ICOT Technical Memorandum: TM-0649

TM-0549

Unfold/Fold Transformation
of Stratified Programs

by
H. Scki

December, 1088

@© 1988, 1COT

Mita Kokusai Bldg. 21F (03} 456-3191—~5

ICOT 4-28 Mita 1-Chome Telex 1COT]32964

Minato-ku Tokyno 108 Japan

Institute for New Generation Computer Technology

Unfold/Fold Transformation of Stratified Programs
(Extended Abstract)”

Hirohisa SEKI
Institute for New Generation Computer Technology

1-4-28, Mita, Minato ku, Tokyo 108, Japan

Abstract

This paper describes several extensions of Tamaki-5ato’s [T584] unfold /fold transforma-
tion of definite programs. We first propose unfold/fold rules preserving also the finite failure
set (by SLD resolution) of a definite program, which the original rules by Tamaki and Sato
do not. Then, we show that our unfold/fold rules can be extended to ones for stratified pro-
grams, and prove that both the success set and the finite failure set (by SLDNF-resolution)
of a steatified program are preserved. Furthermore, preservation of equivalence of the perfect
model sermantics [Prz] is also discussed.

Key Words: Unfold/Told Transformation, Equivalence of Programs, SLDNF-resolution,

Finite Failure, Stratified Programs, Perfect Modet Semantics

1 Introduction

Program transformation provides a powerful methodology for program development, especially for deriva-
tion of an efficient program preserving the same meaning (semantics) as that of an eriginal (possibly inef-
ficient) program. Thus, one of the most important properties of program transformation is preservation
of equivalence (Maher [Mah86] investigated various formulations of equivalence for logic programs).
Tamaki and Sato proposed an excellent framework for unfold/fold transformation of logic Programs
[L'S84). Their transformation tules preserve the equivalence of a definite progeam in the sense of the least
Herbrand model. Kawamura and Kanameori [KK88) recently proved that Tamaki-Sato's transformation
preserves also the success sel of a program, that is, a transformed program has the saime computed answer
substitution ns that of the original program for any goal. Thus, the transformation rules by Tamaki and
Yate seem Lo be sufficient, at least as far as positive information inferred from a program is con cerned.
In general, however, their transformation does not always preserve the finite failure set {by SLD-
resolution) of a definite program. The evaluation of a goal in a transformed program might not be

terminating, even if the evaluation of that goal is finitely failed in the original program. Thus, when

*The [ull version of the paper is to appear in [SekB5a] and [Sck88b] which contain complete proofs.

we are interested in negative information inferred from a program and Clark’s Negation as Failure rule
[ClaT8] is used, their transformation is not sufficient. Furthermore, when we consider an extension of
their rules to a general logie program where the body of a elause may contain negative literals, the failure
to preserve the finite failure of a program would lead to failure to preserve positive information inferred
from the program,

In this paper we propose unfold/fold rules which also preserve the finite failure set of a definite
program. Then, we extend them to a stratified program and show that cur transformation preserves
both the success set and the finite failure set (by SLDNF-resolution) of a given stratified program.
Furthermore, preservation of equivalence of transformation in the perfect madel semantics [Prz] is also
discussed.

The crganization of this paper is as follows. after summarizing preliminaries, section 2 gives trans-
formation rules which preserve the finite failure set of a definite program. In section 3, we extend them
to stratified programs. In section 4, we discuss transformation rules which preserve the perfect model
semantics. Finally, a summary of this work and a discussion of related work are given in section 5.

Throughout this paper, we assume the reader is familiar with the basic concept of logic programming,
and the terminology follows in [Llo84). As notation, variables are denoted by X,¥,--., and atoms by

A, B, - Multisets of atoms are denoted by L, K, M, ... Furthermore, 8, &, - - - are used for substitutions.

2 Unfold/fold Transformation

2.1 Preliminaries: Hules of Transformation

This section deseribes Tamaki-Sate's unfold /fald transformation for Jdefinite programs [T584). The

following descriptions of transformation rules are borrowed mainly from [KK88].

