ICOT Technical Memorandum: TM-0700

TM-D700

Efficicnt Implementation of Basic
Narrowing

by
A, Ohsuga & K. Sakal

“arch, 1989

O I9se, 1CoT

Mita Kokusai Bldg 20F (3) 456-3181—~5

ICOT 1-28 Mita 1-Chome Telex ICOT ]32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



EEFo—A »FOElETOER

Efliient Implementation of Basic Narrowing

KBEIEE RFAL
Alihike OHSUGA and K& SAKAT

() TR = o & o — & R T

Institute for New Generation Computer Technology

ABSTRACT

This paper presents an efficient metheod of implementing reduction and narrowing
in Metis. Metis = a term rewriting system generator developed at the Institute for
New Generation Competer Technology (ICOT). Its main facilities are the Knuth-
Bendix completion procedure, relntational thesrem proving and inductive thesrem
proving (inductionless induction]. This melhod 5 an extension of basic narrowing
technigues and we show how the method prunes redundancies of each derivation

stepd  INTRODUCTION

J'.rftfi-éi Elﬂ} iE a term fE“’.."'iti.TlE SF'F‘HI'I'I gs:nel:a.hm‘ I',IE'UE".]DL:IF_.E]
at ICOT. [tz main facilities are the Knuth-Bendix comple-
tion procediure (KA} [7] and two theorem proving meth
ods acquired by extending KB, inductive thearem proving
(inductivaless induction) and refutational theorem proving
[S-stratepy). Another KB-like equational thearem proving
techinique has been implemented in CAP — LA[computer
tided proof }i_}':il‘.t]:]l:l [12], also dtv-:iup::d at TCOT. We can
see that net ealy our methods but alss many other theo-
rem provieg methods are realized as extensions of K8 {2).
Thus, 7 13 & kernel function in our research.

Reouphly speaking, KB is an iteration of three processes;
the orientation process of equations to obtain rewrite rules
[rom eguations, the superposition process to generate erit-
ical pairs [CFS] and the reduction process of CPs to check
local confluence. In spite of the wide applicability of KB,
it is, in general, inefficient because it often generates too
many CFs iterating the superposition process. That 1s to
say, the efficiency of B is heavily dependent on the effi-
cieney of the superposition process,

Marrowing [131 3] has been proposed as an algorithm to
solve equations in equational theories. It needs a confluent
torm rewriting system (TRS) that corresponds to the the.
aty, and returns a complete set of unifiers. Thiz algorithm
is complete; however, its implementation often wastes time
and space because of too many redundancies generated in
derivation step. Hullot [5] has proposed “basic narrowing”
to prune the unnecessary search space of the algorithm.
Recently, Bosco [1] has shown more efficient and complete
narrowing than unconstrained basic narrowing by exploit
ing the refinement that corresponds to the SLD of resclu-

trom.

By abserving these two processes, superposition and nar-
rowing, in two different contexts, we cen find a similar-
iy belween tliers. Thased an thisz nhsewatinn, Wi EEEa.n
to study the adaptation of basic narrowing techniques for
climinating redundancies of derivation to the superposition
process. Basic narrowing cen be more efficient if it runs
onlv on normal forms, ie., terms derived hy narrowing are
kept in normal forms by reduction in each derivation step
as KB usually does. As pointed out by Réty [11], however,
such a combination may lose the completeness if they are
combined carclessly. Héty has studied such a combination
and proposed complete methods.

This paper proposes efficient new methods for reduction
and narrowing to make K efficient. The methods are
based on basic narrowing in [1] and are complete even when
cormbined. They are controlled with a label status instead
af a basic sccurrence check, and that modification of the
label status is driven by an ordinary replacement of the
left hand side by the right hand side of o rewrite rule.
Dnee terms are converled to the infernal format, they need
neither a basic occurrence check nor maintenance of basie
occurrences. Details of the adaptation of these techniques
to the superposition process are described in [B].

Section 2 introduces the basic concepts and fix notations.
Section 3 presents the term structure in Mefis. Sections 4
and 5 describe the basic reduetion and narrowing algorithm
in detail. Section 6 describes their combination and several
examples illustrate how our algorithms work.



