’
select _buffer{ ButforName, " Status. Cdr)

Mot available,
get_inside_size{ Characters, “Lines. Status. Cdr)

Always returns Characters = 80, Lines = 2, Status = 'fepfnormal’.
get_position(” X. Y, "Status, Cdr)

Alwavs returns X = 0, ¥ = 1), Status = 'fepfnormal’.
got_titlel "Title, “Status. Cdr)

Tieturns nane with which the window was created.
get_font{ PathMName. " Status, Cdr)

Mot available

A. File contral commeamls

These comumands can be used only for files,
elose] " Statas)
{“loges file, Status is unificd with 'fep#narmal’.

end_of_file{ "Status. Cdr)
Status is unificd with *fep#yes’ when the end of file has been encountered. Otherwise, it is unified
with *Tep#no’

pathname| " PathName, “Status, Cdr)
lnifies file pathname with Path¥ame Status i= unified with 'fep#normal’.

fi. Threctory contrel command

Thesze conunands can be used only for directory streams

4r

pathuane! ” PathName, ‘Status, Cdr)
Unilies pathinaie of directory with PathHame. Status is unificd willl *fep#normal *

listing{ WildCard. FileNameStream, " Status, Cdr)
Uiities the List of pathnames corresponding to WildCard (& hits string] with FileNameStream.
Status 1= unified with ‘fep#normal’. FileWameStream can include a command next fle-name
{ FileXame, Status, Cdr) Then ooe file name (& bits string) s returned through FileNamaStream
andd Status is unified with *fepfnormal’. When no more files are available, Status is unified with
Teptend_of _file’.

delete WildCard. “Status. Cdr)
Deleies all files corresponding to WildCard (8 bits string) PDSS ran not recover deleted files.
Status 1+ unitied with 'fepfnormal’.

nndelete WildCard, ~Status, Cdr)
Mo op. Status @ umficd with *fep#normal’

purgel WildCard. ~“Status, Cdr)
Nooop. Status s unified with *fep#normal ’.

deleted{ WildCard, “FileNameStream. " Status, Cdr)
Returns a stream from which deleted files corresponding to WildCard (8 bits string) can be extracted.
Thi= hist i always emply. Status s unibied with ' feplnormal’.

cxpunge! " Status, Cdr)
MNovop. Statos i unificd with * fep@normal

44

Appendix-2 Code device

Pl device manages code. Code can be manipulated by inserting commands mte device streans, {Currenily,
ouly Miere FEMOS is allowed 10 use code sdeviee stream, which is nnt available for the AVErAZE User.

asemible " ModduleName. Module, ~Status)
Assorubles the file FileName (8 bits strmg) and loads it into the code area. ModuleName is unified with
the o wsnaedd alier che assenateled nedole name, States = unified witl, success, cannot_cpen file.

memory _limit or errer. depending on how the operation has heen proceeded

load oo anoidale! " ModuleName, FileName, “Statns)
Loails filv spwcitied by FileName into code area. File farmat <bould be cither save or asserithler formar.
MeduleName i unified with the atom named after the loaded module game. Status b= unified with

success. cannot_ open_file memory_limit or error. ddepewding o the conrse of oprerations.

save one_tieednlef ModuleNawe, FileName, ~Status)
Sives e pesdude ModuleName [atonnt 1o fle FileName (% hits string] Status s ounified with either
Fuccesn cannoet open_file or memory_1imit

removesmodole{ Module N amme, ~Status)
Preletes pmnabule ModuleName falom). Status is upilied wich success or module_not_found.

debug{Flag, “Startus)
Switehes debugging mde on or ofl. Flag s alom on or of f Status is unified with success.,

backirace] Flag, “Status)
Switehes backirace (digplay ol deadlocked goals detected during global GO on or off, Flag is aloan on
o off Status 5 umhed with success.

trace_modole(ModuleN ame, Maode. “Status)
Change= trace mode of tHhe module Modnl eName (atann) re Mede, Mode 1= atom on or off. Status is
umificd wirh success. module_not_found or undefined mode.

