|ICOT Technical Memorandum: TM-0632

TM-0632

Extended Projection Method
in Proofs-as-Programs

by
Y. Takayama

December, 1988

© 1988, 1ICOT

Mita Kokusai Bldg, 21F (03} 456-3191—5

|G OT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyn 108 Japan

Institute for New Generation Computer Technology

Extended Projection Method in Proofs-as-Programs
(Extended Abstract)

Yukihide Takayama

Institute for New Generation Computer Technology

1-4-28, Mita, Minato-ku, Tokyo, 108, Japan
takayama@icot.jp

subject: development of a mathematical method of program synthesis

1. Introduction

Writing programs as {constructive) proofs of theorems is a good approach to automated pro
gramming and program verification. Extracting an executable code, which is called a realiser,
from a constructive proof by using the notion of realisability, or, equivalently, the Curry-Howard
isomorphism [Howard 80|, is one of the ways to make proofs run on computers. This raises the
problem of extracting efficient codes from proofs. As pointed ant in [Bates 7Y], the cades ex-
tracted by naive application of realisability contain a lot of inefficiency. Various technigques to
eliminate the inefficiency have heen developed so far. Seurce-to-source transformation rules to
simplify realiser codes, proof normalisation and the simplification technique of the decision pro-
cedure are widely used in most of the implementations of consiructive logic. Also, the pruning
technique to rermove redundant decision procedures given in [Goad 80], and code simplification
for Harrop formulae such as the singleton justification in [Sasaki 86] and the rank 0 formulae in
PX [Hayashi 88| have heen developed. All these techniques are becoming almost standard.
However, realiser codes are still inefficient. For example, let Wz.3y.A(z,y) be a specification of
of a function with the input, =, and the output, y. The function, f, which satisfies Vz.A(z, f(z))
is extracted from the proof, and it is the only code that needs to be extracted in most situ-
ations. However, the code which is the computational meaning of the proof of Az, f(z)) is
also cxtracted, and the code is redundant. The Goteborg group approaches this problem by
imtroducing the set type, {r : A|B}, to the Martin-Lof theory of types [Nordstrom 83], and the
Nuprl group also uses the set type and the squash operator [Constable 86]. [Paulin-Mohring
87] introduced two constants, Type and Spec, in the caleulus of construction [Coquand 88], and
the class of the rank 0 formulae in PX also contains $-bounded formmulae. These notations are
introduced to declare which part of lhe proof is unnecessary in program extraction.

This paper presents another metamathematical approach, the eziended projection method, to
elininate the redundancy. The underlying constructive logic and the style of specification and
proof description are not changed; instead, the declaration and marking are iniroduced as the
tools for performing proof tree analysis, which can be seen as a sort of program analysis in the
context of proofs-as-programs. The redundancy in the constructive proof can be detected and
eliminated antomatically by giving a simple declaration to the specification. Also, several kinds
of programs can be extracted from the same proof just by changing the declaration. The crucial

— 1 =

part of this method is handling the proofs in the induction rule. This paper also gives the proof

theoretic background of the induction proof case.

2. A Simple Constructive Logic: QPC,

The constructive logic used in this paper 15 called QPCy, which is basically an intuitionistic
first order natural deduction system with mathematical induction, higher order equalities and
inequalities of terins, and primitive types, nat (natural number) and bool. It is a sugured subset
of Q] [Sato 86].

A sort of g-realisability is given to QJ. The unique features of the realisability are as follows:
{1) Every realizer ende 1s expressed as a sequence of terms;

(2) The realiser code for an atomic formula (or a Harrop formula) is a nil sequence (like Hayashi’s
px-realiser [Hayashi 88]);

(3) The realiser code extracted from an induction proof iz defined as the solution of the system
of fixed point equations. Generally, it 15 & multi-valued recursive call function.

The algorithmie realisability called the Ext procedure is given to QPCy [Takayama 88].

3. Declaration and Marking of Proof Trees
3.1 Declaration

The realiser code generated by Ext denotes the 3-V information in the specification, i.e., the
value ¢ which satisfies A(t) for the formula, Jz.A(z), and the constant, left or right, that
indicates which formula, A or B, holds in the formula A V B.

The declaration defined below indicates which -V information of a given theorem iz needed.
It is the only information that end uscrs of the system need to specify; the other part can be
performed automatieally.

