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Abstract

This paper presents a declarative semantics of disjunctive databases based on the possible
model semantics. The possible model semantics is an extension of the minimal model semun-
tics of databases and provides a natural meaning of disjunctive databases. We characterize it
by giving a new fixpoint semantics of databases and present the generolized closed world ns-
sumption for the possible model semantics ((GC'W Ap) for inferring negative infurmation from

a database, We wlso discuss some extension and its relation to previous approaches,

1 Imtroduction

The declarative semantics of deductive databases has been widely studied based on the
minimal model semantics by incorporating the inference rule for negation. For definite Horn
databases, the unique least Herbrand model gives the declarative meaning of a database [V K76]
and the closed world assumption ((CWA) [He78] provides negative information as the facts
which are nol Lrue in this model.

When a database iz indefinite and contains some non-Horn clauses, there is usually no
uniqne minimal model, and some preferred minimal models are often selected as the intended
models of the database. For example, standard models [ABWBS)| or perfect models [Pr88] are
intreduced for stratified databases as intended minimal models of a database, and correspond-
ingly, the iterated CWA (ICWA ) [GPP8&6DL] provides negative information as the complement
of such a model. These results are extended to the ertended CWA{ECWA J|[GPP86a,GPP 6|
and equivalently, eireumseription [Mc86]. .

By contrast, the so-called disjunctive database is an indefinite database which usually has

no minimal model that prefers to others. Theu, there are two alternative approaches for such



databazes. One considers the collection of minima! models and the facts or sentences which
are not true in any mindimal model are assumed to be false by the generalized CWA (GCWA )
iMi22] and Lthe extended GOWA (EGCWA) [YHS5]. The other approaches which are not based
on the minimal model semantics are the disjunctive database rule (DDR} [RT88] and the weak
GOWA (WGECWA) [LMESR].

Now we compare two alternative rules, the GCWA and the DDR, for disjunctive databases.
Suppose an example, study(Jock, Math)vstudy(Jack, Physics)' (Jack studies maih or physics).
Then if we know "study Jack, Math) is true, then ' ~ study(Jack, Physics)' is inferred by the
GOUWAL (From the EGCWA, " ~ (study{Jack, Math)fstudyl Juck, Physics)) is inferred with-
out knowing ‘study( Jack, Math).) That is, the GCWA does not allow the possibility of Jack’s
studying both. The DDR, on the other hand, does not infer ' ~ studylJack, Physics) nor ' ~
(studyl Jock, Math) A study( Jack, Plysics)), and seems to be more flexible than the GOWAL
Suppose an another example, ‘'marry( Mary, John) v marry( Mary, Dick)' ( Mary will marry
John or Dick), In this situation, however, it seems natural that knewing 'marry{ Mary, John)
is true implies that ‘marry{ Mary, Dick) is false by the GCWA.

The problem is that the DDR is too weak since it interprets each disjunction in an inclusive
way, while the GCWA is too strong since it interprets each disjunction in an ezclusive way. To
distingnish an exclusive disjunction from an inclusive one, it is sufficient to use some negative
clauses to present exclusive disjunctions (this is also suggested in [RT88], section ). In the
above example, by adding a clause ' — marry(Mary, John) A marry( Mary, Dick), we get

the intended meaning of the sentences.

This paper presents a declarative semantics of disjunctive databases which can handle
both inclusive and exclusive disjunctions using negative clauses. In section 2, we present a
deciarative semantics of disjunctive databases based on the class of possible model, which is
an extension of minimal model semantics and provides an intended meaning of disjunctive
databases. Then we give a new fixpoint semantics of databases in the presence of negative
clanses, using a continuous mapping from a powerset of the Herbrand interpretation to itself,
and show that its least fixed point is a set of the possible models of a database. We also present
the generally closed world assumption for possible model semantics (GCW Ap} for inferring
negative information from a database which provides a reasonable compromise between the
GCWA and the DDR. In section 3, we extend the results to stratified disjunctive databases

and discuss the relation to previous approaches.



2 Possible Model Semantics for Disjunctive Databases

2.1 Possible Model

First, we give the class of databascs considered in this section.