getomodule_state] ModuleName, “ Made, “Status)
Cliscks trace mode of the module ModuleName {atom) Mode is unified with on or off, acrording to the
state of trace wode. Status s uuified witl succass or module_not_found.

spy-predicate{ModuleName, PredicateName, Arity, Mode. “Status)
CUhanges trace inode of the predicate PredicateName/Arity in module NoduleName fatom). to Mode.
Mode i= atom en or off. Status is unified with success, module_net_found. predicate_not_found or
undef ined_mode,

all_spied_predicates{ ModuleName. " Proedicates, “Status)
Umifies Predieates with a list of information about the predicates spicd in the module ModuleName
{atoim]. Lach element s a Z-elements vectar of the form {predicate name atom, arily]. Status is unified
with success or module_not_{found.

public{ ModuleName. "Public. ~Status)
Unifies Public with a list of infornation about public predicates in the module ModuleName. Fach
elenwent is a 2-eletuenis veetor of the form {predicate name atom. arity |, Status s unified with success
of medule_not_found

Appendix-3 PIMOS common utilities

Thoese wtility programs were developped for PIMOS, bot can be nsed on PTISS as well, When provided
midules are called, these utilities are loaded automatically by Micre PIMOS auto-load function

PIAMOYS provides Lhe Tollowing conversion and store functions are common utilities which can be used in both
FIATOS and applicavion programs When one wishes e use these Tacilities, be can gel the conversion resull or
algect connection stream by calling predicates of the modules provided in PIMOS. User manipulates aljects
h:'.' i:mrrtjng TesSEages in ths streain, Lhr{mgh A Nierger.

= {omparison - oa function which generates a total order upon K11 data,
- ”-H.HI'.I.ITI.FI - .’IH.‘%;“-I';:HI I'|F|?"\-.|| f1]||L'liﬁ||.
Pool without key @ bag. stack. guene. sorted hag.

s Pool with kev : keved bag. keved set, keyed sorted hag, keved sorted set.

1. Cannpsarison

comparator:sort(X, Y. "5, "L. "Swapped)
Compares I and Y. then unifies the left hand element of the relation with § and the right one with L.
ITE =¥, 5 s unifiedd with ¥ and L with ¥ {relation 5 said 1o be stable), Hesides, 1f L 12 unified with X,
Swapped i= unified with yes. and with no otherwise

Definition of the comparison relation :
If the data have dilferent Lypes, order s the type order, Le. iteger, atom, string, list, vector, from left
to right. Otherwise, the eelation @ defined as [ollows

« integer- - --Comparigen belweon ntegers.

*oatom o Comparisen between atom numbers.

v ostring -ocs-Lexicographie order, if sieings are of the same type. Otherwise tvpe order.

- list s Comparson of Care 10 they are the same, comparisen of Cdr, and so on,

« veelop oo Comparizon of the number of alements. 17 it 15 the same for hoth vectors,

procesds as {or lists.

2. Hashing
Standard hash function is provided

hasher:hashiX. "H., “Y)
B s unified with a non negative integer holding hash result ¥ is unified with X

Hash function definition
© inegerseee Absolute value

oAl e Atorn namibeer.

»string Uk o= firsteelement 4+ Cme % middle-element 4+ Ce x last-element, + string-
length. Cb, Crn and Ce are the same as kLD built-in predicates,

= list oCar hash value + 5 = Cdr hash value,

« vector o number of elements + sum (for the first, middle and last elements) of ({2 to
the power of element rank+ 1} x element hash value)

3. Pool without key

Any KIL1 data stored via this mechaniasm.

