ICOT Technical Memorandum: TM-0672

TM-0672

Redesign Mechanism for Logic Design
Support Svstem

by
I. Kakuda, F. Maruvama, Y. Matsunaga
& N. Kawato {Fujitsu)

Fanuary, 1980

D 198G 1O

Mita Kokusai Bldw, Z21F (31 426-31%91 45

| G DT 1-28 Mita 1-Chome Telex ICOT J32064

Minalo-ku Tokve 108 Japan

Institute for New Generation Computer Technology

Redesign Mechanism for Logic Design Support System
Tacko KAKUDA, Fumihiro MARUYAMA, Yusuke MATSUNAGA, Nobuaki KAWATO
Fujitsu LTD.

1015 Kamikodanaka, Nakahara-kuo

Kawasaki 211, Japan
Tel: +81-44-777-1111

ahsiract

We have been developing a logic design suppornt system which inpurs a behavioral
specification for hardware and generates a collection of CMOS standard cells under given con-
straints on area and dme(1). This system refines, evaluates apainst the constraines, and
redesigns automatically when a constraint violation occurs. Preliminary results on this work
were reported in (1], In this paper, we describe implemeniation details focusing on a redesign
mechanism and give results of the evaluagon of the system. Furnthermore, we discuss remain-
ing problems to be solved in order o improve the ability of the system.

Datapath components such as adders and counters usually have several altcrnatives which
have different sizes and delay times. The optimal altemnative varies depending on given con-
straints and other parts of the whole circuit. The design does not progress untl a decision is
made, s0 the most plavsible altemative at the tme 15 usually selected. However, later evalua-
tion against constraints may show that the decision was incorrect and must be retracted.
Redesign is thus necessary to satisfy all the constrains,

Such a design process, which inevitably invelves tentative decisions, has some analogy
wilh assumption-based reasoning that uses both facts and assumptions which can be retracted.
We treat design decisions as assumptions and constraint violations as contradictions, and con-
sider redesign (o be contradiction resolution. We implement the redesign mechanism based on
Jjustifications for constraint violations.

Justification was originally introduced for wuth maintenance 0 manipulate information con-
taining assumptions. Cur system storcs justifications for constraint viclations and uses them to

redesign. 'We call such justifications "Nogood Justifications (NJs)". NIz are stored in a hierar-

chy which represents design objects, and a redesign algorithm is defined on the hicrarchy.

Hierarchy of Design Objects

Design objects are represented in a hierarchy, because design is done hierarchically. This
is shown in Fig.l. The hierarchy consists of component nodes and alternative nodes. A com-
ponent node, which corresponds 10 a4 component at each level, associates alternative nodes as
possibilities of implementation. An aiternative node, which cormesponds to a design altemative,
conlains informagon about the connection between subcomponents and has the subcomponent
nodes as children.

Each design altemative is produced by a rule-based approach in our system, and the hierar-
chy is generated as the design pmceeds. An altemnative is called in if it is adapred and our if it
is discarded. Our altematives are also preserved to be recalled later when necessary for

redesign.

Nogood Justifications (NJs)

An NJ is a logical expression that consists of inequalities conceming constrainis on area
and ume. Each NJ is put at one of the altemnative nodes in the hierarchy and represenis a con-
dition to inhibit the altemative to be selected. For example, when a datspath consists of com-
poncnts A, B, and C, and A has an altemative Al with 150 cells, Al is inhibited if the follow-
ing NI is satisfied:

150 + #B + #C > Constridatapath),
where #B and #C mean the number of cells of B and C respectively, and Constridatapath)
means the area consiraint of datapath in terms of the basic cell count.

NJs are generated in three ways. First, given constraints are transformed in advance inte
default NJs, equivalent to the original constraints in that any design violating the constraints
satisfies them. During the redesign, NJ expansion and NJ synthesis generate new NJs to inhi-
bit the same altemnative to be selected under similar or worse conditions. NI expansion gen-

erates a refined NJ for one of subcomponents that the original NJ refers o and stores it at the

alternative node one level down. NJ synthesis generawes a generalized NJ at the altemative

node one level up.

Redesign Algorithm

Redesign is invoked when a default NJ tums out to be satisfied. The redesign algorithm
bemns with the NI, from the alternatve node where the NI is put. It selects a subcomponent ©
be changed and expands the NT far it. It repeats this process going down the hierarchy until
the generated MJ does not refer to a subcomponent. Then it discards the altermatve with the
NI, and adopts an owr alternative or a new altemative produced using rules. It checks o see if
any MNJs at the ancestor nodes, including the alternatve node itself, are sadsfied. If one is
found, the algorithm resumes with the NJ,

If every altemative of a compenent is inhibited by WNJs, the logical product of the NIs
corresponding to each altemative is produced by NJ synthesis at the alternative node one level
up and the algorithm resumes with it. This NJ does not refer {o the inhibited component
another component is thus selected.

Ag long as there are nodes without an in alternative, the redesign algorithm selects one of
these nodes and resumes with it. When every node has one in aliernative, the design com-

pletes.

This work is done under R&D acovities of Fifth Generation Computer Systems Project of
Japan. We have implemented the system containing this redesign mechanism on PSI in ESP,
and tested for a small example changing given constraints. Efficiency of the redesign algo-
rithm largely depends on how to select a component to be changed. We are going to carry out

evaluation on this,

Reference
[1)MaruyamaF. et al.,"co-Lodex: A Cooperative Expert System for Logic Design”
FGC5'48

coaponent DATAPATH

dlzernative
lazsumpt jon}
node

DATAPATHT { [SUB, COMP, - - =]

ADDT

{-Bit CLA CellX 2 [. e e N

|I|I.I

et

1-f1t Adder 8

© 2-Bat CLA Cellx 4

Fig. 1 Hierarchical design deacription

