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Abstract

This paper introduces a novel approach to
similarity-based inductive reascning. Indue-
tion is defined as inference in a nenmonotonic
logic; this approach contrasts with the classi-
cal apprbach that consists of at]ding formulas
to a theory in order to dednee other formmm-
lae. We point out problems arising in Lhis
setbing and show how they are solved within
our frarework, Given o sct of formulae A, we
define the set T of inductive generslizations
of A, and derive several of its properties,

1 Introduction

This paper introduces a novel approach to empirical
{similarity-based ) inductive reasoning. The model pre-
gented here contrasts with what we call the classical
approach to induction: in this approach, a system is
presented with information concerning a domain; its
task is to infer hypotheses that allow it to “explain™
what it ohserves. From a logical standpoint, what we
informally eall here “explain” is in fact “deduce”. So
the task of the system i& to add formulae o a theory in
order to be able to deduce other formulae, Deduction
thus playas a key role i the defimition of induction.
I'his situation can be formalized as follows:

Given some background knowledge A and
observations 9, such that & £ 8, Find ['
(called generalizations of © with respect fo
A) such that AUT k6. (1)

{Although the problem is not always expressed in log-
ical terms, it is always equivalent to this formulation.
See for example the book by Genescreth and Nilsson;
we amit additional detuils that are not relevant here.)

Now, this is certainly a satisfactory model of induc-
tion in the framework of scientific, rigourous thiaking;
but 1s does not seem to murror accurately induetion as
the kind of ubiquitous reasoning of everyday life. For

*This work 15 based on the author’s doctoral resesrch
that was done at GRTC, Centre National de la Recherche
Scientifigue, Marseille, France

example, upon observing a nuinber of birds and their
ability to fly, people might gencrate the rule that ol
birds fly simply as a conclusion of the observations,
grounded on their similarities, rather than as an ex-
planation of the fact that, for example, Tweety flies
knowing that it is a bird. No deductive step iz invelved
here, so there 15 no reason for deduction playing such
an important rale in the definition of induction.

Contrasting with this, we argue that induction is a
process of “jumping to conclusions” in the presence of
partial imformation and thus a kind of inference un-
der uncertainity. Predictably enough, it shares a basic
property with certain kinds of default inference: induc-
tion assumes that the similarities hetween the ahserved
data are representative of the rules governing Lhem (we
subsequently call it the similsrity-assumpizon). This
assumption is like the one underlying default reasoning
in that & priority is given to the information present
in the database. In both cases, some form of “cloging-
oft™ the world is peeded. However, there is a differsnce
between these: loosely speaking, while in default rea-
soning the assumption iz “what yeu are not told is
false”, in similarity-based induction, it is “what you
are not told looks like what you are told”,

This motivates the approach we introduce here in
which, given a set of formulae, we infer other formulae
called inductive generalizations of the former. TFer-
mally, the problem is

Given a set of formulae A {we do not dis-
tinguish between backgromnd knowledge and
observations), Find T' (the generalizations of
A) such that A Erwp T, where Ervp is a
certain rule of inference that embodies the
assumptions underlying induction.

I is supposed to represent all the regularities present
in A, ie all the rules sstished by ils objects. In
the machine learning lerminology, this is often called
“learning by observation and discovery”, and is sup-
posed to model a situation in which the learning sys-
tem receives no assistance from & teacher. However,
our aim here ia not to mode] a particular learning sit-
uwation, but rather to point cut problems concerning
the way inductive inference is currently formalized in



A

Appendix: Proofs of Properties

Proposition 1: T contains only g-clanses.