Bag

A hasre pocd There are only basic funeticns pot and get, o refer an element in the pool we have to extiarct

and there s nooway to beave it nside prool
poolbagi Stream)
Cienerates a bag object. Stream = the conmnand stoeani associated Lo,
Message protocol :
elptyd YorMN|
Hevnrns ¥ if the hEl.g’ 15 eniply. B ol lierwse

putiX)

Futs X it the bsag.

geti " X)
Cootes X Prowe the fiag bots not possible go select o specthie olement . Afler tusg operation, the element s

rettve] Fromn the bag 15 o ebenant e o the ir-'ij-',. Farlure coeenrs.

got_alll " 0)
O i wdied with the hise ol all elesents e the bag, 10 sone 0 k= anified with [T
get_and-pui{ "X. Y}

Fadls cnt one element and unities 0 with X then puts ¥ onoits place IF the bag s empey, failure occurs

Stack
Basically the same as bag, buat element order i LIFO

pookstack] Stream)
Cirnerares a stack object. Stream is unilisd with the control stream.

Messape protocol @ Same as bag protoeol,

(_Euvua-'
Dawsicaliv the same as bag, bot clement order 1= FIFO.

providl e Stroanm)
Cirnerates woapueue Stream s unificd with the control stream.

Meossage protocol @ Same ss bag.

Sorted Bag
Works like a h.‘-.l.#l. bt extraction order = Teast element fies . Hrl'r.rqhug Ly SO parisan function.

pocl:sorted _bag(Stream)
{renerates a sorted hq":l,{_lf ﬂhlinT.. with a standard rompArator .1:'I|"'I||II.EI 1'|||'||_|_|11ri5|_|:|:| roublpe Stream is u]:]iripd

with the commmand stream,

poolisorted bag{Comparator, Stream)
Warks the same. bl comparison routine s specified by Comparater. whose format is {module name
atony, predicate name atom, anity b Sorted bag objeet, which has a Comparater routine, i generated.
Stream is unified with the command stream. This predicate must have been declared ag public, with the
same arity and function as comparatorsort (5.

Message protocol @

Same as bag. get returns the least one and get_all returns a list sorted o ascending order.

b ewed]mnnl

KLI data are stored with a key by this mechanism
Keyed Bag

h2

Basi pool witd o kev, This s hased o a hash table

poclikeyed bag{ Stream)
Ceenierates a keyed hay object using the standard hash function (hasher hash /2. Stream iz unified with
the commiate streans Dntial hash table spe 15]

poolkeyed _bag(Stream. Size)
Phis works the samne as the previons predicate, cxeepr that hash size s ziven by Size

pool:keved_bag{ Hasher, Stream. Size)
With this predicate, it is not only possible o specify hash table size, but also the bash funciion. Hasher
s oof the Tormy {module sane atom. predicate name atom, arity}. The corresponding predicals st have
Preeir declaved s public, and have sane arity and Tunction as hnsher hash /3,

Message protoeal @

ety [YormnN)
Hetarns ¥ of bag b= cinply and N otherwise

cinpty{Keyv, " Yori)
As above, bt subset of eleawols with RF'}' Key 1= examinad .

puti Key, X))
Futs X into the bag. using keyv Hey

setiKey, "X)
Unifies X wath one element with key Key. Ifthere are several possible choices. ane is picked up at randomn.
After this operation, the chosen element is removed feom the bag. If no element with key Key is in the
hag. failure occues.

gt _all{ ")
015 unified with the list of alf elements in the bag. Each item in the list s of the form {key, element). 1f
i bag is empty. 0 is unified with 7.

gel_all{ Kew, "))
G is unified with the Lst of all elements with key Bey.

get_and-put{ Key. "X, Y)
Unifies X with an element with key Kay. then replaces it with ¥. If there is no such element. Failure occurs,

KP}"{EI Set
This works like a keyed pool. except that duplicated kevs are not allowed.

poobkeyed set{Stream)
This creates o keyed set. Stream is unified with the command strean. Standard hash functionhasher:hash /3)

1= u=ed. ol hash table size 15 one.