2 PRELIMINARIES

This section introduces the terminology and nofation in
thiz paper and suevoys well-known properties of TESs. Ibis
assumed that the reader is familiar with the basic concepts
of TRSs [4].

Defuition 2.1 (Terms) Let Fbe a finite set of function
symbols and 17 be a denumerable set of veriables. A ferm
ie pither & variable [rem Voor flti,...,{n), where f € F
bas arity moapdd each & 15 a term. We will denote the set
of all terms constructed from F and V by T{F, V). Vi)
denotes the ot of variables vecurring in berm 1,

Definition 2.2 {Substitutions) A substitution is & map-
ping from 1V ta T(F, V) and is denoted by #, possibly with
subscripts and primes. The domain of # is {x|0(z} # z}
and iz denoted by THA), 1he set of terms introduced by
§ is depoted hy S(0), Le., {#z)lz € D[N}, and the
set of variabies introduced by @ is denoted by I(8), i,
I8} = Uemy Vidz)), We write Bt} ta indicate the re-
sult of substitution § o torm ¢ We define quasi-ordering
- on substitutions, i e, # =¢ & if there exists a #" such that
§.07 = &, where 60" is a composition of subslitutivn, ie.,
(68 )(t) i H81).

Definition 2.3 (Oceurrenen]) Let ¢ be & term. We define
the st (i) of occurrences as a set of finite sequences of
natural numbers as follows:

li}e € Ot)
(i e e ) =
icoe Oflt,.. e [l,....n}, fEF

Definition 2.4 (Subterms) Let £ be a term. If 0 € O{t},
we: define the subterm of t at o as term o hy:

(i) tfe =1

() Fltre by

We define the replacement in t of 5 al o as the term R H
as follows:

Slafice =t

(V1] &= 4] = s

f'~,] fite.. "JLE!"'IEFI:I[t-o = 3] =
ity tle e sf Lt

We define partial prefix ordering on ({t): o < p iff there
exists g such that o-g = p. We denote the set of nonvariably
oceurrences by O(t), Le., Oft) = {o € Ot)jt/e g V]

Definition 2.5 (Fquation} An equation is a pair, [ =+, of
terms. Let E be a finite set of equations. We define rela-
tion =g on 7(T,V] as the compatible, stable, symmetric
closure of £. An equalify in equational theory £ is the
congruence generated by E and denoted by =g.

* Definition 2.6 (Term Rewriting System) A term rewrit-
ing system (THS) is a finile sel of oriented paiss, [er, of
terms such that V(I € ¥(r}. An element, {er, of a TRS
is called a rewrite rufe.

Definition 2.7 (Reduction) Let R be a TRS. A term, £,
is said to be reducible to another term, u, at ocourrenee o,
using rule e r in A, with substitution giff

(1) tfe = 1) with a substitution #,
{ii)u = tlo = Ol

We call this relation reduelion and denote it by #— e gts,
t=4{p jurte OF Simply t—4u. We denote the reflaxive transilive
closure of — by —. A lerim, 1, is said to be trreductbic if
# is not reducible term. An irreducible tern, w, such that
§ 5 wis called an irreducible form of t (with respect to )
and is denoted by £ ]

Thefinition 2.8 A TRS, R, 15 said to be confluent if for any
term, ¢, and any iwo reductions, S 4y and t -7y ty, Lhere
cxisls a term, u, such that §) = w end Iz Zw. B is sald to
be terminating if there exists no infinite reduction sequence
ity —+---, 1§ fi is a terminating THS, then every lerm
¢ has an irreducible form, ¢ [ Moreover, 1 is confluent if
and only if irrettucible form ¢ | is unigue. In this case, TRS
B is said to be complete and irreducible form ¢ | is called
the nermal form of £ (with respect to ).

Definition 2.0 (Narrowing) Let B be o TRE, A term, 1,
15 sa1d to be narrowable Lo another term, u, at oCCUrteney
o, nsing vule o in B, with substitution 0 iff

(i) 8t fo) = 0(I) with a substitulion &.

(ithu = 0o < r]).

We call this relation norrounng and denole it fep e g,
Brbfo, tueyti OF SIMPlY et

Since variables in rules are universally quantified, we as-
sume that V(Efe1 N V() = ¢.

