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Abstract

In many application programs of logic programming languages, shallow back-
tracking {requently occurs. The cost of shallow backtracking, however, is not so
small in conventional implementations, because the choice points are mauipulated
in the same way as the deep backtracking. The clause indexing is powerful to reduce
the cost of backtracking, but it is not always applicable.

S0, we have exploited an optimization technique, Neck Cut Optimization, ap-
plicable to most of the #f-then-else and case-of type predicates. It has been im-
plemented on the PSI-II, a special purpose machine for the logic programming
language, and improved the performance of application programs 10 to 17 %.



1 Introduction

Sequential inferenee machines PSI-I and PSI-I1 were developed as the tools of
the Japanese fifth generation computer systems project [8], [4]. Many AT application
programs, such as natural language recognition system, expert system , knowledge base
management system , and operating system SIMPOS have been implemented on them
(11].

In these programs, shallow backtracking frequently occurs, because if-then-else, case-
sunteh, and do-while are mapped to the predicates containing control schemes in con-
ventional language, such as multiple clauses. Since the choice points for these predicats
are manipulated in the same way as deep backtracking, the cost of those simple control
schemes is not small. Moreover, clause indexing are not always applicable to them,
because their clauses are often sellected by built-in predicates [10].

This paper describes an optimization technique, Neck Cut Optimization, applicable
to most of predicates selecting a clause by shallow backtracking. It greatly reduces the
cost of choice point creation, backtracking, and cut operations.

This paper is organized as follows: Section 2 describes the mechanism and overhead
of shallow backtracking in the conventional implementation ; section 3 describes Neck
Cut Optimization in detail ; section 4 evaluates the performance improvement; section 5
discusses the language features and other works relating to the optimization technique;

and section 6 gives conclusions.

2 DBacktracking

This section briefly describes the backtracking mechanism in the conventional

WAM, in order to point out the overhead of shallow backtracking.

2.1 Backtracking Mechanism of WAM

In the WAM, the choice point is manipulated for the backtracking. When a

predicate is called and it has multiple candidate clauses, the try(_me_else) instruction



creates the choice point containing the following execution environment.
An: the argument registers

E: the current environment pointer

CP: the current continuation

B: the the pointer to previous choice point

BP: the address of the next alternative clause
TR: the current trail pointer
H: the current heap pointer

The instruction pushes the choice point onto stack, updates the choice point pointer
B, and sets heap backtrack peint HB to the current heap pointer for the trailing,

The choice point is referenced by the fail procedure, called when a failure occurs
during the unification or built-in predicate execution. The procedure restores the reg-
isters {excepting B) to the values in the choice paint. Trail is unwound as far as the
trail pointer in the choice point, resetting the variables to unbound. Control is trans.
ferred to the next alternative clause, the first instruction of which is ratry(_me_else)
or trust{_me_alse).

The retry(.me_else) instruction updates the choice point entry with the address
of the next alternative clause. The trust (_me_else) discards the choice point updating
B and HB with the values for the previous choice point. The cut operation alse discards
the choice points created by the current and descendant predicates. It tidies trail,
discarding entries corresponding to the discarded choice points in the most of systems,

1n order to minimize the growth of tit trail and avoid to leave dangling pointers.
2.2 Overhead of Shallow Backtracking

Some operations manipulating the choice point are redundant in the case of

shallow backtracking, caused by the failure of the head unification. Figure 1 shows
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the predicate member/2 and its compiled codes. In its execution, its second clause 1s
selected until the list element matched to the second argument is found. Since clause

indexing can not be applied to it, the first clause is tried and backtracking occurs.

member([E|_],E):-!.
member([_|L] ,E):- member(L,E).

member/2:
try_me_else c2
get_list Al
unify_local_walue A2
unify_woid 1
cut
procead

C2:
trust_me_else fail
get_list Al
unify_woid 1
unify_variable Al
execute member/?

Figure 1: member/2

When the head unification of the first clause fails, the fail procedure restores regis-
ters. This operation, however, is almost redundant because the value of the all registers,
but TR, are the same as those of the choice point. Moreover, the choice point itself is
redundant, because it is discarded by the trust_me_else instruction for the second
clause.