pool:keyed _set{Stroam, Siee)
This works the same. but hash table sice is Size

pool:keyed_set{ Hasher, Stream. Siae)
This works the same, but at 15 also possible to specify the hash [unction which should be used. See

keyed_bag/3 predicate ahove.
Message protocal «

empty (" YorN)
Heturns Y 1= the hag is empty, N otherwise,

empty{Key., “YorN)
This works the samwe but only the subset of elements with key Key is analyzed.

pat{ Bawv, X0 T IdX)
Aclds an elsnent with key Key and valoe X018 there is already an element with the same key, itz value is

ppdaded ol 018X s unified with {old value). Otherwise, 01dX b= umified with {}.

poell Koy, "X
Lnfie= X with the element with key Key. If there 5 no such element, failure oceurs. The element s

regpcned Trenn the set after this operation.

getoalli "0
All elesents are retuoved frous the set, and 015 unified with o list whose elements are of the form {key,

alana p T che sl was already empiy, 00 wnified with 0]

gol_all{Key., 0
O b= nnifieal with a list containing element. with key Key. which 1= removed from the set. 1f there is no

giche elenwnt . O s woified warh 7.

gebandoput] Key, "X, Y}
Heplaces olonwnt with key Key with ¥, O0d value 15 return m X I there iz no element with such a key,

farlurs creurs,

Keyed Sorted Bag

Phus s simular 1o soned bag, but sort is performed only upon key.

poalkeyedasorted .bag(Stream)
Cienerates a keved sorted hag, using standards compare routine| comparator:gort /5). Stream 12 unified

wirth the commeand streann.

pool:keved sorted bag{ Comparator, Stream)
Works the s:aune. but Comparator can be used to specify the sort routine. Hefer to sorted _bag/2? above.

ME'HHHEI‘. I]I'[I‘.{H'{I[i
I ps sindlar 1o the one of keved bag, but data comes out in increasing order of key.

K ry:—e-l] Sorted Set

This 1= simalar Lo keved sorted bag, but identical kevs are not allowed.

poliheyed _sorted_set | Stream)
Gienerates koyed soried set object. with standard compare routine(comparator.compare/b). Stream is

unified with command stream.

pool:keyed_sorted_set{ Comparator, Stream)
Works the same bul Comparater can be used to specify the comparison predicate. See sorted_bag/2

H.]H'I'H'. rl'_'lf [Iacare: J[]rUl'I[]H.lIUI].

Message protocol :
Thiz is the same as the one of keved get . but data comes out 1 in-r.rra.ﬁillg arder of]n-'-}'.

Appendix-4 Reserved module names

The following module nanes are reserved by PDSS, and should not be used Names marked with = are
avarlalile .

'Sho-en” pdss _window_device

* directory pdss_file _device

* file pdes_timer device

* window pdss_runtime_active unify

* mpimos_io_device pdss_runtime_debug
monogyny_list_index pdss_runtine_ax:apt1on_handling
mpimos _booter pdss_runtime _body_builtin
mpimos_builtin_predicate klicmp_blttbl
mpimos_cmd_basic klicmp_command
mpimes_cmd_code kllemp_compile
mpimos_cmd_debug klicmp_urb
mpimos_cmd_directory klicmp_normalize
mpimes_cmd_environment kEllcmp_ocutput
mpimos_cmd_utl kllcmp_reader
mpimos_code_manager klicmp register
mpimos_command_interpreter kllcmp_macro
mpimos_libdir kllcmp_macro_arg
mpimos_directery klicmp_mthl
mpimes _directory_device driver Xlicmp_struct
mpimos_file

mpimos_file device_driver
mpimos_file_manager
mpimos_window_device
mpimos _file_device
mpimos_timer_device
mpilmos_macro_expander
mpimos_medule_pocl
mpimnes opcode_table
mpinoa_qperltar_manipulatur
MPimos_parser
mpimos_task_moniter
mMpimos_unparser
Epimos_utility

4 mpimos wvarchk
mpimos_window
mpimos_window_device_driver
mpimes_window _manager

* mpimos_xref

* mplmos_pretty_printer
pdes_code_device

55

Appendix-5 Reserved operator names
The following operators are defined for PDSS windows and file input.