Proof: Suppose not. Then I' contains a clause ¢ =

Pz
1.

i, for which one of the following held:

& contains a variable that does not appear in P,

In this case, let M be a minimal maodel of the
initial set; the two following cases are possible:

{(a} There exists a ground instance P; of P surh
that M = F;.
Then, let £ be a variable that appears in @
and not in P, if M |= ¢ then M | ¥z Q(z).
Let @ = Q1 v @2, where (}1 are the literals
containing = and Q2 the rest of the literals
of ¢. Then M [ Ve@l, becavse M is fi-
nite. So M | Q2. So M | P 5 Q2, which
subsumes ¢. So each time a model satisfies
such a clause @, it satisfies a clavse that sub-
sumes it. So ¢ is not in [ because of the last
condition in the definition of generalizations,

(b} Such an instance does not exist.

So for every ground instance F; of M, M
Fi. 5o Val(¢, M) = 0, and thus ¢ is not in
I

. ¢ = F 3 () contains a function symbal that is not

a constant. Call [ a literal in which such function
symbol appears.

Tn this case, il M is a minimal model of the orig-
inal get, M B | because of [Bossu & Siegel, 1985]
FProperty 3.2.1 which says that if a minimal model
of a sel of g-clauses A satisfies an atomic formula,
this atomic formula contains only constants that
appear in A, Now,

{a) if | ocenrs in P, M satisfies no ground in-
stance of P, su ¢ s not a generahization be-
cause Val(g, M) = (.

ib) if { occurs in @, call ¢' = & = {I}. Then if
M E=¢, M E ¢ The conditions for ¢ and
¢ to be generalizations being the same, ¢
cannot be one because it is subsumed by &'
This concludes the proof.

Proposition 2: There are neither positive nor neg-
ative formulas in T

Proof:

1.

Na positives: a positive formula is true in the min-
imal models of a set of formulas if and only if it
is true in all models, e if it can be deduced
from such a set. Condition (b) in the definition of
generalizations discards such formulas from I'.

. No negatives: if an interpretation M satisfies a

negative clause =P {je. M | YX=P), it can
never satisly a ground instance of P.

Proposition 3: Every clause of [ is linked.

Proof: Suppose not, let ¢ = pA P 23 @ be such a
clause, p being a non-linked literal, and call ¢' = P

) If¢' isin T, ¢ is not since il is subsumed by a clause
in T'. Otherwise, one of the following conditions hold:

1. Val(¢',A) = 0.
So for every minimal model M of A, Val(d', M) =
0. Again, one of the following must hold:

(a) M ¥ ¢". Then ¢' has a ground instance ¢] =
F 2 Q) not satisfied by M. Now consider
the ground clause ¢ = oy A P’ 3 Q!, where
pi is some ground instance of literal p, not
satisfied by M. (This is always pessible, ns
M is finite). As p is not linked in ¢, ¢ is
necessarilly a ground instance of ¢, As M
satisfies neither p; nor ¢}, it doesn’t satisfy
gy either. So M does not satisfy phi (as it
does not sabisfy one of its ground instances),
and thus phi is not & generalization.

{b) M satisfies no ground instance of P. Then
M will not satisfy an instance of pA P either.

{c) P is not injective. Then neither is p A P be-
cause p has no variable in commeon with F.

ARy
AsApd and ¢ Fé, AEd,s0¢isnota
generalization.

3. ¢ is subsumed by a generalization.
Then the same clause that subsumes ¢ subsumes
¢ by transitivity, so ¢ is not a generalization.

Corollary 4:
1. Mo elause of I contains a negative ground literal,
2. No Horn clause of I' contains a ground literal,

Proof:

1. Megative ground literals are not linked (as they
contain no variables).

2. A Horn clause has only one positive literal. [t
cannot be a ground literal, because no negative
literal would be linked. As there are no negative
ground literals, there are ho ground literals at all.

Proposition 5: T is finite.

Proof: T' has a finite number of finite minimal mod-
els. We show that any of these can only satisfy a finite
number of injective clauses.

Suppose not, and let {#;,¢y,...} be an infinite sst
of such clauses. Then it is possible to construct a set
{1, 43,. ..} such that ¢ C ¢; and all the {4y} have
the same predicate symbol: as the number of predicate
symbols is finite, in an infinite set there must be at
least one that appears an infinite number of times.



derive some properties concerning the syntax of formu-
lae in T'.

