ICOT Technical Memoaorandum: TM-0664

I M-0664
A'UM = Stream + Object + Relation

by
K. Yoshida & T. Chikayama

January, 1989

L1989, 1COT

Mita Kokusar Bldg. 21F (03 456-3191 -5

I[:D | 4-28 Mita 1-Chome Telex ICOT]37964

Minato-ku Tokvo 108 Japan

E_stltute fbr Neﬁr Generation Computer Technology

A'UM = Stream + Object + Relation

Kaoru Yoshida

Takashi Chikayama

Institute for New Generation Compuler Technology
4-28, Mila-1, Minato-ku, Tekyo 108, Japan,
e-mail: {voshida, chikayama)¥icol,jpBrelay es net

Abstract

In this paper, we introduce & coneurrent programming lan-
guige AL 1['!’0511111&88]. which has been designed aiming
at high parallelism and ligh expressivity for the develop-
ment of large scale software. A'IAL is characterized by
three features: stream-based computation, abject-oriented
abstraction and relational representation.

1 Introduction

Our goal is to realize computer systems by which large scale
or complicated problems can be solved quickly in the total
amount of time required for the entire development process
threugh designing, programming, debugging, mainlenance,
and extension. To achieve thiz goal, we would Like to ex
Lract maximum parallelism from the problems and impose
miirmum overhead on the system architecture. Since a pro-
gramming language lies between application problems given
by the user or envirenments facing to the user and the sys-
tem architecture designed by the implementater, it should
be natural and flexible in its representation and efficient in
its performance. [n addition, the underlying eomputation
medel should be simple and uniform for ease of understand-
ing, formalization and implenentation.

A' LA satislies all these requirements by integrating the
nokions of streams, objects and relations,

What is a concurrent system? A roncurrent system
15 a system in which more Lhan one event can occur indepen-
dently, ie., n parallel or in any order. This situation can
be simply modelled using partially ordered sels of events
{poset for shore), which may contain elements thal have no
precedence in order. Posets can be casily represented by
streams.

2 Stream Computation

In general, there are several kinds of streams, such as
streams of water (rivers), streams of electricity (electric cur-
rents), and streams of cars (traffic). We visualize the notion

LATLA i a Japanese word, derived from the Sanakeit " s
consisting of Ak and Um, which imgplies the beginning and tha end,
an open voice and & close voice, and expiration and inspiration. This
name was given Lo symbolize stream cammunication which is the Lusie
notion of this luiiguage.

of streams illustrating a river, which may be the Amazon
flowing to the Atlantic Ocean.

What is a stream? Running in the river is water, which
consists of drope of water. Drops connect one after another
and finally make a continuous stream. Looking over the
upper river area to the lower river area, every two hranch
streams converge into one siream so that a tree of streams
is formed, whose root stream goes into the ocean. One drop
from ene branch stream may go to the ocean earlier or later
than another in another branch stream. As the phrases:
upper viver and {ower river show, the river has a dircetion
of flow.

A stream also reminds us of connecting electric wires, For
each wire, the end toward the anede is attached with a red
tag and the other end from the cathode with a blue tag. We
can make a long wire hy eannecting the red tag of one wire
to fhe blue tag of ancther.

In A"UAA, we deal with streams of messages. Let us re
gard the above ocean as an object and rach drop of water
as a message flowing into the object.

1*/"’};5
QodEn .-r
—ee ¥

. . branch
Sl —
water drops &\

Stream computation: The direction of a stream is rep-
resented as an arrow with a complemeniary pair of termi-
nals, slel and eutlet, which are respectively specified by a
variable name preceded by = (c.g., *X) and just by a variable

name (e.g-, X). inlat outlet

L X
Stream computation is production and consumption of
streams, whose basic operations are:
» sending a message (m) to an outlet (X) when the outlet
(Y) of the following stream is given;
closing an outlet (X);
» connecting an inlet ("Y) to an outhet (X);
» teceiving a message (m) from an inlet ("X} when the inlet
{"Y) of the fellowing stream is given;
detecting that an mlet (~X) is closed.

‘I'husg, stream computation 18 explained using three terms,
inlel, ontlet and nil, where nil is the state left after closing
an outlet, indicating that the siream is not longer accessible.

