[COT Technical Memorandum: TM-0679

TM-(679

Logical Dependency Grammar and
Its Constrainl Analvsis

by
R. Sugimura

February, [989

1989, [COT

Mita Kolouesai Bldy 2IF (U3 406-3141~5

|C:DT 1-28 Mita 1-Chome Telex 1COT]32964

Minato-ku Tokyvoe 108 Japan

Institute for New Generation Computer Technology

Logical Dependency Grammar and
its Constraint Analysis

Ryéichi Sugimura
Institute for New Generation Computer Technology (ICOT)
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan

AREA : Cl. Natural Language
Multiple Submission : NONE

Abstract

This paper introdnees logical dapendency grammar which includes
type-0 rewriting rule for modilying relations, and constraint analysis
of dependency structures of sentence analysis.

It is well known that idiosyncratic gap between dependency struc-
tures and phrase structures reflects not only syntactic idiosyncracy
but also semantic idiosyncracy.

Dependency structures in which one phrase modifies more than
two phrases, can not be directly written in context {ree rules.

Tlercfore, in order to obtain the dependency stroctures, usual ma-
chine translation systems have been applying procedural methods. A
defect of these systems is lack of declarative rules. In usual declara-
tive phrase structure grammars for dependency structures, resultant
syntactic trees do not reflect the resultant semantic structures,

[n this paper, we propose declarative type-) grammar rules for
dependency structures. As the matter of fact, termination of rewrit-
ing process with proposed rules is guaranteed. Different from phrase
structural approach, resuitant dependency graplhs reflects its semantic
dependency stiuctures.

More over, in our grammar, we can define constraints between
ambignous dependency structures of sentence analysis, and we can
golve these constraints in Constraint Logic Programming {framework,

As practical tool, we will briefly introduce an effective logic based
parallel parser SAX-0 for type-0 langnage. Results of experiment will
be reported.

1 Introduction

This paper introduces a tiny set of logic grammar rules, with which we can
get dependency structures from input sentence. Dependency structure is
constructed from constituents of a sentence, and modifying relations between
them.

We will show that modifying relations in dependency structures, can be
written in a set of simple rewriting rules including a type-0 and a type-]
rules. As the matter of fact, termination of rewriting process with proposed
rules is guaranteed.

It is well known that there is syntactic and semantic idiosynecratic gap
between Japanese and English [6]. Japanese has dependency structure in
which one phrase modifies other phrases. On the other hand Enghsh has
phrase structure.

The idiosyncratic gap between dependency structures and phrase struc-
tures, reflects not only syntactic idiosyncracy but also semantic idiosyncracy.

As to rewriting rules, we can not write context free rules for dependency
structures in which one phrase modifies more than two phrases. Machine
translations systems usually utilize procedures in order to get dependency
structures (5] of agglutinative language such as Japanese or Korean language.

As the main feature of our system, we can analyse modifying relations in
dependency structure in declarative rules with graphs which correspond to
semantic structures,

As to the disambiguation of the result of sentence analysius, we propose a
constraint approach(7]. In our approach, logical constraints between results
of parsing can be propagated into context analysis.

Section 2 will summarize dependency grammars. Then, simple rules for
dependency structure will be introduced. Section 3 will briefly introduce par-
allel parser which is the extended version of parallel parser SAX [4]. Section
4 describes about constraint analysis of the resultant dependency structures
from parsing.

As the conclusion, we will consider the context sensitiveness in pragmatic

parsing.

2 Dependency Grammar

2.1 Dependency Structure

Agalutinative language such as Japanese or Korean language has dependency
struciures. A sentence in dependency siructure can be sezmented into a set
of special grammatical phrases (called “bunsetsu” in Japanese]. This pa-
per uses the term “PHRASE” to mean minimal constituents of dependency
structure. A PHRASE consists of some words and can be regarded as a min-
imal semantic elements to present various kinds of cases in a sentence. Any
PHRASE has a2 dependent relation with other PHRASEs, or more exactly,
modifying relations (MRs for short).
Formally, dependency structures are defined as follows.

DR1 All PHRASE except the last one should modify at least one PHRASE
to the right of themselves. If a PHRASE modifies a PHRASE to the

right of themselves, draw arc between them.
DR2 The last PHRASE modifies no other PHRASES.