We will use a subset of clausal logie and consider
discriminant interpretations. A property of these is to
interpret different ground terms by different elements
of the domain (this is equivalent to making the unique-
names assumption). 5o we will identify an interpreta-
tiom with a set, that of the ground atoms te wich it
assigns the value true. Note however that we do not
consider Herbrand interpretations, neither do we make
the domain closure assumption, so the domain will he
infinite, even in the case of a finite set of constants in
the initial set and no function symbels.

We consider minimal models in which the extension
of every relational symbol is minimalized, ie., M is
a minimal model of a set of formulae if for no other
model M', M" C M.

But inductive reasoning occurs over a finite set of
objects. We thus need to represent the initial set with
& class of formulas for which minimal models always
exist; moreover, we want these minimal models to be
finite. Here is a class of formulae that has such prop-
erties:

Definition: A groundable elouse (g-clause for
short), is a clause that satisfies the following Proper-
Lies:

L. its function symhbols are constanis,

2. every variable that appears in a positive literal
also appears in a negative one.
For example, p(z,y) 2 q(y) is a g-clause, while
oz, ¥) O q(z) is not. )
The expected properties (proofs in [Bossu & Siegel,
1985]) are the following:

Proposition:
1. Every set of clauges has a minimal model.,

2. A set of g-clauses has a finite set of finite minimal

rodels.

The definition of generalization will be in two parts:
we will first define the value of a clause w.r.t. an in-
terpretation, and then define the generalizations.

We first need for the generalizations to verify a tech-
nical condition.

Definition: A clause P 2 Q ¥ is injective over a set
of ground atomic formulae A, whenever there exists a
substitution o, mapping the literals of P onto elements
of A, such that for every pair of variables z,y of P,

r(z) # o(w).
For example, if
A = {hand(1, clubs, clubs), wins(1),

“Notation P2  means P=p, A... Ap,, the premise
and @ = q V...V gm, the conclusion. Alternatively, we
will write =P v .

hand(2, spade, spade), wins(2)}
then the clause
hand(z, ¥, 2} O wins(z)
is not injective over A because hath
oy = {z/1,y/clubs, z/ clubs)

and
oy = {2/2,y/spade, zfspade)
assign the same value to v and 2. Of course

hand(z,y,y) D wins(z)

is injective over 4.

The generalizations will have to satisfy an injectivity
condition over the set of atomic formulas that can be
deduced from the original set. There are two reasons
for this: firstly, it avoids the introduction of “unneces-
sary” variables in the generalization; secondly, we will
show it is a necessary condition to prove an important
property: the set of generalizations is finite,

Definition:

l. Let M be an interpretalion and ¢ = P 5 Q@ a
clause. The value of ¢ tm M, dencted Val(g, M),
is defined as follows:

1Ld MF ¢, M E F, a ground instance of P,
and P is injective over M, 2
il otherwise.
2. Let A be a set of formuias and ¢ a clause. The
value of ¢ in A, denoted Val(g, A), is:

1 if Val(g, M) = 1 for every minimal model M
of A

0if Valig, M) = 0 for every minimal model M
of A.
3 otherwise.
Example: Let A be
deputy(tem) V senator(tom)
deputy(z) O corrupt(z)
senator(z) O corrupt(z)
rich(iom) rich(bill)

A has two minimal models; M) and M; that assign
true to the following formulae:

M1 = {deputy(tom), corrupt(tomn), rich(tam), rich{bill)}
M2 = {senator(tom), corrupt(tom), rich(tom), rich(bili)}
Le
qbi = deputy(z) 2 rich{z)

#y = corrupt(z) D rich(z)
o3 = rich(z) O corrupt(z)

*Asin [Shoham, 1987], if M is an interpretation, M |= ¢

means M satisfies ¢



{a negative formula), or deputy(z} A friend(y,z) D
rich{w) (which is not really meaningful), would not
be intuitively acceptable as peneralizations, as they
can hardly represent interesting regularities present in
the original sel.