Definition 2.1 Initial {Definite) Program

An initial (definite) program B, iz a definite program satisfving the following conditions:

{11) F, is divided ints two digjoint sets of clavses, Pyew and Fyg. The predicates defined by

Frew are called new predicates, while thase by Fog are called ofd predicates,

(12} The new predicates appear neither in Pyyg nor in the bodies of the clauses in Prow. 0

Example 2.1 Let Fy = {Oy, T2, O, C4, Oy, Cs. Cr}, where

oy plb, 0).

Cs PXY) = eglX,¥),p(X,Y).
Cs ¢(0,0).

Cy : gl Y) — plusl(X,Y),q(X,Y).
5 eglX, X).

Ces = plusl{X, s(X)).

Cy - XY} — p(X,Y) (X, Y).

and Poa= {C1, C1,Ca, Cs, Cs, Cs}, Paew= {C7}. Thus, *r'is a new predicate, while the other predicates
are old predicates, O
We call an atom 4 a new atom (old atom) when the predicate of A is a new predicate (old predicate},

respectively,

Definition 2.2 Unfalding

Let P, be a program, C be a clause in Fy of the form ; H — A, L. Furthermore, let Cy,---,Ci be
all the clauses in B such that C; is of the form: A; — K; and A; is unifiable with A4, by mgu’s, say, §;,
for each j (1 2 7 = k). Let C (k2 j > 1) be the result of applying #; after replacing A in & with the
body of C;, namely, Cj = 'H8; « K;8;, L8;", Then, Fyy = (Fi - {Chu{cCi, -, C.}. Cis called the

unfolded clause and Oy, -+ Cy are called the unfolding clauses. o

Example 2.2 (Continued from Example 2.1) By unfolding C7 at atom ‘p{X,Y)" in its body, program
Pi={C1,Cs,C3,Cq, s, Ce, Cs, Ca} is obtained, where
Ca: r(0,0) ~ g(D0)
Co o r(X,Y]) — eg(X,Y),p(X.¥)q(XY) O
Definition 2.3 Folding
Let €7 be a clause in Py of the form: A — K, L and D be a clause in Poew?® of the form: B — K’

Suppose that there exists a substitution § satisfying the following conditions:
(F1) K'8=K
(F2) Let Xy,---,X;, -, X be internal variables of [, namely they appear only in the body
K of D (but riot in B). Then, each X;# appears neither in A nor L, and furthermore
Xib# X800]
(F3) D is the only clause in Pp.y whose head is unifiable with Bf.
{F4) Either the predicate of A is an old predicate, or € is the result of applying unfolding at

least once to a clause in Py,

Then, let ' be & clause of the form: A4 — B0, L and let Fiyy be (P~ Q) U {C'}. C is called the folded

clause and 0 is called the folding clause. O

Example 2.3 (Continued from Example 2.2} By folding the bedy of Ca by C7, program Py={C},Cs,
g, O, O, Cg, O, Cio} 1= obtained, where
Cw o f[XY) — eq(X, V), 0 X,Y) o

2.1.1 Previous Nesults

Definition 2.4 Transformation Sequence
Let 3 be an initial program, and Piy; (f > 0) be a program obtained from Py by applying either
unlolding or folding. Then, the sequence of programs Po, Py, - -+, Pw is called a transformation sequence

sterting from Py,]

-

'Mestre that [is not necessarily in S,

For the above unfold {fold transformation, Tamaki and Sato proved the following result [T584].

Theorem 2.1 [Tamaki-Sato 84] The least Herbrand model Mg, of any program F; in a transformation

sequence starting from initial program Fp, is identical to that of Fo. =]

Recently, Kawamura and Kanamori [KEK88] showed that Tamaki-Sato's translormation preserves also

enswer substitutions for any given top-level goals.

Definition 2.5 Success Set
Let P be a (definite) program. The set of all the atem-substitution pairs (A,) such that there exists

an successful SLD-derivation for PU {+ A} with computed answer o, is called the success set of P, and

denoted by SS(F}. a

Theorem 2.2 [Kawamura-Kanamori 88] The success set S5 ;) of of any program F in a transfor-

mation sequence starting from initial program Fy, is identical to that of Fg. o

Example 2.4 (Continued from Example 2.1, 2.2)
Since r{0,0) & M({Fy) holds, r{0,0) 15 also in M{P;) Irom Theorem 2.1, More presisely, {TEX,Y},U =
{XJ0,¥/0)) is in S5(Fy), thus that pair is also in S5(P;) from Theorem 2.2. o

2.2 DModified Folding Rule and Preservation of FF
2.2.1 Moedified Folding Rule

In this paper, the finite failure {FF) set of a program is also considered.