Definition A database is a finite consivient set of the clauses of the form:

vV d, = Daoa Iy

where m,n > 0 and cach A; and B; are atoms, and all variables are universally quantified
at the front of the clause. Ay v ... v 4, is called the heod of the clause, and By A oA By is

called the body of the clanse. When m > 1, we call the clause disjunctive. O

The definition assumes a database to be consistent, but in general, a set of clanses which
contains negative clauses lias the possibility of being inconsistent. When it is considered a sct
of Horn elanzes, we can check the consistency of the set by taking each negative clause as a
poal for the set of positive clanses and examining whether it has a refutation or not, If any
of these goals has a refutation, then the set is inconsistent [SM#&3]. From another point of
view, negative clauses are considered as integrity constraints for the database, and the above
procedure carresponds to that of chacking the satisfiahility of integrity constraints [TI87).

Such a procedure may be extended to disjunctive databases by using some query evaluation

procedure, but it is bevond the scope of this paper,

Nex! we introduce the notion of the splif database.!

Definition Let ' be a disjunctive clause in D of the form:

Ay ov A, — B NE,

Then  is split into 2™ — 1 sets of clanses Cy,.., Cym_y where

Ci={d; = B A ABy | A €5 where 5 € 2 Ami N @} (1€ j < 2™ = 1)

The split database of I is a database where each disjunctive clause ' is replaced by the

split clavses C;. O

If a database contains & disjunctive clanses where each has m; atoms in its head, then the
database is split into af most 11:;,{2'“- — 1) different databases.

Example Let ) = {PvQ « R, BvS— T, T, — PAQ}. Then it is split into the
following seven databases.

Dy={P~R, Re<T, T, «PAQ}, I3={P~R, §«T, T, —PAQ}

Di={Pw~R, BT, 5T, T, —mPAQ}. Dy={@ —~ R, R~T, T, « PAQ}.

'The notion of split database is also introduced in [Lo78] in a different context.



Dy={Q—R ST, T, « Q) Dg={Q@—11, KT, §«T, T, « PAQ}.
Di={P«R, Q=FR, 5T, T, —FArQ}L

The following two are, however. inconsistent and not databases,

Dg={P—R Q=R R<T, T, —FAQ}

Dy={P— R, (g—R R~T, §~T7, T, —FPngQ}. O

Now we define the notion of possible model.
Definition Let D be a database and M be an Herbrand model of I, Then M is called

possible if it is 2 minimal mode] of a split databasc of . O

Example Let I be the same database as the previous example. Then {F, B, T}, {Q. R, T},
{5, TV, {F R, 5. T} and {¢J, R, 5, T} are the possible models of 17, while {F, 5,1} and {Q, 5, T}

are models of IF bul not possible. (]

In the following, 'model’ means an Herbrand model.
An order relation < between possible models is defined such that for each possible model
Mand N, M < N T M C N. It is clear that a set of possible models of a database makes a

complete lattice under the =,

2.2 Fixpoint Semantics

In this section, we give a new fixpoint semantics of a database, First, we define a mapping
1" from an Herbrand interpretation to a powerset of Ilerbrand interpretation [S589].

Definition Let [} be a database and B be the Herbrand base of D, The mapping T ¢
98 _, 927 is defined as follows. Let T be an Herbraud interpretation. Then Tn(J) = {I' € 25 |
Ay V.oV A, — By AL A By s a ground instance of a clanse Gy in D T = By AL A B,
and m = 0 for some ¢ then ' = §. Else, if T = By A ... A By, and m # 0 for all 1 then
I'= I@D @, ep(2i41-Amk | )},

In the above, @pep(2{AAnd \ @) = {J | J € |;J* where J* € 20AieAmb Y 1} and
Igi={IuJ|Jed}. O

Example Consider the database D = {P(X) v Q(X )~ R(X), S{f(X))+~ R{X),
~ R(g(X}), Eia)}. Then Tp({R(a)})= {{R(a)},S(f(a)), P(a)}.{E(a),5(f(a)),Qa}},
{fi(a), 5(fla)), Pla),Q{a)}} and Tp({R(g(a))}) = {#}. O

We then define a mapping from a powerset of the Herbrand interpretation to itself.
Definition Let I} be a database. The mapping T'p : 227 _ 927 j5 defined as follows.