Definition 2.10 {Basic narrowing [5]) & derivation
tg* o doora ot 1™ " ou 3 fomibrat fnoi]tn
i said to he basic iff it is based on Oltg), e,

(i) Op — Oltg)
{ii) o; € O, and _
Oa = {0i={pe o = phi e -plp € O(ri)}-

Definition 2.11 (E-unification) Two Lerins, ¢ and u, are
said to be S-unifiable iff there exists a substitution, @, such
that 60t =& Mu). 0 is called an E-unifier of ¢ and u.
(¢, u) denotes the set of all E-unifiers of £ and w.

Definition 2.12 Let ¢ and u be two terms and W be a
finite et of variables containing X = V(£ U V(u} We say
that a set of substitutions, ©, is & complete set of F-unifiers
of ¢ and n away from W iff:

Viee, D) X &I(O)NW =4

(i) @ C it u}.

(i) V8 € W2, u), 3 € B sl g4
Moreover, © s said to be minimal iff it satisfies the
following condilion:

b= doncles Llie syntactical equivalence of Lwo terms.



[W)VO,0° €846 =0 A8 and § ¢ 0.

Let K bea TRS. We assume, throughout thiz paper, that
is complete and F is partitioned into a sel of constructors,
denoted by £, and a st of defined operelors, denoted by
0. In addition, every lofi hand side of rules in ® s in the
form dlsy,....8, where o € I} n 13 an arity of d, and
sl e 4l oo m)dis a term. If we do not divide F hetween

P and 7 explicitly, we assume that I = & and €7 — 4.

i TEHEM STRUCTURE

Thiz seclion introduces Ehe internal term structure in
M:liz. In order to increase the efficiency of reduction and
narowing. @ lerm is represented by a tree siructuze with
labeiz. The label is 2. » ur %7, and is attached to each
nenle. which represents an oceurrence of the term.

b Goal terms

Ihe label in & goal term shows the status of the subterm at
the node. For example, tie meaning of label o 35 Lhat the
subterm is a candidate for redex, The subterm with label
L &1 normal form. 57 means that the function symbol of
the altached node is a constructor, i, the subterm itself
is not a candidate for any redox but its {proper) subterms
may be candidates,

We will denote variables on {1, &,\/} by &, 4, ..., and this
tree structure by a pair, o:f, for all the sublerms occurring
i ihe term, where o is a label, ¢ is & term, and ; is an infix
operator connecting o and £ We say o is o label of et
and call 4 term with labe! & an o ferm.

The initial status of labels in a goal term iz defined as
follows: each vanable has the label L, each constructor
symbel has the label 77, and each defined symbol has the
labrel w. Tntmt:'ﬂ:]y. the o label indicates the basic verur-
rence of basic narrowing [5] or the basic occurrence of basic
reduction, which will be defined later. The following ex-
ample shows the initial status of a goal term,

Example 3.7 Tet & be {50}, I} be {+} and V be
{A,...}. Then the initial stalus of & goal term =(X +

0% + (00 35
A .
1 0

and is denoted in this paper by:
-:—-{v:s{-_'-j-llrJ_:Xl'Q‘;D]}:!,'?;s[v;[j}j_

The purpose of the following definition is i characierize
the subterm which corresponds to the subterm at the basic
occurrence In basic narrowing, We call such a subterm a
candidate.

DNefinition 3.2 Let £ be a term and 5 be & subterm of £ a1
ocourrence o, We say that 4 is & condidale (or candidate
term) in ¢ ak o iff;

[i)sisaeterm.
(i) ¥p,p < 0 = t/pis a & term ar 57 term

s 15 said to be o pon-candidate if it 15 not a candidzte,

Unlike the basic occurrences, the set of candidates does not
contain occurrences of constructer symbaols, and it may not
be closed by a prefix. For example, the candidates in the
aliove example are s{X + 0] | s(0) and X + 0. Terms,
s{X 3 03,1, £{0) 2re non-candidates.

3.2 TNewrite rules

Rewrite rules are also converted into Lhe internal format
i 2 similar way to goal terms. Each left hand side (LHS)
of the rules hias o label, « called a dummy lobel  The
durarmy label matches with any label so thal we can use
syatactical {elassical] unifiention or matehing algorithms
when we atlempt to unify or match the THS of the rulo
with a goal term. Each right hand side (RHS) of the rule
1s converted in the same way as goal Lerms.