1200 xfx = 180 xf
1200 fx e 150 xf
1200 xix ——3 100 xix
1150 ix module 100 fx
11540 fx public

1150 fx implicit

1150 fx local _implicit

1150 ix With_macro

1100 xfy

1140 ify

1080 ifx =3

1050 xfy ->»

1000 xfy "

B xfx :

700 rlx =

Too rfx Y=

TOO xfx =h=

TO0 xfx ==

oo xfx ==

T00 xfx <

700 fx >

TOO xfx =

TO0 xfx »=

700 xfx =

To0 xfx <=

TOO xfx L=

700 xfy @

EO0 yfx +

500 Iz +

00 yix -

500 fx -

00 yEx

EOG yfx S

00 yfx xor

400 yfx w

400 yix !

any yfx <<

00 yix >

300 xfx mod

200 fx &

++

B W

Appendix-6 List of built-in predicates
[Twpe checking

wait(X) ' G
atom{X) :: G
inveger (X} @ G

list{¥X) :. &

vector(X, "Size) :: G

vector(X, ~“Size, “Vector) :: B

atring(¥, “Size, "ElementSize) :: G
string(X, "Size, "ElementSize, “String) :: B
atomic(X) :: @

unbound (¥, “Result) :: B

P Cimpiagison

less_than{Integerl, Integer2) :: G
net_less_than{Integerl, Integer?) :: G
aqual{Tntegeri, Integer?) :: G
net_equal{lntegerl, Integerl) :: G
not_unified(X, ¥) :: G

The fulluwing eperators are available .
<, =€, », ¥, ==, =\=, 4=

l il

4. Arithmetie operation

add(Integerl, Integer?, "Newlnteger) :: GB
subtract(Integerl, IntegerZ, “NewInteger) :: GB
multiply(Integerl, Integer2, “NewInteger) :: GB
divide(Integerl, Integer2, “Newlnteger) :: GB
modula{Integeri, Integer2, “Newlnteger) :: GR
ninuﬁETntﬂgar, “Mewlnteger) :: GE
shift_left(Integer, ShiftWidth, “NewInteger) :: GB
shift right(Integer, ShiftWidth, “NewInteger) :: GB
and{Tntegerl, Imteger2, “NewInteger) :: GB

or (Integeri, Integer?, “Wewlntager} :: GB
axclusive or{Integeril, Integer2, “NewInteger) :: GB
complement (Integer, "NewInteger) :: GB

t=, <= gan be wsed with the following operators
£, —eo®, Sy omed, €2, 2 SN N, ger

4 Vertor

nav_vector{ Vector, Siza) :: B

vector_element(Vector, Positien, “Element) :: G

vector_element(Vector, Position, “Element, “NewVector) :: B
met_vector_element (Vector, Position, "01dElement, NewElement, ~“NewVector)

5. Atom/Strings

BT

=1

new_stringl String, Size, ElementSize) .. B

string element(String, Position, “Element) :: &

string element({String, Positien, “Element, “NewString) :: B
sat_string_element(String, Position, NewElement, ~“NewString)
substring(5tring, Fogiltion, Length, ~SubString, "HewStringl

set_substring(String, Position, Substring, “NewString) :: B
append_string{Stringl, Stringl, “String) :: B
make_atom{String, “Atom) :: B