Definition 2.6 Finite Failure (FF) Set
Let P be a (definite) program. The set of all atoms A such that there exists a finitely failed SLD-tree
for PU{— A}, is called the {SLD} finite failure set of P, and denoted by FF(F). o

The partial correciness of the transformation wrt FF is easily shown.

Proposition 2.1 {Partial Correctness wrt FF) Let [, ---, Py be a transformation sequence. Then,

FF{Px) CFPF(Fy) for all N 2 0.

Procf Let @ be a definite goul, and suppose that Py U & has a finitely failed SLD-tree. From
the soundness of SLD-resolution [Cla78], comp{ Py) F G. It is easily to see that comp(Fo) F comp{ Py)
helds?. Thus, G is also a logical consequence of comp(Pg). Then, from the completeness of SLD-resolution
[JLL83), PoU G has a finitely failed SLD-tree, o

Tamaki-Sate’s unfold/fold transformation, however, does net preserve the lotal correciness wri FF.

That is, FF(Py) € FF(F) for all i (N > i > 0) does not hold in general.

IMnte that this converte does not hold in general, that s, comp(Py) fromp[Py).

Example 2.5 {Continued from Example 2.1, 2.2)

The failure set of the original program Fy is not preserved. For example, »(s(0), s(0)) € FF(Fp),
while #{3(0), s(0)} is not contained in FF(Pz). In fact, any SLD-derivation for P> U {— r{s(0),s(0)})} is
infinite. Thus, FF(Fy) TFF(F). u]

We now give a modified transformation rule which preserves also the total correctness wrt FF. In

order to specify such a rule, we need several definitions.

Definition 2.7 lulerited Atom
Let Py, -, Py be a transformation sequence starting from Py, and C be a clause in B (N 21 = 0)
whose head is a new atom. Then, an atom in the body of ' iz called an atom inheriled from Fy if one of

the following conditions is satisfed:

(i} C is aclause in Py,.. Then, each atom in the body of €' is inkeriled from Fy.

(i) Let © be the result of unfolding in F;. Suppese that C; in F;_; is the unfolded clause
of the form: A — B, By,-+-, B, and C_ in P, is one of the unfolding clauses of the form:
B — I{. Thus, is of the form: A8 — K8 B,@, .-, B8, where § is an mgu of B and B'.
Then, each atom B;0 (1 € § € n) in C is nhertted from Fy, if By in €y is inherited from Fg.

(iii) Let € be the result of folding in Py, Suppose that Cy in Pioy is the folded clause of the
farm: A — K, By, -, Ba, and D in Py, is the folding clause of the form: B — K'. Thus, C

is of the form: A — B, B, ..., By, where # is an mgu such that [('#= K. Then, each atom
By (1< j<n)inCis inherited from Py, if B in Oy is inherited from Fy. o

Intuitively, an inherited atem is {a possibly instantiated version of) an atom such that it was in the

body of some clause in P, and ne unfolding has been applied to it.

Example 2.6 In Example 2.1, both ‘p(X, V)" and ‘g(X,¥)" in the bedy of C; are inherited atoms. In
the body of clause Cy (Example 2.2}, atom “g(X,¥)" is inherited from Fy, while neither *eg(X,¥)" nor
'p(X,Y)" is inherited from Py =

Now, we can define a modified folding rule.

Definition 2.8 Folding (modified)
Let ¢ and [be defined similarly in Definition 2.3, namely, C is a clause in F; of the form: A — K, L
and I be a clause in Faew of the form: B +— K'. Suppose that there exists a substitution § satisfying

the following conditions:

o (F1), (F2) and (F3} are the same as those defined in Definition 2.3.