We now show that this will never oceur, as the gen-
eralizations satis{y the following properties (proofs are
given in the appendix):

Proposition 1: I' contains only g-clauses.

FProposition 2: There are neither positive nor neg-
ative clauses in [ ®

The following definifion characterizes in a very nat-
ural way formmlas that are “meaningful”.

Definition:

1. The set of nked lierals of a clause ¢ 1s the small-
est set containing every literal | of ¢ having one
of the following properties:

(a) [is positive.
(b) { shares a variable with 2 linked literal of 4.
2. A clause is linked if all of its literals are linked.

Loosely speaking, a link in & clause indicates a
“path” between every negative literal and a positive
one, through its vatiables, For example,

plz) Aglz,v) 2 rly 2)
is linked, as p(z) iz linked to g{z, ) which is linked to
vy, ), but
plz) Agly) O rly)
15 not, as p[:zj does not share o variahle with a linked
literal.
Note that, as this example shows, linked clauses are

not necessarily g-clauses, and vice versa,
This definition is motivated by the following:

Proposition 3: Every elauze of I is linked.
With these resuits it is easy to prove:

Corollary 4:

1. No clause of I' contains a negative ground liteeal.

2. No Horn clause of ' contains ground literals,

Altogether these results give a strong syntactic char-
acterization of formulae im T,

Finally we prove:

Proposition 5: T is finite.

We motivate here the injectivity property. Consider
the following set of clanses:

5 A posilive {negalive) clause is a disjunction of positive
{negative) literals.

61 =p(z0,21) Ap(21,%0) O 9(2a)
¢2 = plzo, 1) Ap(zr, ) A p(xa,20) O q(z0)

é& =plzg, 1) Ao A plEe, z0) D g(zo)
and the set
A = {p(a,a),g(a)}.

The above clauses are are unordered wor.t. model-
inclusion, ie. there is no pair of clauses ¢; and ¢
such that ¢; qﬁj.s Moreover, they are all true
in the only minimal model of A, Fortunately, none
of these clauses satizfy the injectivity condition: the
substitutions ¢ grounding its premises are such that
a(zi) = o(zy), for every pair of variables z;, zj of the
clause, so none of these is a generalization of A, OF
eolrse dy = pl2a, 2q) 2 gl2a) is such a generalization.
Note that without ithe injectivity, ¢ would not be in
T, as it 15 subsumed by &,

Plotkin [1870] also shows similar infinite sets of
fuction-free clavses {¢1,d2, .. } ordered in a specifie-
to-general direction: ¢;59 = ;. If, as in the example
above, all these are true in the minimal model of some
set of formulae, no generalization would existe as any
clause would be subsumed by the next one.

ti Discussion and Comparison With

Related Work

6.1 On the use of minimal models

In this section we explain the motivations for the def-
initions given so far; while doing so we examine alter-
natives to il and survey related work.

Given a set of [ormulas A we want to produce all
the “hidden™ laws in it, ie. all the rules verified by
the objects in &, Within a first-order logic, these will
then have the form ¥X F 2 Q. The problem is then to
define the weakest conditions thai consiitute encugh
evidence to support such a rule.

These weakest conditions are:

« A contains an instance of P and €.
s A does not contain an instance of P and —(J.

Such an approach is taken by [Delgrande, 1985]. In
this situation, positive and negative information play
a symmetric role, and this leads to a well-known prob-
lem in inductive logic, the Hempel paradox: 2 rule
P 2 @ being logically equivalent to its contraposi-
tive =P o =, with the two conditions listed above
one can generate rules with counter-intuitive support.
The famous example is a white shoe being support for
the rule all crows are black: it is supposed that we
have information with which we can derive that if an

®Recall that witheut funetion symbaols, model-inclusion
i equivalent to subsumption and ebserve that for no pair
of clauses there is a substituiion that makes one clause a
subset of the other.