atom_name(Atom, “String) :: B

atom_number (hAtom, "“Number) :: B

Second order funetion

apply (ModuleName, PredicateName, Args) :: B

. STLERMN AUy arT

merge{In, “Out) :: B
merge_ini(lni, In2, “In} :: B

Special 170

read_consclel Tnteger) :: G
display_console(X) .: G
put_consola(X) :: G

{Mhiers

raise(Tag, Type, Info) :: B

consume _resourcedReductisn) :: B

hash(X, Width, “Valus) :: B
:urrtnt_ptenassnr('Frncaaaarﬂumbar_ X, "Y) :: B

an

Appendix-T Exception codes

s Hlogal Input Lype o |
An illegal dats type appeared as an input argument of sone buili-in predicate.
o Range Overllow o 2
The rangs of some mpud arguient of a buili-in predicate i incorreet. Bero division is mncluded here.
s lncorrect Priority o 4
Assigped priority 15 outside of the Sho-en bounds.
o Undetined Module & 8
An unloaded modide has been refeercd o,
o Lindefined Predicate - 7
A given predicate does kot appear in the required module,
® Fails] o 5
No candidate clavse are selected for goal execution (Format is faidlure /4, and no exception is reported.)
o U'nify Failed 1 - %
Body untfication has failed. {Format is failure /4, and no exception is reported.)
s Unify Failed - L0
Data different from List or veclor has been input through aerger. {Format 1= failure /4, and no exeeplion
i reprorted .)
o Deviee Called Twiee o0 12
Device stream acquisition performed twice

]

Appendix-8 Reserved Sho-en tags

Liv current version, the following bits of Sho-en tag are reserved for the KL1 language and for Micre PIMOS
IEHTE
Al 4 bits) 2704 bats) 23 {44 hats) H
Language (kL1 Micro PIMOS Free for user

Figurs 50 Shoeen cxeeplion tag

w hit 31 = Exeeption while caling & bali-in predicate,

o hit 25 — Deadlock detected.

o bit 20 - Message output on Micre PIMOS shell window.
e bat 2% - Error message sent to parent Sho-cn

e bit 24 — IO stream required from parent Sho-en.

B0

Appendix-9 GNU-Emacs library

Tliere are two hlirary modes in PDSS, The fitst one is the kl-mode, nsed to edit prograns, and the secondd
15 PDSS-mode. vsed toorun PS5, Conunands defined i each mode are shown below -

I kl-mode

ctrl-1 etrl-C
Clompiles all the text in the buffer in which command has been executed, as if this text was
Bl L sosnvee vonde

ctrl-C etrl-Tt
{opies specthed range of text in the buffer PDSS=COMFILER.

ctrl-C etel-D
Compales the contents of the buffer PDSS=COMPILER a5 a hL] program. 1'hen, looks tor the
arsetiller file® asm) which has the same name as the buffer aod vpdates parts of this file which
have changed, Fventually, generates save file. .
This conmmmand s used with etrl-C ctrl-I to recompile updated parts onty. Assembly files
ghould therefore not be deleted.

meta- X pdss-kllemp-switch-macro-mode

mcba- X padss-kllemnp-switch-indexing-mode

meta-X pdss-kllemp-switch-debug-mode

meta- X polss-kllemp-switch-systam-moide
Changes optiops of the Proleg version compiler. Commands with no argument work as toggle
switehes, while arguments 1/0 corresponds o onfoll. Detailed meaning and initial values of
these options are deseribed in Appendiz-10. Above estnmands eorrespond to e, 1, d and s
aplions, resp.
When using k1] version compiler, these commands are not available,
['] Inlormation and prompt are output in buffer PDSS=COMPILE, but basically, user does not
tieee] Lo dypee anyiling i Lhis buller,

ctrl-C ctrl-F
[splays the manual of buill-in predicates.

2. PDSS-mode

a. Window /buffer operations

mota-,
Lhsplays a candidate string, beginning with = and matches the previous string which has been
entered. This is used to repeat the last interpreted command.

ctrel-C etel-¥
Redisplays provicns input.

vctrl-C k
Dieletes ali text in the buffer.

ctrl-C ctrl-K
Dieletes all text in all PDSS-mode buffers.

ctrl-C etrl-B
Displays buffer menu of PDSS mode buffer.

ctrl-C m
Looks for the pattern module-name:predicate-name [fom the beginning of current line, and

start insert at its current position. This is convenient to sel variable nome when setting variable
monitor in the tracer.

ctrl-C etrl-F
Displays built-in predicate manual.