Tp(l) = Urer Tn({)

where T is a set of Herbrand interpretations, O

Example Consider the database in the previous example. Then Tp({{R({a]}, {B{f(a))}}} =
Tp({R(a)})UTp{R(f(e})}}. D

Clearly, 227 makes a complete laltice under set inclusion. In fact, the least npper hound of
a collection of suhsets of 27 is defined by their union and the greatest lower bound is defined
by their interseetion. The top element s 25 and the bottom element is {01,

Lemma 2.2.1 The mapping T 15 monotonic.

Proof From the definition of Tp, it is clear that I © J implies Tp(I}) € Tp(J) where I

and J are the sets of Herbrand interpretations. L

Note that Tp is not monotonic. For example, let ) = {I’ — £, « R} then Tp{{Q}) =
{{Q, Pt} and Tp({@Q. Ji}) = {@}. Thus, {@} C {Q, B} does not imply Tn({Q}) C Tp({Q, R}).

Corollary 2.2.2 Let D he a databasc and X be a directed subset of 22", Then I € [ub{X)
fIleXand F I
Proof (—) It suffices to put I = [ub{X) e X.

()1t is clear since [ & TC lub{X). O

Lemma 2.2.3 The mapping Tp is continuous.

Proof We show Tp(lub{X)) = lub{T1y(X)) where X is a directed suhset of 227
I e Tpllub(X))

iff 3/ € lub{X) and T € Tp(J)

AN C X, Jelund I € Tp(J) (by corollary 2.2.2)

il 3T e X and I € Tp(l)

iff 7 € lub(Tp(X)) ©

Lemma 2.2.4 [5580] Let D be a database and I be an Herbrand interpretation of 1. Then
I'is a model of D1l T € Tp({I}).

Proof I is a model of I

iff for each ground instance 4, V ..V Ay — By A A By, of each clavse in D, if m = 0
then J |£ By A ... A By, clse T'l= By A ... A B, implies I |= A; for some 4;(1 <i<m)

iff I € Tp(I) (by the definition of 1)

if Fe Tp({I}) ©

s }



Diefinition Tet 1) be a database and I be a set of Herbrand interpretations of 1), Then
the ordinal powers of Tp are defined as Tp T0(1) = L, Tp T (n+ 1)(I) = Tp(Tp T a(1)),
and Tp Twi(l)={I|3a <w, J€[luss Tp T n{I)}, where n is a successor ordinal and w is

a limil ordinal. O

Lemma 2.2.5 Let D be a database. Then [ fp(Tp) = Ty Twi({0}).

Proof ‘l'he result follows from lemma 2.2.3 and proposition 5.4 in [LI87. O

Definition Let I} be a database. Then the fizpoint sernuntics of D, FFPp. is defined as:
FPp={I|T¢!fplTp)and I € Tp({/})}. O

The following theorem gives a fixpoint characterisation of the possible model semantics of
a datahase.

Theorem 2.2.6 Let D be a database. Then 7 isin 1% iff  is a possible model of D.

Proof I € FFp

iff I € L'p({I})}and 3n <wsi. J € Tp | n({@}) (by lemma 2.2.5}

iff I'is a model of 1) (by lemma 2.2.4) and for each A in [, there is a ground iustance

A v Vi, Bya..a b,

of a clause in D such that A = A;(1<i<m)and I E By A LA B,

iff 7 is a model of some split database D' of [} and for each A in I, D' includes a ground
instance

A— Byn.o.n By

of a split clause and T = By A A By

iff [ is the least fixed point of the mapping [VK76] in D'

il T is the minimal model of IY, and hence a possible model of I}, O

Now, we give a tule, the generalized closed world ussumption for the possible model seman-
tics (W Ap), for inferring negative information from a database.

Definition Let I be a database and F be a conjunction of ground atoms. Then ~ F is
inferred from D by the GOW Ap, if F is false in any possible model. That is, GCWAp(D) =
{~F|¥M e FPp, M+ F}. O

2.3 Properties of Possible Model Semantics

This section discusses the relationship between the possible model semantics and previous

approaches. For a definite Horn database, the following lemmas immediately follow from the



definition.