Example 3.3 Let I and I be the ones used (i eaample 3.1
andd B he a complete TRS defining a sum of natural mun-
bers: H= {X 40X - (r1), X4 s(V)es(X +V)---(+2)).
Then the structures of these rules become:

L [Te s A
0K #0 O X “0s > w4

By Tov

iri} (rz)

3.2 Conversion funetion

Mow we show the conversion function, ¢onw, which attaches
the label to each node of a goal term or the LHS or EHS
of the rewrite rules,

Algorithm 1 {Conversion function)
Input ¢ is & term in an ordinary structure.
The sutput is a converted term.

. function conut)
ift& V¥ then
if LIY then
return{+:t)
else
return{ L1}
else

let fiz, ..

=1 S UM e B RS e

JEa )=t

where f e F,onoarity ef f, 5 subterm of £
B let (o) = conw{s ), Vi € {1,... ,n}

1. i LHE then

]

11. return{«: floyiuy, .o, a0}
12. elseif f € D then
14, returnfe: flog ug, .. i ttin )



14. else ¥, f e O
15. return{ T flog ity ..., o i) )
IG. end.

In our system, we need to distinguish betwesn [unction
syiwibols B oused in defined svmbols D and construclors
C' only in the context of inductive theorem proving. ln
aeher situoations, such oy BB and Sostrategy, we assuine
that every function symbol is divided mte the category of
defined symbols, and hnes 14 and 15 in algarithm 1 are no
longer needed.

4 INWERMOST BASIC REDUICTTON

‘E'he fiest step in efficient reduction is to eliminate unnec-
esat v rule searches and atlempls to match them with a
gail term in sach reduction step, such as mle searches for
alveady normalized terms wnd rule matching to constructor
terins. This can be realized by borrowing the notion of ba-
§1¢ narrwing, i.e., a subterm is not evaluated if it is not in
2 basic oceurrence. We call this reduction fmnermost bagie
reducdion, In order to map the notion of basic occurrences
to the inlernal tree structure, we define well-definedness,
We say a term, £, is well-defined if the set of occurrences of
vandidates in 1 15 sufficiently large on { in the sense of [11].

Definition 4.1 Let t be a term, s be 2 subterm of ¢ and
he a complete TRS. ¢ is said to be well-dejfined with respect
to Al for any subterms s of t, 8 has no candidates = 5
is in nermal form with respact to B

Let § be a non-labeled term. Then the term, conw(t) obvi-
ously satisfies a well- defined property.

We show the algorithm that returns a normal focm of in-
put terms. We call it “inpermost basic reduction™. In the
algorithm, DCN-select stands for the “don’t care nondeter-
ministic selection™ funclion used in [1).

Algorithm 2 {(Innermost basic reduction}
Let ! be a complete TRS,

Input a:t is & kerm bto be reduced.

The output is 2 reduced term.

1. funetion reduce(sa:t)

2. while there exists a candidate in ¢

3. DCN-select an innermost candidate #:5 jn et at o
4 ifWyede i there is no @ st #(g) = #:5 then

o replace the Jobel of 5 4l o with |

G, elae

T DCMN-seloct god € Hst Flg)=e:s

wilh substitution &

g. let ot i= oo « 8(d)]

4. end_while
1. returnfe:t)}
11, end.

As the dummy labels on the LIS of each rule allow the
use of syntactical {classical) unification or matching algo-
rithms, we need not extend the notion of unification or

matching in spite of the use of the labeled free strue-
ture.  For example, when we attempl to makch the LHS
of a pule, 0 #(+: X w 0 0) e L2 X, with & goal term,
o7 a(vy 00, 77 0], the first malching algorithm tries to
match the top operators of both terms, - with . Secondly, it
trics Lo mateh the labels of bolh Lterms,  with ». Both the
first and second matching always sucesed, then an attempt
is male bo omatch 40+ : X e 0) with 401 :s(L:0), L:0)
recursively,

We show the completencss of this algorithm.

Lewmmn 4.2 {Coampleteneszs af innermost basic redue-
tion) Let ¢ be a term and A be & complete TRS, Then al-
gorithm 2 always terminates and refurns the normal form
of an input term, ¢, with respect to f1 if ¢ is well-defined.