DR3 No two arcs should cross each other,

With definition DRI, it is clear that dependency structure is not a tree but
a graph. From a sequence “PHRASE;, PHRASE;", we can get the sequence
“PHRASE,, arc, PHRASE;" when there holds modifying relation between
PHRASE; and PHRASE,;. It is clear that rewriting rule far this transforma-
tion can be written in type-0 rule. Therefore. context free grammars can not
generate and analyse dependency structure.

For example, the following figure [1] is the correct dependency structure.

The following figure [2] is illegal because it breaks the rule R3.

2.2 Grammar Rules for Dependency Structure

Now, we will introduce a tiny set of grammar rules for dependency structure.

1 ', I a1,

[Tam g*_| Hanako ni houkoku suru koto wo '] yakusoku suru f

Figure 1: Dependency structure

Illegal
T !
| R vy
utsukushii Kenga] Naomi wo | aisuru
beautiful Ken NOM Naomi ACC loves

Figure 2: Tllegal dependency structure

Following rules (1) and (2) correspond to the definition DR1. We will use
symbol “ph” to note PHRASE. Rule (2) defines the gap between modifying
PHRASE ph,, and modified PHRASE pha.

ph,,arc,ph,

—= > ph,,ph, (1)
Phl y LT, Phi

—— > phy,(arc;]]), ph-arc_array, ph,.ph_arc_array

—~ > ph.arc.array, ph, array. (2)

Analysis begins from a sequence “ph,,... ph,”.

Rule 1 is type-0 rule. This rule is activated if there exists dependent
relation between two adjacent phrases. “arc” which represents modifying
relation is generated in this tule, if there holds modifying relation between
PHRASEs.

It is very important to understand that this rule can be applied to a pair
of adjacent PHRASEs, and if this rule applied, the result array of symbols
can not be applied this rule. No other grammar rule generates adjacent
PHRASES, therefore this rule always stops.

Rule 2 is type-1 rule. This rule is activated if there exists dependent rela-
tion between two separated PHRASES like “phy,. .. phg" where ph, modifies
phi. “(arc;[])” allows multiple dependent relations. “ph_arc_array™ corre-
spond to more than one array of “PHRASE | arc™.

For practical use, we modifv the above rules as fallows.

ph{W1 S¥nl Seml), (3}
arc{ [(W1,W2]]), (4]
phi{W2,5vn2 Sem12) (3)
—=2> ph{WIl Syol Seml), (6]
ph(W2,5yn2.5em?), (%)
{const(Synl.Seml . Syn2.Sem2.Sem12)}. (8)

ph(W1,Syn1,Sem1), (9)
arc([(W1,W2),J—I]), (10}
ph{W2,5vn2 Sem12) (L1}
—— > ph{W1Syal,Seml), (12)

(are(T)0D), (13)

ph.arc_array([,.), (14)

ph({W2 Syn2 Sem?2}, (15)

{const{Synl,Seml Syn2 Sem?2.Seml2)}. (16)

Rule in (1) 1s extended into formula from (3) to (8). Rule in 2 is extended
into formula from 9 to 16. “W1" and “W2" is a logical variable which
stand for syntactic category and that is used to draw dependency graph. If
dependency relation holds between phrase in 6 and phrase in 7, “arc” in 4
will be generated. “arc” carries the pair of names of these itwo PHRASEs.
This information is used to draw dependency graph.

Synl stands for svntactic features of modifving phrase. Svn2 stands for
syntactic features of modified phrase,

“construct” is the predicate which checks whether dependency relation is
holds or not. I there holds dependency relation, this makes new semantic
information “Seml2”. “Seml2” in (5) is made by “const™ in (8), “Sem12”
in (11) is made by “const™ in (16). The main work for grammar writer is to

define this predicate “const”. There iz no need to consider another factor of
the grammar for grammar writer.

3 Parallel parsing for Type-0 Language

As stated in previous section, grammar rules for dependency structure is in
tvpe-0 and type-1 language. Therefore there should be effective parser which
caln parse sentence with context sensitive type-0 and type-1 rewriting rules.

For this purpoese, we extended our parallel parser SAX (of AX) [4]. SAX
is a lavered stream based chart parser. It executes analvsis of a sentence
bottom-up breadth-first. Restricted Gapping Grammar [1] [2] [8], is already
impremented in it. Extention is on the point that instead of generating gaps,
SAX asserts the programmed nonterminals. For example, if the rule 2 is
holds, parser gemerates a sequence of head symbols.