Lemma 2.3.1 Let /) be a definite Horn database and T, be the mapping given in [T.-’K'.’ﬂ].
Then, FFPp = {{fp(Ty)}. U

Lemma 2.3.2 Let [ be a definite Horn database and 4 be a ground atom. Then

CWA(D) = AT GUWAR(L E~ A O

Next, we consider an indefinite database,
Lemma 2.3.3 Let [ be a database. Then gib{ F'Fp)is a minimal model of I,

Proof FPp makes a complete lattice, and the result follows immediately. (m]

Negative information inferred from the EGCWA and the GOWAp does not always coincide
with each other.

Example Let ) = {Pv @}, Then EGCWA(D) E~ (P A Q) while GCWAR(D) fF~
(PAQ). O

Fur the EGCWA, the [ollowing lemma helds,
Lemma 2.3.4 Let ) be a database and F be a conjunction of ground atoms. Then
EGOWA(D) =~ Fift YM € {glbl{FPp}} .M £ F.

Proof The result follows immediately from the definition of the KGCWA and lemma 2.1.3.

The above lemma is alse true for the GUWA, when T is a ground atom. Next, we consider
the relation to the DDA,

Lemuma 2.3.5 Let D be a database which contains no negative clause. Tet Ty be the
mapping given in [RT88], then I fp(Ty) = lub(FPpy).

Y'roof By the definition of [ fp(Ty), it obviously coincides with the least upper bound of a

set of possible modals. m|

The above lemma does not hold in the presence of negative clauses.
ExampleLet I = {PvQ, « P} Then FPp = {{P},{Q}} whereas I fp(Tu) = {P.Q}
which is not a model of ) {¢f. example 4.3 in [RT88]). D

The following lemma follows from lemma 2.3.5.
Lemma 2.3.8 Let D be a database which contains no negative clause and A be a ground
atom. Then

DDR(D)F~ A GCWAp(D)=m A O



Example Let D = {PvQ, P, — Pr@Q}. Then DDR(D) E~ ¢ while GCWAp(D) &~
. O

LMREZ] showed that the weakly GOWA (WGCWA) rule is also equivalent to the DDR,
so we can replace the DDR by the WGCWA in the above lemma.

3 Stratified Disjunctive Databases

When there is no unigue minimal model of & database, some minimai models which reflect
the intended meaning of a database are often selected.

In stratified databases, onc model is preferred to others by the predicate hicrarely in
a database. There are lwo ways to introduce predicate hierarchy in stratified databases.
[ABWBRR,Pra8,VGER] present such a hierarchy by allowing negative literals in the body of
a clanse and giving higher prioritics to minimize their extension, while [RT88] gives a level
mapping to predicates in a clause instead of allowing negation in the body.

Comparing these two approaches, the first seems to be more natnral, as the following
example shows.

Example Let D = { eligible(X )V disguali fied(X) — student(X), disqualificd(X) —
mishehaved(X), student(John), misbehaved(Sohn)} and I, be the level mapping such that
L({misbehaved) = 0, Ldisquali fied) = 1, L{student) = 2 and L(eligible) = 3. Then we expect
! o eligible( John}', but it is not deduced [rom D by the DDR, whereas if we present the first
rule by ‘eligible{ X'} — student{ XA ~ disqualified( X'} then ' ~ eligible{John) is inferred
by the ICWA [GPP86b]. O

In this section, we consider a database which contains some elauses having negative literals
in their bodies,

Definition A database is a finite consistent set of the clanses of the form:

A V.V A — DA A By

where m,n > 0 and each 4; is an atom and each B; is a hieral and all variables are

universally quantified at the front of the clanse. O

The following definition is from [ADWSS].

Definition A database D is stratified if there is a partition
D=InU..UD,

such that the following two conditions hold for ¢ = 1, .., 0.



1. If a relation symbal occurs positively in a clause in I, then its definition (ie, clauses

which contain the relation symbol in their heads) is contained within Ujei ;.
2. If 2 relation symbol occurs negatively in a clanse in 13, then its definition is contained
within quf UJ‘
Dy can be smpty. o

Note that [ABWR28] gives the definition for a database which contains neither disjunctive
clauses nor negative clauses, and [Pré#] permits disjiunctive clauses in locelly stratified detabases
but they contain no negative clause. However, Lhe definition of stratified databases is extended
to those databases containing negative clauses without any modification.