&1

ctrl-C f

Dhsplays connmand imanual for command interpreter,
ctrl-X k

kil buffer. but gives 8 wariing if PSS s ranmng,

. KLI program control

ctrl-C ctrl-Z
Inserts | nto the attention stream ol the KL window process 1had L';:n‘espt"-lld,‘:' B CUEEENE
huffer. This 18 troaled =5 a task sLOp reguesl Ll:gr Micro PIMOS

ctrl-C ectrel-T
Puts 2 i the same hutfer as above. This causes display of statistic information from Micro

=

PIMOS.
c. FEwnlator control
cerl-C]
(aarbage collection request

cirl-C o
Stops PDSS system. but the huffers used as Micro PIMOS windows are 1ol untouched

cirl-C ESC
[Testarts PSS,

3 Mode melependent comemsnd

ctel-C ctel-P
Ihsplays noxt PLSS-mode buffer in current waindow. The PDSS boffer group is managed as a

{']rl.'ul.ilr]J".il. &1 if WEer Feprizals Ll 4.'U[J.I][J-':1.II|J. i!I] :I."I.Iﬁ"'.‘Fh #@re 1Ii.hi|.ll-i1_\t'l'.| LU L I.lj' e

ctrel-C
This 1= almost Lhe same as Lhe previous conunand, but display occurs o the olher window

62

Appendix-10 Using command procedures for compiling

This s the descriprion of the comumand procedure o compile a KL program, used as a UNIX command . Tt
wiay be useful to compile it within a makefile, There are two versions of this comunand ¢ one for the K11 /KL
compiler and the other for the K11/ Prolog complier. Rasic usage rules are the same. hul some available options

are ilitferent

[.'l..-l 'IIII;,1J|I;| :

pdsscmnp [options | file names ..,

Chations
+e /o=e Macro expansion is performed or not. Default is to perform it kL1 Pralog
sy
+1 /4 -i o Indexing code 1s generated or not. Default is not to generate il KL1/Prolog
anly.
+2 / -d:: Deadiock deteciion code is generated or not Default is to generate it. Speed
performance 15 a little bit worse. KL1/Prolug only, (on RLI/KEL] compiler,
this code 15 always generated.)
+a f o-a 0 Assemble is performed or not. Default s to perform it When performed, an
asseanbler file (xax.asm) and a save file [xxxsav) are generated. Otherwiae,
only assembler file is generated.
+8 /=5 Compiles for Micro PIMOS or for user, Delault is o compile for wser. System-
mode private built in predicates can be used in the first case, Built-in predicates
in this manual can be compiled with the user version. KL1/Prolog only. {All
huilt-in predicates can be compiled in KLI/KILL}
—o=PATH .. Changes output directory Lo PATH. Current working direriory is the default.
File name :

xxx asm = Assembles an assembler-file (xxx.asm) and creates a save file [K sav),

xxx kIl Compiles a source file (xxx k1), makes assembler file and then assembles it to
make save file.

XX 2osame as xxx kil
Exanples
* To compile and assemble the two source files append kIl and queen kl1, and then to make append asm.

append sav, queen.asm and queen.sav in the current directory :

pdsscmp append.kll gueen.kli or
pdascmp append queen

» To compile and assemble append k1l and assemble gueen.asm
pdsscmp append . kll gqueen.asm

o To compile and assemble all _kH files in the directory source and then to put sssemble and save files in

directory object:

pdsscmp -o=object source/+ k11

3

Appendix-11 Sample program

i~ module sample.
:- public primes/2, primes/i.

primes(N, PL) :- true | gen(2, W, WL}, sifu{NL, PL)}.

praimes(N) := true |
gen(2, N, ML), sift(NL, PL},
window:create([show|Window], "sample"),

outeconv{PL, Window)

genfMax, S):- true | gen(1, Max, 5).
gen(N, Max, S) :- N =< Max, M := Nei | S=INISi], gen{M, Max, S1).
gen(N, Max, S) :— N » Max | s=[].