Proof: Since R is complete, tesmination of this alge-
rithon s guarantesd by lines 2 and 5. 1F the ontpud
of the alrorithm ts well-defined, then the lemma ob
vieusly holds. Therefore, we show that the algerithm
hofds a well-defined property of §; in each cxecution
step . Let & be well-defined. Suppose that e 5 be
a selected] candidate term in line 30 If no role in R
matches »;5;, then »:s5; 15 in normal form word, £
since £, 15 well-defined and 5, is innermost candidate.
Then the term, 4;4,, obtained by replacing the lahel
of » @ 5 with L, satisfies the well-defined property.
Otherwise, let g;e d; be a selected role and & be a sub-
stitution s.t. di{g;) = e:& inline 7. Since #0515 an
mnermest candidate, 1t does not contain a reducible
{and prupcr:l subterms. Thus, for all « & S[ﬂ,]‘ u s
in normal form, e, §; never instantiates a reducible
term bo the variables in Wg;) and V(d;). Thus, the
term t;4;, obtained by replacing :s; with &{d,), still
gatislies the well-delinsd property. 8

Heuee, the algorithm always Onds the redex of an input
term aned reduces it It 15 guaranteed to return a normal
form with respect to R

Example 4.3 The term in example 3.1 is redueed by algo.
rithm 2 with respect to f given in example 3.3 as follows:

ezl

e du T
Lo
Henfr1)]
LEF ER=1} +
+ v X

vl 1oX

The goal term in example 4.3 initially has two candidates,
£ and £-1-1. The algarithm selectz the innermest one
(€-1-1}) and tries to reduce it. Since none of the rules
in & matches to the subterm, the label of the subterm is
changed to L. The obtained term has only one candidate,



g, a0 the algerition pomediately selects and reduces it, The
nexl lermn also has only one candidate, & - 1, and the last
term obtained by ieducing the candidate has no candidate
termn, wlich means that the last ferm is in normal form,
Thus, we can select redoves efficiently in each reduction
step and find out the nocalily of the ablained term with-
oul unnecessary attempts to match roles with terms

This algecithm = not complete in the sense of lemma 4.2 50 a
reduction strategy other than the innermest one is adopted.
However, it can he estended Lo the complete algorithm in
any siralegy. See section 7.

F 5LE BASIC NARHOWING

The fullowing algorithm is the one in [1], called S50 rafine-
ment of besic narrowing (SLD-narrowirg), to compute the
E-unsfiers of two input terms. We have modified i 10 arder
to exploit the internal steucture of terms, and then have re
e Lhe basic sccurrence check. In the algorithm, DEN-
execute and QNN seleet stand for the *don™ know weoude
terzuzndstic execution” function and “don’t know nondeter-
ministic selection” function, like [1). We tntroduce & mets
function symbel, £, ie, £ ¢ F, in order to handle two
trerius as ane lerm, This symbael is treated in the algorithm
Aas 4 construelor,

Algorithm 3 (SLD basic narrowing)
The inputs are two lerms to be unified.
The output is the E-umifier of the twe inpul terms.

L. Tunetion unify(L,a)
2 et (7R, w'), 8 == nareow|7: E{t, u))
3. if there exists & s.t. #(1") = @{v') then
4 return{# - g7
3. else
6. Inilire (retry 20)
ioend.
Let B be a complete TRS.
Input a:f is & term to be narrowed.
Lhe outpat iv o pair of a narrowed term and its substity:
Lian,

1 funetion nar row{ot)

2, let F:= g

3. while there exists & candidate in At

1. DHOM-select an innermost camlidaie ez in a:f at o
5. DEN-execute

f. replace the fobel of 5 2t o with 1

7. or

A,

DE Meseleet ged e Han 00) = 85}
with m.g.u. ¢
b, let ot o= 8o :tfo + df)
1 let 8:= 8.0
11. end_ DI N excocute
12, end while
1} returnf{w:e,8))
1. end,

Lemma 5.1 (Completeness of SLD hasic narrowing
Leb ¢ and u be two well-defined terms, znd el B be & com-
plete THS and © be a set of all substitution @ such that
0 = una fy(t,u). Then © is a complete set of E-unificrs.