Example Let I = {AV B — CA~ D, O, F, — En~ A}, Then D is stratified by
N={—En~A}YU{AVEB . CA~D, ¢, E}. O

To avoid confusiou in the lollowing discussion, we use the term 'stratified disjunctive data
buse’ for a siratified database including disjunctive clauses, and otherwise we only say ‘stratified

database’.

Clearly, the split databases of a stratified disjunctive database become stratified databases.
Then we defive possible model for stratified disjnnctive databases, which is an extension of the
previous section.

Definition T.et 1) be a stratified disjunctive dalabase and M be a model of ). T'hen M

is called possible if it is a perfect model [Pr38] of some split databaseof 2. O

In the previous section, we defined the mapping Tp for a database containing no negalive
literals. However, it can easily be verified that the definition is also applicable to the database
considering in this section without any modification. That is, for negative literals, I =~ H if
B g I. Aeccordingly, the continuous mapping Tpy is defined in the same way and it is easily
shown that the corresponding lemmas still hold.

Now we present an tlerated fizpoint semantics for stratified disjunctive databases.

Definition Let I} be a databasc stratified by Dy U ..U D,,. Then the iterated fizpoint
semantics of O, ITERp, s defined as follows.

My ={li |1y € Tp, Tw({{0})and I, € Tp, ({h})},

Mgz = {l3 | I; € Tp, Tw(M)and I € Tp,({L})},

My = {Iﬂ | In € TDn Tw(Mp-1)and I, € TDn(‘”n]'}}:



ITERp = Mp
where Ty, is the mapping defined for I; such that TDi{I] = Use1 T, (1) and Tp, is the
1

mapping defined for Iy as in the previous section, O

The following theorem shows the relationship between the iterated fixpoint and the possible
model semantics for stratified disjunctive databases,

Theorem 3.1.1 Let 1) be a stratified disjnnetive database. Then Tisin ITEN, i 1 isa
possible model of I

FProof Similar to the proof of theorem 2.2.6. |

Lemma 3.1.2 Let i) he a stratified disjunctive database. Then glb{IT'EKp) is a perfect
model of I,
Proof Perfect models are minimal elements in the iterated fixpoint, so the result follows

immediately. O

For inferring negation, the GCWAp is defined iu the same way as before,

Definition Let D) be a stratified disjunctive database and F be a eonjunclion of ground
atoms. Then ~ F is inferred from L' by the GOW AR if Fis false in anyv possible model, That
is, GOWAp(D)={~ F |NM CITERp, M F). D

Lemsma 3.1.3 Let D be a siratified disjunctive database and F be a conjunction of ground
atoms. Then

ICWA(D) |=~ Fiff ¥M € {gIb{ITERp)}, M £ F. O

The GCWAp and the ICWA are different in general.
Example Suppose D = {PV ) e~ R}. Then JCWA(D) =~ (P A ), while
GCWAp(D) ¥~ (PAQ) O

4 Summary and Future Work

This paper presented a declarative semantics for disjunctive databases containing inclusive
and exclusive disjunetions and introdueed a new fixpoint semantics of databases in the presence
of negative clauses. A disjunctive database is a database which contains some incomplete
information and we consider possible models provide a more flexible way than minimal model
semantics for such databases.

For inferring negative information, we introduced the GCWAp which provides an interme-

10



diate position between the GUWA and the DDR, that is, stronger than the DDR hut weaker
than the GCWA. In [RTS8], it is proposed some criteria for the rule of inferring negative in-
formation from disjunctive dalabases. Applying it to the GCWARp, it is concise and ronsistent
but not necessarily inclusive nor decreasing. We consider that some of these criteria are not
essential to our framework. Since a disjunction is interpreted exclusively in the presence of
a negative clause, we may infer additional negative information from a database after adding

new information to a database, that 15, not decreasing.

Much recent work has besn concerned with the semantics of general dafebases which are
the extension of stratified databases [GL82, PP38,VRS588], and the extension of possible model
semantics to general digjunctive databases is now under investigation. This paper also has not
presented the procedural semantics of possible model semantics and the GCWAp. It is also
related to the problem of checking the satisfiability of integrity constraints in a disjunctive
database. These problems, together with an efficient implementation issue, wre left to future

reseatch,
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