gift{[PIL], S} := true | S=[PI51], filter(P, L, K), sift{¥, S1).
sife([], 51 = true | 5=[].

folter({P, [QIL], K} - Q mod P=:=0 | filter(F, L, KJ.
filver{F, [QIL], K} := @ med P=%=0 | K=[Q|K1], filter(P, L,k Ki1).
filter(F, (1, K} = true | ¥k=01.

outcenv([PIPL], W] :- true | W=[putt(P), nliWi], ocutconw(PL,6 W1).
outconvi], Wi :- true | H=[putb(”ElD"},getc_{_}],

| #- sample:primes(10,PL).

yes.

i *- sample:primes(10,PL}|PL.

PL = [2,3,5.7]

yas.

| *- sample:primes(13).

yes,
| 7- halt.

fid

Appendix-12 What to do if a bug is found out...

Lo Wheen vou find system bigs. please inform the PDSS development group. E-nail address is

.:,

pdss@icat2licot. junet

L vour maal, snclude the followime information :

Tf i

B |

PSS (enndator, Micro PIMOS) version mnmiber,
- Uompiler versioh mamber.

o The program mowhich yon foomd the hag

- How 1o start it and what happens

C Execution log and weird poinis

=i by ol s prog e ol vour own, ge al the least through the following list

Hawe vou done varchk”

o case of deadlock, If theee are the following goals i the incrimined part. you may have forgotten
ter close commamd stream to file or window, or vou may have requested the output of undefined
varlihles. Check vour code

mpimus_fila::xx:xl(e ¥ or

mpimos_windew:xxxxxxex(...)

.l\l“'{'l}'.? i the rasge of |.|r*.4.l.”i.'.|i.'k. il the Fﬂ]lq’_m. iug .‘|:_‘||_|<'1_|:_-_ Are L the loeked prart, Lhere must bhe muthplﬁ
reference paths to the ipput streams of a merger and you have forgntten to close soine sbream to the

merger. (heck wour program.

pdss_runtime_body_builtin:active unify(X~, I-)
pdss_runtime_body_builtin:active_unify(Y™, Z7)

Index

_".l“qFI.I_j:'-_ii'i]{!l!1 of counman] stream 32 Macras 15
Arithmetic 16 Conditional branch macros 17
Arithmetic operations 11 Constant description macros Lo
St fString predicates 13 Macro hibrary 22
Arguient Arithrneiie operakion macros 16
Imglicit argument 146,17 Unification macros 16
Cilelnew argument [H Micro PIMOS 23
Shared argument 19 Module 2,8
Streamn argument 19 Module definilion &

String argument 2
R Pdsscmp 6

Bayg il FPool without key 51
Buili-in predicates 9,24 Priority 4
Frioity 6
Ol ordering 8 Public &
Clonle Management 33
Commiands 2432000008 Queune B2

Clongmand inpuol fererean 33 _ i
Heport Stream 5

Resource

Connnand miterpreter 23

Cammand lise 249

{Cepnousnd stream attachment 28 Erheriuling 8
Clomparison 105]
Clompile 25635
Control Stream 4

Second order function 13
Sequentiality 2
Sho-en 2.3

: 3 seneration 3
Data Lypes & Sho-en Gener

Meaillonk 6,41 . . Sorted B?lg 5 .
Device Stream 32 Special 1/0 functions 11
J.h]'l’i'r.ﬂr}' r'll:'l.r!ill;.';l'“]t']'ll 3‘2 S‘IHEF 5_2 . .
Statistic information b
Fouality 2 Siatus information 3
Evaluation Strearn support 14
Exerprion 6,33 Syntax 7
Faception information 6
Tracer 47
tailure 2 Type checking 10
LN -Emacs 35 Veclor predicates 12

[sgard 2
Hashing 5l

10 funetions 28
lenplicit arguments 21

K L1 Language Specification 2
Keved Dag 52

Keyed Set 53

heyed Sorted Bag 54

keyed Sorted Set 54

keved pool 52