On the other hand, if the head unification of the first clause succeeds, the choice
point is discarded by the cut operation. Thus, all the contents of the choice point are
redundant, but those of TR and BP, whether or not the unification succeeds.

Shallow backtracking is caused by not only the failure of the head unification but
also that of the built-in predicate. Figure 2 shows the predicate split/§ of the quick-sort
program and its compiled codes. Assuming that the goal X<Y is compiled to the abstract
instruction less_than, shallow backtracking will occur if the car of the first argument

is not less than the second argument.

In this case, restoring registers is not totally redundant, because;



e An the argument registers A1 and A3 is updated by the optimized register alloca-

tion.
¢ His incremented to generate a new list cell.
» TR is incremented to trail the binding of the third argument.

For the other registers, however, the contents of the choice point are redundant
too. Moreover, if the compiler abandons the optimal register allocation and generates
two put_value instruction for L1 and L2, save and restore operations of the argument

registers become unnecessary.

3 Neck Cut Optimization

3.1 Predicates to be optimized

In the execution of the predicates in the previous section, their choice points are
eliminated by the cut or trust( me_else), before the first (non built-in) goal is called.
Thus, the size of the choice points can be reduced, because the values of most of the
registers are not changed until trusting.

The Neck Cut Optimization is applied to those predicates. That is, it is applicable

if the following conditions are satisfied.

1. All clauses, but the last one, of the predicate have the cut.

2. The cut performed at neck, that is, before the first goal is called. Simple predicate

call, however, is allowed before the cut.

The simple predicates will be built-in predicates, such as for the type checking,
comparison, arithmetic operation, and so on. Those built-in predicates should not
change the execution environment other than that of the unification. For example,
most of built-in predicates of the PSI-II are classified as simple.

Any unifications are allowed in the criteria given above. If the output unification

is not allowed, the choice point manipulation is simplified further. The content of the



choice point, in fact, becomes only the address of the next alternative clause. [t seems
that the restriction is too severe and few predicates have the chance to be aptimized.
However, if the mode information is given, the predicates which satisfy the criterion will
increase considerably(discussed later). Even if not, the optimization is applicable to the
typical cases of inner clause or. Assume the split/4 is rewritten as figure 3(a), and the
compiler converts it into two predicates shown in figure 3(b). The predicate split_2/5
satisfies the criterion.

Those criteria are examined at compile time. So, the compiler generates special

codes, deseribed later.
3.2 Minimizing Choice Point

The Neck Cut Optimization reduces the size of choice points. The following

registers are not saved into the choice point.

An: The compiler allocates argument registers avoiding the destruction unti] the neck

cut. Note that overwriting of the dereference result is not allowed.
E: The environment allocation is delayed after the neck cut.

CP: Na goa.ls are not called.

B: Choice point is never nested. The necessity of the trailing is checked in the other
way than that of the usual cases (described the next sub-section). HB is also left

unmodified.

The restriction of the argument register allocation will degrade the performance.

However, it is expected that the degradation will not be serious, because the optimal
allocation is allowed for the last clause, which is often the recursive clause.

Thus, the reduced choice point consists only three entries for BP, TR, and H. The
entries for TR and H is reduced if the output unification are not performed.

Since the choice point is small and never nested, it may be allocated on the special

registers insted of stack.



3.3 Trailing

Since the criteria of the optimization allow any unifications in head (and by the
simple predicates), the trailing is necessary for the output unification. The trailing
mechanism, however, can be optimized in two ways, one of which is suitable for the im-
plementations on general purpose machines, and another for special purpose machines.

The optimization method for general purpose machines stands on the fact that all
bindings to the unbound variables should be trailed in the clause which cannot be
deterministic. (Strictly speaking, the binding to the element of the compound term
created in the head is not necessary, but allowed, to be trailed.) That is, for the
head unifications in these clauses, the compiler can generates special codes from which
the trail checking is removed. Moreaver, the checking can be romoved from the head
unifications of all clauses but the last one, because cut will tidy redundant addresses
trailed by the posibbly determinate clauses. This technique also make it possible to
leave B and HB unchanged when the reduced choice point is generated and removed.