! before after
send - C.}‘:—‘ "'_O"'_-f
close -3 — "_'_lm' |
connecl -d—i -g'—- —_—
receive ;g;{}-—- {;} ™
is.closed] —_, _i

There are two kinds of binary operations for building a

shrearnn Lres:

w merging messages from two streams (2 and “v}
nendeterministically;

» appending messages from one stream (Y} to any of the
messages from the other stream (~1).

ITI'ETEE 3

”f“é

appen TreD
@)

5 D D@ - -

What is a message? A message contains a message
name and a tuple of stream terminals, each of which is either
an inlet or an outlet, and 1= identified by the message name,
the number of the terminals, and their directions from the
recejver's viewpoint, For example, message m(X,"Y,Z) has
a name m and contains three terminals: one inlet ~Y and
two inlets X and 2, so it is identified as m{-+-).

#Receiver's BCOpE™,

[A 18 i -4
T~

Sender’s scope

Bach message works as a stream connector which connects
strcams given as formal parameters in the sender's scope
with streams given as actual parameters in the receiver’s
scope. Since two streams can be connected when the inlet
of one and the outlet of the other are given, the sender
and the receiver should specifly complementary directions
for each parameter,

3 Object Model

What is an object? An object (or process) is the ab-
straction of iterative computation. When being created, an
object is given one stream, called the interface stream, which
works as an interface to the outside. Every time an object
detects an event on the interface stream, which is either
receiving a message from the stream or detecting that the
stream is closed, the object takes some actions according to

the event and simultanecusly descends to the next cycle of
iteration. Taking each cycle as one generation of an object,
an object is a chain of generations. For some generation of
an object, the object ifself means the next generation,

Each generation is a collection of stream terminals which
inclide the inlet of its interface stream from which to receive
a messare and other stream terminals which represcot the
internal states of the object.

From the sender’s viewpaoint, each stream {outlet) toward
an object can be looked upon as the object itsclf. Making
acquamniance with an ebject is obtaining a stream (outlet)
toward the object. Introducing an aquaintence (A) fo an-
nther (B) is splitting the stream (outlet) toward A into two
and passing one of the two streams to B.

In A'LAA, there is nothing but objects which commu-
nicate with each other via streama. Primitive dala such
as integers, atoms and booleans, and classes are also ch-
jects. For cxample, if an integer such as B is specified, it
means an outlet toward integer 5, to which a message such
as add{Adder, “Sum) can be scnt.

Example (counter): Weexplain the 4" 8 object model
with & simple example, coanier, which is defined as follows:

class counter.

out n. % outlet elot definition
tup -* 'mo# 1= im, 3 E#¥ =» 8 ; X:radd(Y,"S)
sdown -* !nm - 1 = !n, 3 X-Y => D ; Xrsub(Y, D)
:eet("N) -»* N = !u. % $self:set_outlet(n,N)

ishow{N) = fn = "N. % Seelf:get_ocutlet(n, N}

end.

claas teat_counter.

stestM(U, I =-»
#counter:set(s) = "C, Crupiup:show("Ud,

C:down:down:showl "0},

stesth (U, D) ->
#oounter:set(5) = "C, Ciliupiup:shew{),
52 down :down:show ("D} .

ohject

lff;t g:nrrﬂ.f.i%

4} descend
il gmﬂnl: EJ‘

Eet-outlet{'n’ N)

message(a] sent from
the st generation

A counter is an obJect that counts up or down according
to each received message. We try two kinds of test using
the counter: testM and testA. Both methods are: (1) cre-
ale an instance of class counter; (2) send message set(5)
to the instance; (3) split the stream remaining after sending
the set message into two; (4) send two up messages and
one show{~U) message in a row to one branch; (5) send twe
down messages and one show{"D} message also in a row to
the other branch., The only difference between the two test
methods is that, in testM, messages from the two branches

are merged, while, in testd, messages are appended ac-
cording to the given suffixes: $1 pricr to $2. Therefore, the
counting results, *U and "D of testM, should be respectively
some of 16,8, 7} and some of {3, 4,5}, while those of testa
should be exactly 7 and 3.

The picture shows the situation just sfter the counter has
received message set(8) in testhd. For testd, an appending
joint takes the place of the merging joint.

Helational model: Among those actions that each gen-
eration can take are stream operations, creation of ob-
jects, and gemeration descent. Une of the characteristic
of AWM s s declarativity. A program contains no con-
sbraints om the execnlion sequenece on these actions, as fol-
lewes:

{1) Paralle! actions: The acltions can be exscuted in parallel
and their arguments can be connected in parallel.