« (F4°) Either the predicate of A is an old predicate, or there is no atom in K& which is inherited

from Fy. O

Example 2.7 (Continued from Example 2.2}

Consider elawse Cg in Example 2.2, As is noted in Example 2.6, atom *g(X, ¥')" in its body is inherited
fram Fy, thus the modified folding does not allow to fold it by Cr.

Instead, by unfolding Cy at atem ‘g[X, V)" in its body, program PP={Cy, 03, Ca, 04, Cs, Cs, Ca, C11, Cha}

is obtained, where
Gy r{0,0) — eq(0,0),p(0,0).

Cix i r(X,Y) — eq(X,Y)p(X.Y) plusl(X,Y) q(X,Y).
Now, atem “g(X, V)" in the bady of C11 13 not inherited from Py, so that the modified folding is now ap-

plicable to 12, That is, by folding the body of C12 by Cy, program P*={C\, T3, Cs, C4, Cs, Cs, Cs, Cr1, Cr1a}
15 obtained, where
Cia - rlX,Y) — eq(X Y),plusl(X, Y),r(X,¥). O

Hereafter, except in section 4, by folding we mean the moedified folding defined in Definition 2.8, and

by a transformation sequence, we mean the one obtained by applying either unfolding or the modified

folding.

2.2.2 Preservation of FF for Definite Clauses

In this subscction, we show that the unfoldffold transformation (using the modified felding) guarantees

the total correctness wrt T'F for definite programs. We need ene more definition and a lemma.

Definition 2.9 F,..-expansion
Let A be an atom and L be a sequence of atoms. L is called a Pyy-ezpansion of A, denoted by A,

if the following conditions are satisfied:

When A is an old atom, L is A itself.

s When A is a new atom, L is either A, or a sequence of atoms ‘Bif, - -, Ba#" such thal there exists

a clause in /%, of the form: Ag — 0, .-, B, and ¢ iz an mgu of 4 and A..

Similarly, let M be asequence of aloms of the form: Gy, -+, G, Then, [is called a Ppaw-ezpansion

of M, denoted by M, if L=G,---,C%.

Example 2.8 (Continued from Example 2.1) Since p{X,Y) is an old atom, & Py .w-expansion of p(X, Y]

15 itself. On the other hand, a Phew-expansion of v(0,Y) is either itself, or a sequence of atoms

(0, Y),4(0,Y)" =

Lemma 2,1 {F-simulation of SLD-dervivation in Fy)

Let Fo, - -, Py be & transformation sequence. Let & be a goal, and suppose that there exists an SLD-
derivation Dr for PyU[CY}, Gu= G, -+, Gy, - - using input clauses in Py and substitutions 8y, --- f4,- -
Then, there exists an SLD-derivation Dry for By U{G), Fo =G, -+, F}, - - - using input clauses in Py and

substitutions e ,-- -, &y, - -, satisfying the following conditions:

Fo: o« r{s(0),s(0)) Go: +— r(s(0),s(0))

R | Cia

Fi:o o p(s(0),5(0)),q(s(0), £(0)) Gr: o+ eq(s(0),s(0)), plus1(s(0), 5(0)), r(s(0), s(0))
I Ce |

Fy: o eq(s(0), s{0)), p{s(0), 5(0)}, 9((0), s(0)) fail
| Cs

Fa: o eq(s(0), s(0)), p(s(0), s(0)),

plusl(s(0), s{0}), als(0), s(0)}
|
fail

Figure 1: Pg-simulation (left) of an SLD-derivation for P3" U {+ r(s(0), 5(0))} (right)

(i} For each k (k > 0), there exists some [(2 0) such that Fiy - -2 is an Prp-expansion of
Gty - - 8, and

{11} the restriction of o) - - -0y to the variables in & is the same as that of 8; - - 8&.

(ili} (fairness) Furthermore, if the SLD-derivation Gg = G,-+-, G, - - - is fair, then so is the
SLD-derivation for Fa= G, -, Fi,---

Mg is called a Fo-simulation of Dr.