Another method optimizes the tidying of trail. This method requires a (small)
stack buffer beside the main memory, to which the address of the unbound variable
15 always pushed when the variable is instantiated. When the reduced choice point is
created, the pointer of the buffer is cleared, and B and HE are left unchanged. The unifier
trails the variable address in the usual way, that is, comparing it with B or HB which
point the previous backtrack point. Thus, the buffer contains addresses of the variables
to be unbound by the fail procedure referencing the reducced choice point. And trail
only contains the addresses which is necessary after the neck cut, which will not perform
any operations for tidying. It is easy to implement the buffer without any overheads,
because the address will be pushed during the value is written in the memory. The
overflow check mechanism for the buffer can be removed, if it is allowed to change the
choice point type dynamically. The compiler can count up the maximum number of
the variable binding performed until the neck cut, assuming the general unifier binds

some constant number variables (one should be enough). If the count is larger than the
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size of the buffer, ten or so, the compiler gives up the optimization. And the general
unifier, get_value, make ordinary choice point, if it binds multiple variables, or, more
roughly, both arguments are compound terms. According to the statistics reported in

[6,7], giving up the optimization, either at compile and run time, will be very rare.
3.4 Implementation

Since the optimization causes various types of choice point, it is required for some
mstructions and procedures to identify the referencing choice point type. The chotce

point mode, containing one of the following values, is introduced for the identification.

* normal

The current choice point is the same as ordinary implementations.

e foat

The current choice point contains BP, TR, and H.

& very-fast

The current choice point contains BP only.

In order to set the mode, the ordinary try(me_else) instruction is replaced with

one of the following new instructions, according to the predicate type.

e normal_try(.me_else)

Same as ordinary try(.me.else), except for setting the mode to normal.

¢ fast try{ me else)
Save TR and H to the special registers, named BTR and BH. Set the special register,

named AP, to the address of the next clause. Set the mode to fast.

e very fast_try(me_elsa)

Set AP to the address of the next clause, and set the mode to very-fast,

The fail procedure is modified for the mode dependent execution.



s fail
In normal mode, same as ordinary one. In fast mode, unbind variables according
to the trailing method, restore TR and H to the contents of BTR and BH, and jump

to the content of AP, In very-fust mode, jummp to the content of AP.

There are two methods to implement the other instructions referencing the choice
point, retry( me_else), trust( me_else) and cut. The one method is to introduce

the following instructions for the fzst mode.

e fast retry( me_else)

Update AP with the address of the next clause.

e fast trust(_me_else)

Set the mode to normal

o fast neck_cut

Set the mode to normal, and tidy trail if the trailing method requires it.

The instructions fast_retry(me.else) aud
fast_trust(.me_else) are also used for the very-fust mode. The neck cut for the very-
fast mode is translated to fast_trust_me_else. These instructions are fairly simple,
because they are free from mode-dependent operations.

However, it is not allowed to change the mode dynamically.

The other method will be used, if the dynamic mode change is required for the
trailing optimization using the small stack buffer, or the dynamic predicate call such
as freeze in Prolog-1I (discussed later). In this method, ordinary retry( me_else),
trust{ me_else) and cut are modified for the mode-dependent execution. That is,
they perform ordinary operations in normal mode, or act as fast_xxx in fast or very-
fast mode.

Figure 4,5,6 show the optimized compiled codes for member/2, split/{ and split_2/5,

according to the former method.



4 Performance Evaluation

The neck cut optimization has been implemented on PSI-II. The implementation

is slightly different from the above description in the following points.

1. The trailing is not optimized.

2. The very-fast mode is implemented according to [5]. In this method, the applica-

tion condition is more restricted.

And the instructions retry.{me.else), trust.(me.else) and cut perform mode-
dependent execution.
Table 1 shows the statistics of the type of choice points and the performance improve-

ment, in the following four simple benchmarks and three real application programs.

mamberl1000
Member/4 shown in figure 1, searching a 1000-element list, whose last element

matched to the second argument.

gsertsS0
Quick sort program using split/4 shown in figure 2. The sorted data are the same

as those of [1]

gqsortsQ!’