{2) Causality: All that relates one action to ancther is
causulity thal is the relationship of their arguments.

{3% Asynchronous communization: Objects do not wait tn
sending messages, They wait only when receiving messages
at the beginning of each genecation.

Slot access: An object may have slods, each of which holds
a streamn terminal associaled with a name. There are two
kinds of slots, inled slots and outlet slots, according to the
direction of the terminal that they held. Slot azeess is done
by sending a particular message to the object ifselfl The
action taken for each outlet slot access messages and, based
on the action, what will happen in the second generation of
the counter object are shown Lelow,
connected from
wld new

the argurnent
getoutlet -—Q—@:/F gl

| setoutlet =—f=H]

Class inheritance: A'HA supports multiple class in-
heritance for the purpose of minimizing the total amount of
pregram code. By inheriting classes, the applicable method
space for an instance is expanded, but no extra instance is
created for any of the super classes.

Volatile object: Each generation (1) takes actions ac-
cording to the event and (2) descends to the next generation.
(1} means conditioning and {2) means looping. Objects are
condition handlers by nature. If one class were defined for
each condition, however, a number of classes would have Lo
be defined. A4'UAM allows temporary classes to be defined
within a method, which are called woletile classes but have
the same framework as external classes.

4 Linguistic Support

As a concurrent systermn 18 modelled vsing a poset of events,
a concurrent program is an event graph. Here, how to make
it easy to draw a graph is the most important issue. Stream
programming is direct, but it has the disadvantage that even
one failure to cloze a stream or to connect a stream might
cavse 2 deadlock which will make the entire sysiem fail.
AWM provides linguistic support for safe and easy pro-
Eramiming.

Functional grammar: A method consists of two parts:
the passive pari to define an event by which the object is
activated, and the active part to define a et of actions which
the object shiould take according to the event.

< AMethad s =< Event > '] £ Aetiona 34", € Actiona > |]

o Aetions po=a Nil
The event and actions zre defined by furetional ﬁxpre-ssinnﬁ,
each of which is called tnlef expression, outle! expression o
ntl expression, according to the representation result. Any
complicated graph ean be drawn by constructing these ex
pressions. For example, the messape-sending expression rep-
resents the outlet of the following strearn, to which another
message can be sent. Thus, C:uprup:show(~U) represents
the autlet of the stream following the message show(~U).

| rf.l'.u.h'r.n I'.ITJTH.'I.‘IIIT'H. TE!'EII |
receive(L ,m,¥) .| *:? < Mesgages 1=7 S 0ut> | € Nul>
m =Y
| ds._clesad(~I) L < Nel>
sopd(X,=,”Y) <Oul> F: 1 & Messuge > < Out
IL:m Y
close (L} qﬂu!} ¥:a | & Wil s
I :: :
moTge (“I,°Y, 2} Sluts> 1=t Zin ! <Oul
= "I vy
append(°L,°Y,2) | <ins " <l | 2 ins
T WY | R
commactiX, " T} <Qutr =t S In izt | <N
I="7YT :: t
depcend(T, 5} tez=t & ln IELLE
Cum “F i

(1) Right-to-feft rule: The above pictures are drawn so mes-
sages flow from right 1o lefi toward the leftmost object, Le.,
time should go by from left to right, so that messages fur-
ther left are received by the object earlier than ones further
right. The expressions are designed to keep this righi-fo-
left manner, so that we can wrrle a program like drawing a
picture.

{2} Derivation of nils; The grammar promotes the comple-
tion of computation. It basically allows only nil erpressions
to be specified as the top-level expressions in the < Actions>
field, so that no outlets can be left open and no inlets be left
unconnected. This grammar is extended to be more fexible
as explained later.

Macros: For ease of writing compact programs, several
kinds of macro expressions are supported, among which the
following three kinds of macros are used in the example:

(1} Arithmetic operation macres:
This type of macro means an outlet toward the operation
result, e.g., X+Y means 5 for the sum 5 of X:add(Y, 5}

(2) Instance creation macro (*#/< ClassName >):

which means an outlet toward an instance which is cre-
ated by sending an instance-creation message to the clpss
object, e.g., #counter means New for the instance “New of
##counter:new{ " New).