{a negative formula), or deputy(z) A friend(y, z) O
rich(w) (which is not really meaningful), would not
be intuitively acceptable as peneralizations, as they
can hardly represent interesting regularities present in
the original set.

We now show that this will never occur, as the gen-
eralizations satisfy the following properties (proofs are
given in the appendix):

Proposition 1: I’ contains only g-clauses.

Proposition 2: There are neither positive nor neg-
ative clauses in T. *

The following definition characterizes in a very nat-
I,Ir-ﬁ.l WJ,I._H- rﬂr][[ulﬂ:? t}tﬂ.t ATE I‘JI'IE"'H.Hi.I]EF'II]“.

Definition:

i. The set of linked lilerals of a clause ¢ is the small-
est set containing every literal | of ¢ having one
of the following properties:

(a) !i= positive.
(b) | shares a variable with a linked literal of &
2. A clause is hinked if ali of its literals are linked.
Loosely speaking, a link in a clause indicates a
“path" between every negative literal and a positive
one, through its variables. For example,
plz) Aglz.u) O riy, )
is linked, as p(z) is linked to gz, y) which is linked to

r(y, z),but
=) Agly) 2 rly)
is hot, as p{z) dees not share a variable with a linked
literal.
Note that, as this example shows, linked clauses are
not necessarily g-clauses, and vice versa,
This definition is motivated by the following:

Froposition 3: FEvery clanse of T is linked.
With these results it 1= easy to prove:

Corollary 4:

1. Mo clause of [' contains a negative ground literal.

2. Mo Horn elause of I' coonlains ground literals.

Altogether these results give a strong syntactic char-
acterization of formulae in I

Finally we prove:

Proposition 5: I' is finite,

We motivate here the injectivity property. Consider
the following set of clauses:

# A positive {negative) clause is a disjunction of positive
{negative) literals.

&1 = plzo, 2 ) A F(*’L.-ﬂn% > g(zo)
¢2 = p(zo,21) Ap(21, 22) A P22, 20) D g(z0)

vﬂ* = p(tu,ﬁl} Mo .J\Pf#g.xo} ) Efl:-"v'u}
and the set

A = {p(a,a),q(a}}.

The above clanses are are unordered w.r.t. model-
inclusion, ie. there is no pair of clavses ¢ and ¢
such that ¢; | #;.° Moreover, they are all true
in the only minimal model of A, Fortunately, none
of these clanses satisfy the injectivity condition: the
substitutions o grounding its premises are such that
rizi) = olz;), for every pair of variables z;,2; of the
clause, so none of these iz a generalization of A. Of
course ¢g = p{zg, ra) I glxp) is such a generalization.
Note that without the injectivity, ¢p would not be in
I', as it i3 subsumed by ;.

Plotkin [1970] alse shows similar infinite sets of
fuction-free elauses {&,da, ...} ordered in a specific-
to-general direction: &4, = ¢;. I, as in the example
above, all these are true in the minimal model of some
set of formulae, no generalization would existe as any
clause would be subsumed by the next one.

6 Discussion and Comparison With

Helated Work

6.1 On the use of minimal models

In this section we explain the motivations for the def-
wnitions given so far; while doing so we examine alter-
natives to it and survey related work.

Given a set of formulae A, we want to praduce all
the “hidden® laws o it, Le. all the roles verified by
the ohjects in A, Within a first-order logic, these will
then have the form ¥X P 3 Q. The problem is then to
define the weakest conditions that constitute enough
evidence to support such a rule,

These weakest conditions are:

= A contains an instance of P and Q.
A does not contain an instance of # and ={J.