Quick sort program using split/4 shown in figure 3.

S8guean

Eight queens program in [1].

compiler

The compiler for PSI-II, compiling gsert

assembler

The microprogram assembler for PSI-IL
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SIMPOS

Basic operations, including window and file manipulation, in SIMPOS.

The second to forth columns of the table show the ratios of choice point types. The
last column is the performanece improvement ratio based on the measured execution
time with and without the optimization.

The evaluation results show that the many chaoice points are reducible. The ratios
of the reduction are similar to the results in [12], in which the choice point type is
determined at run time. This shows that the application criteria of the optimization
cover the most of predicates which cause shallow backtracking.

The ratio of the very-fast mode choice points seems to be surprisingly high in real
application programs. The result may be overestimated a little, because these Programs
are written by professional programmers who know what codes are generated. However,
the ratio of aveidable choice points in [9], which are classified as very-fast mode at run
time, is also considerably high.

The performance improvement, 9 to 17 %, shows that the optimization is effective

and worthwhile for real application programs.

Table 1: performance evaluation of the programs

programs | normal mode fast mode very-fast mode improvement ratio

member 0 (%) 100 (%) 0 (%) 21 (
qsort30 0 100 0 15
gsort30" || 0 0 100 34

Squeen | 12 88 0 22

compiler H 20 20 60 17

assembler || 56 21 23 9
SIMPOS 35 20 35 10 =

11



5 Expansion of Neck Cut Optimization

5.1 Related Works

In the implementation of PSI-1, which is not a WAM, an optimization method
for shallow backtracking are adopted [4]. In this method, a stack frame similar to the
choice point is created when the first goal of the clause, selected by shallow backtrack-
ing, are called. Similar methods for WAM is proposed in [10] and [6], and the actual
implementation and performance evaluation is described in [12]. The main difference
between those methods and ours is the timing of the choice point classification. In
their methods, the neck instruction is inserted at the end of the head unification, and
classifies the choice point at run time, while we classify it at compile time. That is,
try(_me_else) create the choice point partially, and neck completes it if it should be
normal,

This dynamic classification make it possible to optimize any predicates regardless of
the type. The restriction to the neck cut predicates in ours, however, is not so severe,
as described in the section 4. The static classification will be advantageous, because it
removes the {ype checking from run time operations. If the dynamic mode change is al-
lowed as the implementation on PSI-II, however, this advantage will relatively decrease.

Other differences are the optimization of the trailing and very-fast mode, which will
be applicable to their implementations. The argument register allocation in [12] is also
different from ours, because the destruction of the argument registers is not allowed even
in the last clause. In order to reduce the overhead caused by the non-optimal allocation
and neck, two code streams, according to the deterministic and non-deterministic cases,
are generated.

The other way to reduce the overhead will be to allow the destruction to the pos-
sibly deterministic clauses, which is the target clause of the switch instructions. The
neck instruction (or make.normal in our implementation) should be inserted just after

retry_me_else, in order to create the normal choice point when the clause is selected
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by backtracking. This technique will be effective if the first argument {or the others

used for indexing) is not unbound in most cases.

5.2 Dynamic Predicate Call

Some languages have the dvnamic predicate call mechanism, such as freeze in
Prolog-11 and ezception in KLO [3]. These mechanisms bring a troublesome problem to
the optimizing compilation, because predicates, hooked to the variable binding or the
exceptional cases of built-ins, may he called before the neck cut.

This problem is solved by changing the choice point mode dynamically. That 1s,
when the unifier or built-in predicates detect the condition to call the hooked predicate
and the mode is not normal, they create the normal choice point and change the mode
as gat_value in section 3.3. This mechanism is implemented on PSI-II, and requires

the mode-dependent execution to retry(.me_else) etc.
5.3 Mode Information

If the mode information is available, the chance to apply the very-fast mode
optimization will increase considerably. For example, if the split/{ shown in figure 2
have the mode declaration, (+,+,-,-), the output unifications in the first and second
clauses can be postponed after the neck cut (if the freeze mechanism is not adopted).
Thus, there are no output unifications before the cut, because the first arpument should
be instantiated.