Notes on the proef: The proof is done by induction on both the length of a transformation sequence
N and a length of SLD-derivation k. In order to show the fairness in (iit), the folding condition (F'4') is
essential. For the lack of space, we omit the proof (see [SekB8a]). o

Example 2.9 Consider an SLD-derivation Drj for P U {Go =— r{s(0), 5{0))}, where P5* was given
in Example 2.7. See the right-hand side in Figure 1. Drj has a Py -simulation Fg = Gg,-+-, F1,- -+, Fa,
which is shown in the left-hand side in the figure (underlined atoms mean selected atoms). Note that F3

iz a Pya-expansion of).]

Proposition 2.2 (Total Correctness wrt FF) Let Py, -+, Py be a transformation sequence. Then,
FF(P) € FF(Fy) forall N > 0.

Proof:

For the simplicity of explanation, we assume here that G is a ground atom {a more general case
is shown in Proposition 3.3). Suppose that an SLD-tree of Py U {+ G} is finitely failed. Suppose
further thet Py U {«— G} has a fair SLD-tree which is not finitely failed. Obviously, any SLD-derivation
Py U {~— G} never succeeds ; otherwise, 2 Py-simulation of such derivation would also succeed, which is

a contradiction. Let HR be any non-failed infinite branch in the fair SLD-tree for Py U {~ G}. From

Lemma 2.1, there exists a fair SLD-derivation Dirg for Fy U{— &} which is a Pp-simulation of BR.
Thus, Ory is & non-failed fair infinite derivation. From the result by Lassez and Maher [LMB4], G is in
the SED finite failure sel of Fy T every fair SLD-tree for Fy U {— G} is finitely failed. Thus, g should

be finitely failed, which is a contradiction. o

3 Unfold/Fold Transformation for Stratified Programs

3.1 Preliminaries

We now consider an extension of the unfold/fold transformation from definite programs to stratified

Programs.

Definition 3.1 Stratified Program [ABWSE]
A general logic program, P, is stratified if its predicates can be partilioned into levels so that, in every
program clause, p «= Ly, ..., Ly, the level of every predicate in a positive literal is less than or cqual to

the level of p and the level of every predicate in a negative literal is less than the level of p. O

Throughout this paper, we assume that the levels of a stratified program are 1, ..., r for some integer
r, where r s the minimum number satisfying the above definition. In this case, P is said to have the
maximum level r and is denoted P = P! + ..+ P7, where 7 is a sel of clauses whose head predicates
have level i, Note that P! is a set of definite clauses, When L is a literal whose predicate has level i, we
denote it level(L} = {. Furthermore, the stratum [Prz] of a goal is defined as follows. For any poesitive
atlom A, let stratum(A) = level(A) and stretum(=A4)= stratum(A) + 1. Suppose that C is & goal of
the form: ~ Ly,--; Ls, where n > 0 and L;'s are literals. Then, stratum(C) is 0 if G is empty, and
maxz{stratum{L;) : 1 <1i< n}, otherwise.

As we did in the previous section, we have to define an initial program, unfolding/folding and a
transformation sequence for stratified programs. Although they are almost the same as the previous

ones, we impose further restrictions on an initial stratified program.

Definition 3.2 Initial {Stratified) Program

An initial (stratified) program Fy is a stratified program satislying the following conditions:

s (11} and {12) are the same as ones defined in Definition 2.1, and

s (I3) For sach new predicate, its definition consists of exactly one clavse.

s (I4) Furthermore, the budy of each clause in P, contains no negative literal. o

The above condition ([3) guarantees that a stratified program is also stratified aftef the unfold ffold
translormation as shown in the below (Froposition 3.1). On the other hand, the condition (14) is due
to the fact that we do not employ such “unfolding” as it is applicable to a negafive literal in the body

of a clause. Thus, if a clause < in Fy contained a negative atom * ~ A’ in its body, then, after

applying unfolding (possibly several times), C wouid be unfolded into a clause, say, ¢, where (possibly

instantiated version of) ~ A in the body of C' would remain as an inherited atom from Fa. Thus, it
would prevent us from applying the folding rule to C'. On the other hand, it is needless to say that the

body of a clause in Pog can contain negative literals,

The unfolding, the (modified) folding and a transformation sequence are the same as those defined in
Diefinition 2.2, Definition 2.8 and Definition 2.4, respectively.