Definition 1: Realising variable sequence of 4, Ru(A)
def

Ru(A) = (), if 4 is atomic;
Ru(A A B) ef (Rv(A), Re(B)) Concatenation of the two sequences, Ru(A) and Rv(EB);
Ru{A v B} ! (z, Ru(A), Ru(B)) where z is a new variable;

Ru(4A - B) ™ Ru(B);

Ru(Vz : Type. A(z)) ' Ru(A(2)).
Ru(dx : Type. A(z)) e {2z, Ru(A(z))) where z is a new variable;

where (a,b, -+, ¢) denotes a sequence of terms and () is the nil sequence.

S

Definition 2: Length of formulae
I(A), which is called the length of formula A, is the length of Ru(A).

Definition 3: Declaration
(1} A declaration of a specification, A, is the finite set, I, of offsets of Ru(A). It is a subset of
{0,1,---, (A} — 1}. A specification, A, with the declaration, I, is denoted {A};. The elements
of a declaration are called marking numbers.

v —

(2} The empty set, &, 1s called a nil declaration.

(3} The declaration, {0,1,---,{[A) — 1}, is called {rivial

Example:
Let 4% ve, (z >3 2Vydedw. 2=y -z +w) Re(d)= {z0,2:1]}, where z corresponds to 2z
and z; to Jw. If the function that caleulates the value of Jw from z is needed, the declaration

of Ais {1}

3.2 Marking

If a declaration is given to the specification, the information can be inherited from bottom to top
of the proof tree being reformed according to the inference rule of each application. Therefore,
the same kind of information to declaration can be set to every node of the proof tree by using
the declaration as the initial value. The information attached to each node is called marking,
and the algorithm to calenlate 1t 1s ealled Mark. Note that the declaration can be seen as a
special case of marking. The marked proof tree 15 a tree obtained from a proof tree and the
declaration by Mark.

The Ext procedure can use the information to refrain from generating unnecessary code. This
15 called extended projection.

The following set operations are used in Mark:

T+n {2 4n|z+n<max(l)zel) T-n® s —n|lz-—nz0zecl)

The following is part of the definition of the Mark procedure:

(1) Mark for the (3-T) rule

(Mark [— 2
z e " ({Ac:}};_l)ﬁ_ N iodr.
Mark | A5y [e Bz A@2)}, r
(3o Ale)}, Mark (4_}:3__)
{tha {A()} -,y GI) foel
L {3z. A(x)}, '
(2% Mark for the {(Z-E) rule
Yo it ;HH Muark o Mark [tﬁ}l
| Jr. A(z) € oo | ae {3z, A(z)}x {c} "
Mark o, (3E)| & T, (3-E)
where
. [M+1 if L=¢
L= {{L‘I}U[M-i-l} if L= {0}

and L and M are the unions of the markings of all the oceurrences of ¢ and A(t) as hypotheses
obtained in Mark([t, A(t)]/Z,/{C)1).

(3) Mark for the (V-E) rule
(4] [B]
ELI E] Eg

AvB ¢
Mark | VB C (v.E
; T P

_1 an (B
i Mark 5o Mark ™ Mar ¥,
= W B
_ \{avBj & il Ul vp) 14
'},
all the nodes in the subtrees are marked ¢ -+ otherwise

where IO = {0} U{Jo+ 1)U (Jy +1+1{A)), and Jy and J; are the unions of the markings of all
the ocourrences of A and B as hypotheses,

(4} Mark for the (3-E) rule

E T _E.;_;;. Mark ({_A‘?T})
Jq. A j B del o - I 5
Mark | 2—2% (D-E}) | = (>-E)
‘LB};) {E}f

Every node in (X/A4) has trivial marking.

4. Extended Projection Method Applied to Induction Proofs

4.1 Code from Induction Proofs

Fxt {for the mathernatical induction is defined as follows:

[z : nat, A(z)]
Lo Ly def . T
' - =gz Az, a.fm--—-{]ltheﬂE:rt()
Ext AQ) Az 1 1-}-—{nu1!-incf} A(0)
Ve :nat. Afz) [: nat, A(z)]
- z
lse Bzt | ——=L——
else Ex Az <1)

where T = Ru(A(z)), and o = {3/%(pred(z)), z /pred(z)}.