Froof: See[l]l. w

& COMBINATION OF INNERMOST BASIC
REDUCTION AND SLD BASIC
NARROWTNG

This section describes the combination of innermost ba-
sic reduction and SLD hasic narrowing deseribed in sec-
tions 4 and 5. Although it may prune many redundancies of
derivalion, a careless combination may lose the complete
ness in the sense of lemma 5.1 pointed out in [11]. This
comes from the fact that candidates for reduction and for
narrowing generally de nol colncide.

.1 Paired labels

Tis order Lo guarantee the completensss of a combined al
gorithm, we extend the Tibel to an ordered pair of labels,
enclosed by { and }. The pair of labels in a goal term Tep-
reseuts the slaius of the subterm as & single label does, the
LHS of the pair is wsed for varrowing, and the RES for
reduction. For example, the paired lalicl {w) indicates that
the subterm is & candidate for the redex of both narrew
ing and reduction. Lhe subterm with the label fai) (resp.
{La)} is i the wormal form of reduction (resp. DATTOWIng),
Leny 0L ig a candidate oaly for redex of narrowing (resp.
reduction). (7%} means that the function symbol of the
attached node 15 & constructer, le,, the sublerm itself is
not & candidate for any redex but its (proper) subterms
may be candidates,

Frow now on, we call Lhis pair “label” instead of “paired la-
bel” and call the lali] used in the previous section a “single
label”. We will dengte varialdes on L e 7l by a, B, ..,
and variables which represcnt any label by A, g, ... We can
define a teee ytructure with labels in the same wayv as with
single labels. The initial status of labels in & goal term is
defined as follows: each variable has the label (L 1) instead
of L, each constructor symbol has the label (7} instead
of 57, and each defined sysnbol has the label (s} instead of

Example 6.1 Let O, 0 and V be the &, D and V used in
example 3.1, Then the initial status of labels in a goal term
AU+ s(0) becomes:

foo +{ (v 5o H((L L) X, (9 :0)), 6790 - (7w 1 0))

We need to extend the definition of candidate to handle
the mew labels as follows:

Definition 6.2 Let ¢ be a term and 8 be o subterm of ¢
abt occatrrenoe o We say that s is an Hecandidute (resp,
N-candidate) in £ at o il

{1} 5 is {o) term (resp. (e term)
{)¥p,p < o = tfpis (o) term (resp. (o term) or (G
term.

where s used to denote any label value, for instance, {o)

represents either (s} {al) o (7).



The status of labels in a rewrite rules is slightly campli-
cated and technical in order to increase the efficiency of
derivation by eliminating unnecessary candidates, keeping
the well definedness in a goal term.

Let {or be a rewrite ruie. Labels are attached to each noede
of two terms, { and r, as follows:

(i} Each node of { las & label {e+) exeept that the top node
of I has a label {a4), where a iz a labe] variable, and
v € V1) s a label (Biy) where 1 is a unique identifier
for every occurrence of variables in J,

i 8y }in T where d € D has a label {29) whete @
is the same as the o al the top of L

(30} efsg0.o. 8q) in r where ¢ O has a label v

{rv) For variables v & V{r}, one varialile v in r has a label
) 1 v s Binear in L and the unique occurrence of v in
{ has the label {3} Otherwise (v is non-linear in ), it
has a label (fe w7y wy) where §,..., 8, and
Tiso oo come fram all labels of » occureing in L If v
is non-linear in r. then other vs have labels {14} (if v is
lnesr in 1) or (Lygx ..oy (if @ if non-linear in 1.

ey oA,
Ll fhy sy

Example 8.3 Let C be {c} and 1) be {f,g,h}. Then
the inlernai struclure of & rewrite rule FIMA X)L Y) e
gl X, k(e(Y ), elY1)) becomes:

6.2 Unilication and matching

The narrowing process consists of two processes, nermal-
ized unification and reduction. The reduction process alse

consists of lwo processes, pattern matching and replace -

ment. In this subsection, we will extend unification and
matching in order to handle our term structore efliciently

The unification process belween the goal term and LHS
of a rule is made vp of two procedures. The first iz an
ordinary unification, deseribed in section 4, which ohbains
substitution & but does pol instanlbizle variables, The sec-
vl changes the status of labels in the introduced term by
S0 and the status of labels in the goal term. The sec-
ond process occurs oniy if the first process sueeeeds, and il
never fails.