The mode declaration, however, does not always provide sufficient mode information.
For example, member/§ shown in figure 1 cannot optimized even if (+,+) is declared,
because the first argument may not be a ground term, and its car may be an unbound
variable. Moreover, the declaration will often be harmful, because incorrect declarations
change the semantics of the program and make the debugging hard. So, it is required
for the optimization to get the correct and sufficient mode information, by the practical

mode inference system.
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6 Conclusion

In this paper, an optimization technique for shallow backtracking are described.
The performance evaluation, based on the actual implementation on PSI-II, iz also

presented and shows the following.
e A wide range of predicates in real application programs satisfy the criteria of the
optimization.
o The amount of the predicates which satisfy the more restricted criteria, the inhi-

bition of the output unification, is considerably large.

s The optimization improves the performance of real application programs, 9 to 17

.

We are now modifying our implementation, adopting the optimization of the trail-

ing, relieved criteria of the very-fast mode, and other ideas proposed in this paper.
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split([],_,[1,[1):-!.

split([X|L1],Y,[XIL2],L3):-
X<y, !, split(L1,Y,L2,L3).

split([X[L1],Y,L2,[XIL3]):- split(Li,Y,L2,L3).

split/4:
switch_on_term Cla,C1,L1,fail
Li:
try c2
trust c3
Cla:
try_me_salse C2a
CiL:
get_nil Al
get_nil A3
get_nil Ad
cut
procaad
C2a:
retry_me_else C3a
c2:
gat_liat Al
unify_variable X5
unify_variable Al
gat_list A3
unify_value X&
unify_variable A3
lass_than X5,A2
cut
execute split/4
C3a:
trust_me_else fail
C3:

get_list Al
unify_variable X5
unify_variable Al

get_list A4
unify_value 15
unify_variable A4
execute split/4

Figure 2: split/4
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1,0, 00):-1.
TIL1],Y,L2,L3):= ( X <Y ==>
L2 = [X|L2a], split(L1,Y.L2a,L3)
L3 ={{§1Laa], split(L1,Y.L2,L3a) )
a

split_1([],_.[1,01):-!.
split_1{[X|L1],¥,L2,L3):~- split_2{(L1,Y,L2,L3,%).
eplit_2(L1,Y,L2,L3,%):- X <¥,1,
L2 = [X|L2a]), split_1(L1,Y,L2a,L3).
split_2(L1,Y,L2,13,X):~
L3 = [%I?Ea], split_t(L1,¥,L2,L3a).
b

split ([
split([

Figure 3: split/4 using inner clause or

member/2 :
fast_try_me_else Cc2
get_list Al
unify_value Az
unify_void 1
fast_neck_cut
proceed

C2:
fast_trust_me_els=e fail
get_list Al
unify_wvoid 1
unify_variable Al
executea member/2

Figure 4;: Optimized Compiled Codes member/2
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split/4 :

Li:

Cla:

C1l:

C2a:

c2:

Cla:
C3:

split_2/5:
vary_ fast_try_me_alse
less_than
fast_trust_ma_else

c2:

gat_

awitch_on_term Cla,C1,L1,fail

fast_try
fast_trust

fast_try_me_else

get_nil
get_nil
get_nil
fast_neck_cut
procead

fast_retry_me_else

get_list
unify_variable
unify_wvariable
get_list
unify_valua
unify_variable
less_than
fast_neck_cut
put_value
put_valuas
execute

fast_trust_me_else

get_list
unify_wvariable
unify_variable
get_list
unify_value
unify_variable
exacute

2
£a

C3a

Al
i5
XS
A3
x5
i7
X5,A2

X5,A1
X7 .A3

split/4

fail

Al
x5
A1
AL
i5
Ad

split/4

Figure 5: Optimized Compiled Codes split/4

list

unify_value
unify_variable
aexecute

fast_trust_me_else

get_

list

unify_value
unify_variable
axacute

spli

fail
A4
AS
Ad
spli

t.1/4

t_1/4

for neck cut

Figure 6: Optimized Compiled Codes split.2/5
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