Such an approach is taken by [Delgrande, 1985]. In
this situation, posilive and negative information play
a symmetric role, and this leads to a well-known prob-
les o inductive logie, the Hempel parados: a rule
P 2 @ being logically equivalent to ils conlraposi-
tive =F 3 =@, with the two conditions lListed above
one can generate rules with counter-intuitive support.
The famous example is a white shoe being support for
the rule all crows are black: it is supposed that we
have information with which we can derive that if an

®Hecall that without function symbols, model-inclusion
is equivalent to subsumption and observe that for no par
of clauses there is a substitution that makes one clause a
subset of the other.



derive some properties concerning the syntax of formu-
lae in T

We will use a subset of clausal logic and consider
diseriminant interpretations. A properiy of these is to
inlerpret different ground terms by different clements
of the doinain (this is equivalent to making the unique-
namnes assumption). So we will identify an interpreta-
tion with & set, that of the ground atoms to wich it
assigns the value true. Note however that we do not
consider Herbrand interpretations, neither do we make
the domain closure assumption, so the domain will he
infinite, even in the case of a finite set of constants in
the initial set and no function symbols.

We consider minimal models in which the extension
of every relational symbol is minimalized, ie., A is
a minimal model of a set of formulas if for no other
model MY M C M.

But inductive reasoning occurs over a finite set of
objects. We thus need to represent the initial set with
a class of formulas for which minimal medels always
exist; moreover, we want these minimal models to he
finite. Here is a class of lormulae that has such prop-
erties:

Definition: A groundable clause (g-clause for
short), is a clause that satisfies the following proper-
Lies:

1. ils function symbols are constants.

2. every variable that appears in a positive literal
also appears in a negative one.
For example, p(z,y) O oly) i= a pgelavse, while
vz, y) O g(z) is not.
The expected properties (proofs in [Bossu & Siegel,
1985]) are the following:

Proposition:
L. Every sct of clauses has a minimal model.

2. A set of gclauses has a finite set of finite minimal

models,

The definition of generalization will be in two parts:
we will first define the value of a elause w.r.t. an in-
terpretation, and then define the generalizations.

We first need for the generalizations to verify a tech.
nical condition.

Definition: A clause P 2 @ ? is injective over a set
of ground atomic formulae 4, whenever there exists a
substitution &, mapping the literals of P onto elements
of A, such that for every pair of variables =,y of P,

a(z) # o(y).
For example, if
A = {hand(1, clubs, clubs), wins(1),
“Notation P> Q@ means P=py A... Ap., the premise

and & = ¢ V...V gm, the conclusion. Alternalively, we
will write =P v Q.

hand(2, spade, spade), wins(2)}
then the clanse
hand(z,y,2) O wins(z)
is not injective over A because both
o1 = {z/1,y/clubs, z/clubs}

and
vz = {2/2,y/spade, z {spade}
assign the same value to y and 2. Of course

hand{z,y,y) D wins(z)

12 injective over A,

The generalizations will have to satisfy an injectivity
condition over the set of atomic formulas that can be
deduced from the original set. There are two reasons
for this: firstly, it avoids the introduction of “unneces-
sary” variables in the generalization; secondly, we will
show il is a necessary condition to prove an important
propecty: the set of generalizations is finite.

Definition:

L. Let M be an interpretation and ¢ = P 5 Q a
clause, The value of ¢ in M, denoted Val(d, M),
is defined as follows:

1if M |=¢, M | P, & ground instance of P,
and P is injeclive over M,
0 otherwise.
2. Let A be a set of formulue and ¢ 2 clange. The
value of ¢ in A, denated Val{g, A), is:
1if Val(g, M) = 1 for every minimal model M
of A,

0if Val{¢, M) = 0 for every minimal model M
ol A,

3 otherwise.

Example: Let A be
deputy(tom) V senator(tom)
deputy(z) D eorrupt(z)
senater(z) O corrupt(z)
rich(tom) rich(bill)

A has two minimal models, M; and M, that assign
true to the following formulae:

M1 = {deputy(tom), corrupt(tom}, rich(tom), rich(bill)}
M2 = {senator(tom), corrupt(tom), rich(tom), rich(bill)}
L
;t = deputy(z) D rich(z)

#2 = corrupt(z) D rich(z)
#a = rich{z) D corrupt(z)

?As in [Shoham, 1987), if M is an interpretation, M |= ¢
means M satisfies g



Proposition 3: Every clause of ' is linked.