Tl £ be a goal term, s be a subterm of £, [or be a tewrite
rule, and # be a substitution obiained by the first part of
unifying ¢ and I. Then the second process replaces labels
in tas [ollows:

(U-i) Wo & V(t},v € D(F) = replace all the label of sub-
terms (#) 5 with (3 il 5 is a prefix of v,

(U-ii) ¥e € V(t),v € D(F) = replace all the labels of
subterms in #{v) with

(e} if the subterm is in the form diws, ..., u,.) where
de .
() if the sulitermn is in Uhe form efy,, . ..
ce

1:_[ .I.:I- il the sublerm 15 in V',

.U, ) where

{U-i} makes & subterm of ¢ R-candidate only if ils suffix
iz instantiated by 6. It keeps the set of H-candidates min-
imal. (U-ii} is only for making the intzoduced term an
R-candidate,

The matching process of the LIIS of a rewrite rule with
& goal term is also made up of two procedurss, The fisst
is an ordinary matching procedure, described in section 4.
The second 15 a process to instantiate label varialies on
the LHES, The second pracess occurs only if the first pro-
cess succeeds, and it never fails. If the matching process
succeeds, then the replacement process, which replaces the
instantiated LHS in a goal term by the corresponding RIIS,
makes a status of each label v the RYS dynamically as
follows:

{M-i} Label variables in r take the same value as the cor
responding variables in [ when they are matched with
the goal term label.

{M-iij Fowe ool becomes L s Fo= 0Lk
{i,....7}, otherwise, it takes the value of §,.

The main role of label making is to propagate the N
candidates of a goal term to the reduced term. The fal-
lowing example ilustrates unification and matching,

Example 6.4 Let ' be {c} and D be {f g, k1), and lct
fi. conzist of one rule, the same as example 6.3, e, =
AR, X0 Y ) e gl X A(e(Y). oY1)}, Then a goal term:

fld: LA} X, o} oi((L1):Y))

is instantizted and rediced as foliows:

i

(windy 0 ndy
RedHftmn ta

Instantiation 0

]

In this example, # — {X < h(X' X")} instantiotes X
in fy at ¢ - 1, then the label of the subterm at oeccur-
rence € is changed by (U.i) to the one in £, at 5. ln-
troduced term A[X', X') in ¢ by @ 1= given the label
status by {U-ji:]. I t3, the label status of subterms at
g, €2 and £+2 -1+ 1 is determiner dynamically by
(M-i}. For the variable at £-1 in 25, {M-ii) inakes the
izbel status 1 as a result of computing Lx 1. Thus,
the obtained term includes {g(X', hc(i(¥)),cli(¥)))).
h{e{z(¥)),«(:(¥))), #(¥)} as N-candidate terms and
(5OX KGO eliY D), MY eGY))) o R

candidate terms.



Remark: This exanple only shows how instantiation and
reduction work, 1t doss net secur in our algorithm, be-
cause in the algorithm f{X (¥} may not be selected az
a candidate for narrowing betore the evaluation of ({Y ).

6.2 MNormalized SL1 basic narrowing

Wow we are ready to show the final algorithm, which com-
putes E-unifiers efloctively,

Algorithin 4 (Normalized SLD basic narrowing)
The inputs are two terms to be unified.
The eutput is the E-unificr of two input terms.

1. Tunetion Nuntfy(s o)

2 let G0 B, €7) = redved (b ElL 1))

3. let {(fr B w"8) = Nnarrow{ 570 E(t', u'))
4, if there exiate & st 00" = 076" then

5 return{# . )

i, o] sgs
T. failure {retey 3.}
E end.