At first, we have to confirm that sur unfold/fold transformation preserves a stratification of an initial

Pragramni.

Proposition 3.1 (Preservation of Stratification) Let £, - Fy be a transformation sequence.

Then, if F; is a stratified program, then sois By (N 22 0).

Proof Let p be a new predicate, and let C € FPayy be its definition of the form: p L. Then, we
define the level of p by level(pl=maz{level(5;) | B; & L}. Then, the proposition is obvious from the
definitions of unfolding and folding. m]

3.2 Partial Correctness of Transformation

The success set (S5) and the finite failure (FF) set of a stratified program are defined similarly to those
of a definite program. That is, 55 (FF) of a stratified program is defined by replacing “SLD-derivation
(SLD-tree)" in Definition 2.5 (Definition 2.6) with “SLDNF-derivation (SLDNF-tree)”, respectively,

In this subsection, we show the partial correctness of our transformation wrt both 55 and FF.

Proposition 3.2 (Partial Correctness wrt 55 and FF)

Let Fy,---, Pn be a transformation sequence. Then,
(SS) : 1f 55(P)=55(Fy), then S5(Fi,) € S5(A) for i=0,--- , N - L.
(FF) : If FF(P)=FF(P), then FF(Piy;) C FF(P) for i=0,-- -, N ~ 1.

Notes on the proof: We first note that we used the completeness of SLD-resolution for the proof wrt
FF in Proposition 2.1. In this case, however, we cannot resort to the completeness of SLDNF-resolution,
since we do not assume such conditions as allowedness and strictness ([ABWES]) which guarantees its

completeness ([CL8T]). Thus, we show the above two properties (55) and {FF) by & more direct proof,

based on mutual induction on the stratum of a goal (see [SekB8a] for the complete proof}. o

3.3 Total Correctness of Transformation
3.3.1 Total Correctness wrt FF

We now show the total eorrectness of our unfold/fold transformation. We prove the total correctness
wrt FF first. Due to the partial correctness wrt FF, it is easy to show that Lemma 2.1 replacing

“§L.D-derivation” in it with “SLDNF-derivation” also holds for stratified programs. That is,

Lemmea 3.1 (Fp-simulation of SLDNF-derivation in Py

Let Fa,« -, Py be a transformation sequence. Let (7 be a goal, and suppose that there exists an
SLONF-derivalion D lor Py U [}, Gg = &, -+, Gy, - -+ using input clauses in Py and substitutions
#i,--- 8, --- Then, there exists an SLDNF-derivation Drg for R U{G}, Fy =G, -+, Fi,--- using input

clauses in Fp and substitutions ey, -+, oy, -, satisfying the following conditions:

(i) For each & (k > 0}, there exists some [{> 0) such that Fie; - -oy is an Pp,u-expansion of
(iglly - B, and
(ii) the restriction of oy - - -0y to the varizbles in & 15 the same as that of 8y .+ 0.

(iil) {fairness) Furthermore, if the SLDNF-derivation Gy = (3, -, Gy, - - - is fair, then so is the
SLDNF-derivation for Fa =G, -, [y, -+

Dirg is called a Py-simnladion of Dr. O
Now we can show the total correctness wrt FF.

Proposition 3.3 (Total Correctness wrt FF)
Let Py, -+« Fy be a transformation sequence, where Py is an initial stratified program. Then,

FF(Fs) C FF{Py) for all ¥ > 0.

Outline of the proof: Suppose that an SLDNF-tree of Fy U {+ A} is finitely failed. Obviously, any
SLDNF-derivation Py U {+~ A} never succeeds. Furthermore, it does not flounder, from the proposition
shown by Shepherdson [Shefid] which says that, if a query Q flounders under a computation rule, then it
cannot fail under any computation rule.