Proof: Suppose not, let ¢ = pA P 2 Q be such a
clause, p being a non-linked literal, and call ¢’ = P 3

A Appendix: Proofs of Properties

Proposition 1: T contains only g-clauses.

Proof: Suppose not. Then I' contains a clause ¢ =
P 7 @, for which one of the following hold:

1. () eontains a variable that does not appear in P,

1 #'isin I', ¢ is not since it is subsumed by a clause
in I'. Otherwise, one of the following conditions hold:

Tn this case, let M be a minimal model of the
initial sei; the two following cases are possible:

{a} There exists a ground instance Fy of P such
that Af |= 5.
Then, let =z be a variable that appears in §
and not in P if M | ¢ then M |= ¥rQ(z).
Let @ = 11 v @2, where @1 are the literals
containing  and Q2 the rest of the literals
of . Then M B ¥z Q1, because M is &
nite, 50 M = (J2. 5o M = F 2 Q, which
subsumes ¢. So each time a model satisfies
such a clanse ¢, 1t satisfies a clause that sub-
sumes it. 50 ¢ is not in [ becanse of the last
condition in the definition of generalizations.

(L) Such an ipstance does not exist.
So for every ground instance Fjy of P, M £
P, So Val(¢, M) = 0, and thus ¢ is not in
r.

2. ¢ = P 2 J contains a function symbol that is not

a constant. Call [ a literal in which such function
symbol appoars.
In this ease, if M is & minimal model of the orig-
inal get, M K= ! because of [Bossu & Siegel, 1985
Property 3.2.1 which says that if a minimal model
of aset of g-clanses A satisfies an atomic formula,
this atemie formula containg only constants that
appear in A, Now,

{a) if | cccurs in P, M satisfies no ground in-
stance of P, 8o ¢ is not & generalization be-
cause Vallé, M) =10

(b) if { ocoors in @), call ¢' = ¢ — {{}. Then if
MEa ME ¢'. The conditions for & and
4" to be generalizations being the same, ¢
cannot be one because it is subsumed by &7
This concludes the proof,

Proposition 2: There are neither positive nor neg-
ative formulas in T,

Proof:

1. No pu—:itivm: a pnﬂil.'we formula is true in the min-
imal models of a set of formulas if and only if it
is true in all models, 1.e. if it can be deduced
from such a set. Condition (b) in the definition of
generalizations diseards sueh formulas from I

2. No negatives: if an interpretation M satisfies a
negative clause =P ({ie. M | YX=P), it can
never satisfy a ground instance of P,

1. Val{¢' Ay=10.
So for every minimal model M of A, Vufédr’, M)=
0. Again, one of the following must hold:

{a) M K ¢'. Then ¢ has a ground instance ¢ =
F{ > Q! not satisfied by M. Now consider
the ground clause ¢; = m A F{ O @}, where
7y is some ground instance of literal p, not
satisfied by M. (This is always possible, as
M is finite). As p is not linked in ¢, ¢ is
necessarily a ground instance of ¢, As M
satisfies neither gy nor ¢!, it doesn’t satisfy
@ either. So M does not satisfy phi (as it
does not satisly one of its ground instances),
and thus phi is not & generalization.

{b) M satisfies no ground ipstance of F. Then
M will not satisfy an instance of pA P either.

{c) P is not injective. Then neither is pA P be-
cause p has no variable in common with P.

2. AES
As A E ¢ and ¢ E o, A &, 8o ¢ iz not a
generalization,

3. ¢ is subsumed by a generalization,

Then the same clause that subsumes ¢ subsumes
¢ by transitivity, so ¢ is not & generalization.

Corollary 4:
1. No clause of I contains a negative ground literal,
2. No Horn clauss of I' contains a ground literal,

Proof:

1. Negative ground literals are not linked {as they
contain no variables).

2. A Horn clause has only one positive literal. Tt
cannot be a ground literal, because no negative
literal would be linked. As there are no negative
ground literals, there are no ground literals at all.