In fact parsing will be carried out as follows.

From this parsing, we can get resultant dependency structure as follows.

4 Disambiguation with CLP

Lext consider that after parsing we got 5 ambiguities as follows.
First, lets define dependency graph.

Dgraph = (Z, M) (an
% [X|X = PHRASE (ph for short)} (18)
M % {arc{pha, phs)lpks modifies phy) (19)

In the resuitant dependency structure, I is the same, but M is different.
Between M in resultant ambiguities there holds the following axioms.

Miywv Mew . v M,
where M,

irue (20)
are{Pl,1, Pl,1) AL ..are(Pl,m, Plym) (21)

From the resultant dependency structures, we can get the following for-
mulae and get the conclusions after applying the above consiraint. The

Sentence

PHRASE_ ARC

—

PHRASE Are PHRASE

| 1 |
|

!
PHRASE _ARC

P

PHRASE Are PHRASE

I | |
|
I

PHEASE _ ARC

! PHRASE__ARC

r /

PHRASE || Arc || PHRASE

PHRASE | | Are || PHRASE

PHRASE PHRASE PHRASE PHRASE PHRASE

VANA I\

Taro ga hanake ni houkokusuru kote wo yakusokusuru .

Figure 3: Parsing Chart

NN TN

.

Fﬁmie ; Se . se f’ﬁﬁﬂ& Ardse
A A e R Y

Tors 5:.1 Ramoko m Aowkobusu ke um J;.«cti:uic-kasum.

Figure 4: Resultant dependency structure

constraint could be solved by Boolean constraint solver generally as such
Boolean Grobrer base solver.

arc(phy, pha) A arelphyg, phy) = brue (22)

Truth value of the others are remains unknown. But if we can get the
information from the context, that arc(phy,ph;} is not true we can easily
disambiguate the resuitant dependency trees.

5 Conclusion

Declarative rules for dependency structures, and basic methodo for constraint
analysis was presented. As the next research point, we should study about
pragmatic facts which relates sentence disambiguation. Anyway, we belicve
the method presented here to be a first step for formal approach for depen-
deucy analysis and its disambiguation,

References

[1] V. Dahl. “More on Gapping Grammar”, In Procesding of the
International Conference on FGOS "84, page 669-677, Tokyo,
1984

(2] V. Dahl and H.Abramson. “On Gapping Grammar”, In Pro-
ceeding of 2nd ICLP, page 77-88, Sweden, 1084,

(3] Gunji, T., “Japanese Phrase Structure Grammar”, D.Reidel
Publishing Company, Dordrecht, 1987

— B —

F | v Y y .

Taro ga Hanako ni houkoku suru koto wo yakusoku suru

pmmise{Tam.Hanakn,repnrt{agent..ﬁanako,scm&thing]}

| | . ——

[Taru ga Hanako ni houkoku suru 4 koto wo yvakusoku suru

promise(Taro, Hanako, report{agentl, agent2, something))

| Y vy v % v

Taro ga '[Hanako ni houkoku suru koto wo yakusoku suru

promise(Taro, agentl, report(Taro, Hanako, something))

| Y O %

Taro ga Hanako ni houkoku suru koto wo yakusoku suru

promise(Taro, agentl, report{agent2, Hanako, something))

| IR 2 s S

Taroga | |Hanakoni houkoku suru koto wo yakusoku suru

promise(agentl, agent2, report(Taro, Hanako, smething))

Figure 5: Resultant dependency structure

4]

[8]

Matsumoto, Y. and Sugimura, R. “A Parsing System Based on
Logic Programming”, In Proceeding of [JCAI 87, 1987

Nakamura, J., “Selutions for Problems of MT Parser — Methods
used in Mu-Machine Translation Project”, Coling '86, pp.133-
133, 1986,

Nitta, Y. “Idiosyncratic Gap, A Tough Problem to Struture-
bound Machine Translation™, Coling '86, pp. 107-111, 1986

Sugimura, R. “Constraint Analysis on Japanese Modification”,
Natural Language Understanding and Logic Programming, II,
V.Dahl, and P.Saint-Dizier (ed), North-Holland, pp.93-105.
1987

Sugimura R., Hasida K., Akasaka K., Iatano K., Kubo Y.,
Okunishi T, and Takizuka T., “A software environment for re-
search into discourse understanding systems”, FGCS-88, 1988

— 10—