Suppese that Py U {— A} has a fair SLDNF-tree which is not finitely failed, Let BRy be any
nen-failed branch in that fair SLDNT-tree for Py U {— A},

From Lemma 3.1, there exists a fair SLDNF-derivation BRg for FyU {+— A} which is a Py-simulation
of By, HBRy neither succeeds nor flounders as s noted in the above. Thus, 8/p is a non-failed fair
infinite derivation. Then, we can show that comp(Fo) U {34} has a2 model, using similar methods in the

proofs of completeness of Negation as Failure rule by [Llo84), [CL87), which is a contradiction. o

3.3.2 Total Correctness wrt 55

Finally, we state the total correctness wrt 55.

Proposition 3.4 (Total Corvectness wrt 55)

Let Fy,---, Py be a transformation sequence, where Fy is an initial stratified program. Then,

S5(Pg) € SS(Pw) forall N > 0.

Notes on the proof: The proof can be done along almost the same line as ones given by [T584],
[Tam87] or [KK88], except the handling of negative literals. However, it follows immediately from the

total correctness wrl FF in Proposition 3.3 (the complete proof is found in [Sek88al).

10

4 On Preservation of Perfect Model Semantics

The semantics we have considered ts somewhat operational, in that the success set and the finite failure
set of a stratified program are given by specific procedures such as SLD(NF)-resolution. In this section,
we consider more declarative semantics, that is, the standard (minimal Herbrand) model Mp by Apt,
Blair and Walker [ABWS8] and Van Gelder [VGRG], or more genetally, the perfect model semantics for
stratified programs introduced by Przymusinski [Prz].

It seems to be a more direct extension from Tamaki-Sate's original unfold /fold rules to consider trans-
formation rules preserving the equivalence of Mg or the perfect model semantics, since their framework
preserves the least Herbrand model for a definite program. Recall that, Tamaki-Sato's unfold /fold trans-
formation does not preserve the finite failure set. Heowever, from the point of the perfect model semantics,
it makes no problems, since a goal : “— " which has neither a successful SLD-derivation nor a finite
failed SLD-tree is simply considered to be false. For the lack of space, we assume the familiarity with the

perfect model semantics (see [Prz]), and we state only results (for further detail, see [Sek88b]).

Definition 4.1 Initial Program

An initial program Py is a stratified program satisfying the following conditions:

o (11}, (12) and (I3) are the same as ones defined in Definition 3.2. o

Thus, condition (14} in Definition 3.2 is unnecessary.

The unfolding rule and the folding rule are the same as those defined in Definition 2.2 and Definition
9.8, respectively. Note that we do not have to consider the modified folding rule. A transformation
sequence is also defined similarly to Definition 2.4

Then, we have the following proposition.

Theorem 4.1 (Preservation of Perfect Model Semantics)
The perfect model semantics of any program F; in a transformation sequence starling from initial

ProOEram Fu, 15 ientical to that of Py o

Notes on the proof: First, we fix a pre-interpretation (e.g., [Llo84]) J of a program Fy. Note that
every petfect model M is supported {sec [Prz]), that is, for every J-ground atom A in M there exists 2
J-ground instance of a clause from a program such that its head is equal Lo A, all positive premses belong
to M and none of the negative premises helongs to M. From this property, we can consider a ground
“proof tree” for any A € M. Then, the proposition follows from the similar discussions in [T584] and

{Tam&7), where correctness procis are based on the manipulation of ground finite proofl trees. o

5 Conclusion

There are several studies on equivalence-preserving transformation for logic programs. Tamaki and Sato’s

result [TS84] and its elaboration by Kawamura and Kanamori [KK88] are already described in section

11

2.1.1. Maher extensively studied various formulation of equivalenee for definite programs [Mah&6]. In

that paper, he considered a transformation system similar to that of Tamaki and Sato, and stated that his

unfold/fold rules preserve logical equivalence of completions, while, as is stated in section 2.2.1, those of

Tamaki-Sato do not preserve it, Kanamori and Horiuchi [KHBT] proposed a framework for transformation

and synthesis based on generalized unfold/fold rules. Their system wes shown to preserve the minimum

Herbrand model semantics, bet the finite failure set 15 not p:eﬁe:ved in general,

Compared with previous work, the contributions of this paper will be summarized as follows :

1} The madified folding rule for a definite program has been proposed,

The unfolding rule together with the modified folding rule has been shown to preserve the

finite failure set (by SLD-resolution) of a pragram as well as the success set. This guarantees

& safer use of Tamaki-Sato's transformation when negation as failure rule is used.