Proposition 5: [ is finite.

Proof: I has a finite number of finite minimal mod-
els, We show that any of these can only satisfy a finite
number of injective clauses.

Suppose not, and let {¢;,¢s,...} be an infinite set
of such ¢lauses. Then it is possible to construct a set
{1, tha,...} such that o C ¢; and all the {yy} have
the same predicate symbol: as the number of predicate
symbols is finite, in an infinite set there must be at
least one that appears an infinite number of times,
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Abstract

This paper mtroduces a novel approach lo
similarity-hased inductive reasouing. Indee-
tion 15 deflined as inlerence In s nonmenotonic
lagic; this approach contrasts with the classi-
ral approach that consists of adding formulae
lo a theory in order to deduce other formu-
lae. We peint out problems arising in this
setting and show how they are solved within
cur framework. Given a set of formulae A, we
define the set 1" of inductive generalizations
of & and derive several of its properties,

1 Introduction

This paper introduces a novel approach to empirical
(similarity-bosed) inductive reasoning. The model pre-
sented here contrasts with what we eall the classical
approach to indoection: in this approach, a system 15
presented with imformation concerning a domain; its
task 15 to infer hypotheses that allow it to “explain”
what it obeerves. From a logical standpeint, what we
informally call here “explain™ 13 v fact “deduce”. S0
the task of the system is to add fermulae to a theory in
order to be able to deduce other formulae. Teduction
thus plays a key role in the definition of induction.
This situation can be formalized as follows:

Given some background knowledge A and
ohservations @, such that A p= ©, Find T
(called generalizations of & wilh respect 1o

A such that AUT = 8. (1)

{Although the problem is not always expressed in log-
wcal terms, il 1s always equivalent to this formulation.
See for example the book by Genesereth and Nilsson;
we omil additional details that are not relevant here.)

Mow, this is certainly a satisfactory model of indue-
ticn in the framework of scientific, rigourcus thinking;
but is does not seem to mirrer accurately induction as
the kind of ubigquitous reasoning of everyday life. For

*I'his work is based on the author's doctoral research
that wae done at GRTC, Centre National de la Recherche

Scientifique, Marseille, France

example, upon observing a oumber of birds and their
ability to fly, people might generate the rule that all
birds fly simply as a conclusion of the observations,
grounded on their sumnilarities, rather than as an ex-
planaiion of the fact that, for example, Tweety flies
knowing that it is a bird. No deductive step is involved
here, so there is na reason for deduction playing such
an important role in the definition of mduction.

Contrasting with this, we argue that induction is a
process of “jumping to conclusions” in the presence of
partial information and thus a kind of inference un-
der uncertainity. Predictably enough, it shares a basic
property with certain kinds of default inference: indue-
tion assumes that the similarities between the observed
data are representative of the rules governing them (we
subsequently call it the similariiy-gssumption). This
assumption is like the one nnderlying default reasoning
in that a priarity is given to the information present
in the database. Tn both cases, some form of “closing-
off” the world is needed. However, there ks a differenes
betwesn these: loosely speaking, while in default rea-
sopng the asswmplion s “whatl you are not told is
false”, in similarity-based induction, it is “what you
are not told looks like what you are told”,

This maotivatea the approach we introduce here in
which, given a sel. of formulae, we infer other formulae
called inductive generalizations of the former. For-
mally, the problem is '

Given a set of formulae A (we do not dis-
tinguish between background knowledge and
observations), Find I' (the generalizations of
AY such that A Epyp I', where =pyp i5 a
certain rule of inference that embodies the
assumptions underlying induction.

I'is supposed to represent all the regularities present
in A, i.e. all the rules satisfied by 1ts objects. In
the machine learning terminclogy, this is often called
Dearning by observation and discovery™, and is sup-
posed to model a situation in which the learning sys-
tem receives no assistance from a teacher. However,
our aim here is not to model a particular learning sit-
uation, but rather to point out problems concerning
the way inductive inference is currently formalized in