Let Jt be 2 complete THS.
Taput A8 iz a term o be natrowed.,
‘The oulpul ts a pair of a narrowed lerm and its substilu-
L.
1 funetion Nuarrow(A:f)
2 let #:— g
3. while there exists an Necandidate in Azt
a1. DON-select 2 innermost W candidate @5 in Af
al o
3. DN execute
th, replaee the fabel of 5 4l o with (L8
or
. DEMN-select ged e Nt Hlgh= 8008
with m.e.u. §

o let Airi- Nreduce(®(At[e <= d]))
. let @ ;- ¢ ¢

il. end _DEN-execute

12, end_while

13, roturnf(A:f,6))

14. end,

Trpmt i a Gerin Lo Be redocesd.
The output 15 o reduced term.,

1 funetion Nreduee{d:t)
2. while there exists a L-candidate in ¢
3. DCN-select an innermest R-candidate {oe) s in Azl
al o
ifWged e R, Lhere i no s.1. 8(y) = fud:s Lthan
replace the falel ol & aloo with {v ()
else

DCN-select ged e H st 0(g) = (o
with substitution #

-1 Shon &

8. let A:t:— Astfe + 8(d)]
9. end_while

10. rcturnfh:t)

11. end.

This algarithm can be seen in the SLD refinenent of S1-
basie W narrewing in [LL]. Unlike it, cue algocithm uses two
kinds of accurrence set, sete of basic occurrences for redue-
tion {corresponding to Recandidates) and for narrowing (V-
candidates). A normalized goal term has no Hocandidate

-~r

terms. but Ib-candidate terms are added when substilution
Lo 5”“1 variables aecurs, IV canmdidates are Ereated in siond
larly to candidates in norrow, except that any N-candidate
term in a goal term occurs only once in & reduced term as
MNecandidate if it is matched to a variable on the LIIS which
appears on the KHS at least once. Converselv, Nnarrow
dogs nob tncrease Wle number of N candidale lenins when
Nreduce reduces the number of non N-candidate terms.

Theoreny G5 (Completeness of normalized basic nae-
rowing) Let { and u be two well-defined terms, Mt ke a
complete TINS, and © be a set of all substitution 85 such
that & = .-"p'nniflr;,fi_r_t,r..::, then B s & complete set of -

unifini s

Proof. Ses 7] a
TOCONCLITSION

This pager prezented several methods of implementing re
ducticen and nareowin an Metfea, Fach derivation ia an
cxtenzion of hasic narrowing. Their combination was alsn

pll‘hl'nh::‘. b realize noeimalizen] pa u'l'u'.']llﬂ.

Innermast basie reduction in section 4 realizes an efficient
reduction by eliminating unnecessary aliempis to match
rewrile rules with goal lerms. I s nol complete if reduc-
i stratesios other thas the jmrenmost one are adopted.
However, it can be casily extended to complete reduction
in any strategy using the technigques in section 6, which
keep the well-definedness of a goal term when substitution
o the varialile on the THS of a vewrite vole occores in each
reduction stop. However, adoption of such 4 stratogy may
lose the efficiency which our algorithm has. For example,
the outermost strategy tries to match a rule with the top
of the goal term every tims its subterm is reduced, In such
a case, the technique used in [6] will ke effective, That is,
each H-candidate has a demon as its constraint if an at-
Leeraipd Loyt o v le with the node is parbially saceess ol

SLD basic narrowing is intrinsically the same as SLD-
narrowing in [1]. Our algorithm s controlled with a la-
bel status instead of & basic occurrence check, and that
modification of the label status is driven by an ordinary
replacement of the LHS hy the RHS. Once berms are con-
verted Lo the internal format, they necd neither & basic
ouearrence check nor maintenance of basic occurrences.

Their combination is not straightforward becavse a care-
less combination of innermeost basic reduction and SLIY ba-
sic narrowing may lose the completeness of derivation. In
arder to guarantee the completeness, our algorithm needs
an extension of unification and matching processes, which
mainly meintain the label status of 2 goal term, In spate of
such overhieads, this algorithm is in fact efficient because it
prunes many redundancies of derivations.

These alporithins have already been implemented on an
experimental version of Metds in order to increase the eili-
ciency of the Wnuth-Dendix completion procedure by elim-
inating unnecessary critical pairs. In such a context, the



algorithms described in this paper can be viewed as a re-
striciion of the procedure. Kesults of such criteria to re-
strict the superposition process are known. Compared with
these results, our algorithm is less powerful but more effi-
cient because once terms [equations) are converted Lo the
internal format, our restriction of the reduction and nar
rowing {superposition) process is naturally embedded in
the eriginal processes.
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