[3) Outlet slot access macre {117 < SlotNames)
The meaning of this macro depends on the field: slot-
reference in the < Out > field, and slot-updating in the
< In> field. For example, methods set ("N} and show(N)
are equivalent to:

iset{"N) -> :met_outlet(n, K).

:show(H} -> :get_cutlet(n, ~N).
Note that, for those progranuners who are used to be pro-
gramming in procedural languages like C, it might seem
sirange that 'm = “Nimplies slot-reference and ¥ = 1nzlot-
updating, hut they are consistent on the right-to-lefi rule,
Suppose that the counter receives messages set(5) and up.
An outlet toward integer 5 is set into a new slot named n,
then it is referred to and an addition message is sent to the
referred outlet as follows:

E=!mn, !'n="N, N:add(1, -5),
Thus, the addition message will flow from right to left to-
ward integer 5.

{4) Succession macro (< Event»>*->*): The meaning is: (i)
create a new generation; (i) send to it the messages from
the current generation, prior to those following the received
message in the interface stream. For example, the above
sot{"H) method is equivalent te:
:sat("N) = Rest |
<== "Salf, Self:get_outlat(n, N) = “Reat.

Variable as a stream tree: For example, when mal-
ing a call from Tokyo to someone in London, our intention
ia not to know how to connect telephone lines from Tokyo
to London, but to talk with the person. Stream program-
ming is like this, Merging and appending expressions using
stream varniables make us pay attention to how to build a
stream Lrec loward an object rather than what to do with
the ohject.

The meaning of a variable is extended from a stream to a
stream tree so that a stream tree can be directly represented
only by variable oceurrences. For one inlet (e.g., “C), outlets
without suffixes (e.g., C) make a merging tree, and outlets
with suffixes (e.g., C$1 and C$2) make an appending tree.

Implicit completion of streams: It is permissible to
specify a non-nil expression in the < Actions > field or to
leave inlets open or outlets unconnected, but instead, these
inlets or outlets are implicitly closed or connected to sink
objects which should absorb messages. In the example, all
the top-level expressions are outlet expressions, so they are
implicitly closed.

Therefore, method testM is expanded and completed as
follows:

ttestM (U, D) -> #¥counter:newl New)::, %1
New:set(5) = "C ::, s
C="C1="02 ::, %3
Cl:up:up:show{~U)::, e
C2:down:down:shew("D)::. U5

For testd, line 3 is replaced by € = (~C1 % ~C2)

5 Related Works

What influenced most and has a close relationship with
A'UM iz the family of concurrent logic languages (CLLs)
and the Actor model.

A'UM ws. CLLs: Lhe declarative property of A' LA is
inherited from CLLs, Declarativity is one of the greatest
advantages we can obiain in concurrent programming for
extracting maximum parallelism and providing high expres-
sivity, since it frees the programmer’s mind {rom concern
about the execution sequence.

Simee an object-oriented programming style for COLs was
proposed, in which anp object is represented as a sequence of
tall recursive goals, each of which has an intecface stream
from which to receive & message and carries arpuments as
its internal states, there have been several object-oriented
approaches studied based on this style. Attempting o pro-
gram in this style revealed several substantial problems,
mainly due to the verbosity of CLLs, that motivated us
to design A"UA. A"UAM differs from these object-oriented
approaches to CLLs in two points:

(1} there is no general (bi-directional) unification, that sim-
plifies the system architecture;

(2) abstraction is infinite, ie., primitive data can be seen
as objects in Lhe program, that promotes generic program-
ming.

A UM ws. Actor: The object-oriented abstraction of
A'UM is based on the Actor medel, A'WM differs from
the Actor model mainly in that the arrival order of messages
can be explicitly repr\es.ﬂnlﬂﬂ lI!i;:]'I.E slreams.

6 Current and Future Work

We have implemented a prototype system for A" WA onto a
concurrent logic language, L1, which is inherently a subsst
of GHC. In this system, the parallel computation and com-
munication mechanism is dependent on that of KL1, which
is heavy for A"UM. We plan to develop an independent
system which provides an adequate parallel and communi-
cation mechanism for A"4A by itsell,

References

[YoshidaB8] Kaoru Yoshida and Takashi Chikayama:
A UM ~ A Stream-Based Concurrent Object-Oriented
Language -, Proc. of the International Conference
on Fifth Generation Computer Systems ‘88, ICOT,
November 1088