2} The unfold /fold rules for stratified programs have been proposed.

The modified folding rule has made it possible to extend the applicability of unfold/fold

transformation rules to a stratified program, so that they preserve both the success set and

the finite failure set of a stratified program by SLONF-resolution.

3] Preservation of equivalence of the perfect model semantics has been discussed.

We have shown that unfold/lold rules by Tamaki and Sato can be extended to rules for a

stratified program and it preserve the equivalence of the perfect model semantics.

Acknowledgement

This wark is based on the result by Tamaki and Sato, and the successor work by Kawamura and Kanamori.

We would like to express deep gratilude to Lhem for their stimulaiive work. The idea of the modified

folding arcse from discussions with Kasunori Ueda and Tadashi Kanamori.

References

[ABWES] K.R. Apt, H. Blair, and A. Walker. Towards A Theory of Declarative Knowledge. In J.

[CL8T}

[ClaT8]

[JLL83]

Minker, editor, Foundations of Deductive Databases and Logic Programming, pages §9-148,
Morgan Kaufmann, 1988, Los Altos, CA.

L. Cavedon and J. W. Lloyd. A Completeness Theorem For SLDNF-Resolution. Technical
Report CS-87-00, Compuler Science Deparbment. University Walk, Brislol, 1987,

K. L. Clark. Negation as Failure. In II. Gallaire and J. Minker, editors, Logic and Database,
pages 283-322, Plenum Press, 1978,

J. Jaffar, J-L. Lassez, and J. W, Lloyd. Completeness of the Negation as Failure Rule. In
JJCAL-85, pages H00-006, Karlsruhe, 1983

12

[KH87]

[KK88]

[Llog4]

[LM54]

{Mah8d)

{Prz]

[SekfBa)

[SekBSb]

[SheBd]

[Tama7|

[TS84]

[VG86)

T. Kanameori and K. Horiuchi. Construction of Logic Programs Based on Generalized Un-
fold/Fold Rules. In Proceedings of the Fourth International Conference on Logic Programming,
pages T44=THE, Melbourne, 1887,

T. Kawamura and T. Kanamori. Freservation of Stronger Equivalence in Unfold/Fold Logic
Program Transformafion. ICOT Technical Report, JCOT, 1988. also to appear in FGCS'88.

JW. Llovd. Foundations of Logic Programming. Springer, 1584,

J-L. Lassez and M.J. Maher. Closures and Fairness in the Semantics of Programming Logic,

Theoretical Compuler Serence, 20:107-184, 1984,

W.J. Maher. Equivalences of Logic Programs. In Proceedings of the Third Internalional Con-
ference on Dogic Programming, pages 410-424, London, 1886, also in Foundations of Deductive
Databases and Logic Programming, (edited by Minker, 1.), pp. 827-658, Morgan Kaulmann,
1988,

T.C. Przymusinski. On the Declarative and Procedural Semantics of Logic Programs. submit-
ted for publication. Its extended abstract appears in 5th International Conference Sympasium

on Logie Programming, Seattle, 1988

H. Seki. Unfold/Fold Transformation of Stratied Programs. 1001 Technical Report, ICOT,

1958. in preparation.

H. Seki. Unfold/Fold Transformation of Stratied Programs in the Perfect Model Semantics.
[OOT Techaieal Report, ICOT, 1983, in preparation,

J.C. Shepherdson. Negation as Failure: A Comparison of Clark's Completed Data Base and
Reiter's Closed World Assumption. J. Logic Programming, 1:51-79, 1984

H. Tamaki. Program Transformation in Legic Programming, pages 39-62. Kyoritsu Pub. Co.,
1987, in Japanese.

H. Tamaki and T. Sate. Unfold/Fold Transiormation of Logic Programs. In Proceedings of
the Second International Logic Programming Cenference, pages 127-138, Uppsala, 1584,

A. Van Gelder. Negation as Failure Using Tight Derivations for General Logic Programs. In
Proc. 1986 Sympoesium on Logic Programming, pages 127-138, IEEE Computer Society, 1986.