This means that the program extracted from an induction proof is, in general, a multi-valued
recursive call function which calculates a sequence of length n (= I{ A(z))) by using the sequence
of the sane length which is the realiser for the induction hypotheses. Then, how does the
marking procedure work on an induction proof? The length of the sequence calculated by the
recursive call funetion will be restricted by the declaration. Then, can the parameters of the
fixed point operator, Z, be restricted in the same way? For example, assume that the length
of A(z} s n (3 < n), 2y, Zn_y def Ruv(A(z)) and the declaration, {0,1}, is given. Can the
extracted code always be like p(zq, 21).4f = = 0 then --.? The answer is negative because there

muy be, for example, an induction proof from which the following program is extracted:

plz0, 21,22, 23) Az i f x = 0 then (tp. 1,12, 13)
else (Fy(21,73), Fi(21, 22, 2), Fa(2y, 2}, F3(23, 7))
—_— 4 —

This code can be expanded into f;s which denote the values for z;s:

fo df pzg.Axra f x = 0 then fg else Fyl f1,7)

fi def pzy Az f a = 0then ty clse Fy{fy, fa,x)

fa qef pzoAxif o =0 then ty else Fyl fa, 1)

fa e pzyAzaf o= 0 then lp clse Fi{ fa.z)

£ the declaration for the specification were {0),1}, the system would try to extract fy and f.
However, fy occurs in these functions, and this means that fz is also necessary to caleulate fo
and f;. Therefore, just taking zp and z; as the parameters of the fixed point operator does
not work well, and it proves that restricting the extracted code to a sequence of lengih 2 is
impossible in Lhis casc.

The phenomena cxplained above can be checked by the marking procedure. The marking
procedure traces which J-V information is really used to prove the conclusion. Mark will give
the marking, {1,2}, to the induction hypothesis, which means that the first and second codes,
i and fi, must be ealeulated at the recursive call step. Therefore, the declaration, {0,1}, turns

ot to be too small, and should be cularged to {0,1,2}

Definition 4:

Let T be the declaration given to the conclusion of an induction proof, and J be the marking of
the induction hypothesis given by Mark,

(1) If there is a marking number, ¢, such that + € I and ¢ ¢ J, then ¢ is called missed, or a
missing marking number;

(2) If there is o marking number, 7, such that 7 € J and j & I, then j is called overflowed

marking number.

4.9 Form of Normalized Induction Proofs

The interest here lies in investigating the form of proofs and the markings wiuch cause missing
and overflowed marking numbers. It is characterised in the class of the normalised proofs which
have a structure that is easy to handle, However, the form of the normalised proof tree can
be understood a little more specifically when the normalisation theory for intuitionistic natural

deduction [Prawitz 63 is applied to an induction step proof.

Definition 5: Syvmmetric path & vertical proofs

Let II be a normalised induection step proof: A(x) - Az +1).

(1) The path, =, from an eecurrence of A(r), which satisfies the f-:nllcw.ing condition is, if it
exists, called a symmetric path;

Condition: if there is a segment of the formula, B(zr), in the E-part of « with + as its principal
sign, and if it is a premise of an application of the (y-E) rule, then there is a segment of the
formula, B(z + 1), in the I-part of 7 and it is a premise of an application of the {(7-I) rule.

(2} I is called a vertical proof iff all the main paths from any occurrence of 4(z) are symmetric.
—_— 5 J—

4.3 Proof Theoretic Characterisation of Missing Marking Numbers

The form of the marked proof trees that may cause the missing marking numbers is classified

as follows:
(1) Critical { 1-E) application - -- all the marking numbers are missed;
(2} Critical (A-J&E} marking --- the marking numbers for some of the formulae which are

conpected by A are missed;
(3) Critical (3-J&E) marking - - the marking number for 3z in Jz. A(z) is missed;
{4} Critical (v-T&E) marking --- the marking numbers for some of the formulae which are

connected by V are missed.

Definition 6: Regular marked proof tree
Assume an induction step proof, I1, and let II,,, be the marked proof tree II. Then, I, is
called reguler iff it has no critical { L-E) applications, and there are no criticul markings along

any of the symmetric paths, if they exist, from any occurrences of the induction hypothesis.

4.4 Proof Theoretic Characterisation of Overflowed Marking Numbers

The forme of the marked proof trees which may cause overfiowed marking numbers are classified
as follows:

(1} Critical {3-E) assumptions - - - when more than two kinds of 3-information of the induction
hvpothesis are used to construct a term of 3-information of the conclusion of the induction step
proof:

(2} Critical (2-E) application --- when one of the oceurrences of the induction hypothesis is
ahove a minor premise of an [2-E) application;

(3) Critical segments - - - when there is an application of (3-E) or (V-E) whose conclusion has a
non-nil marking and the premise, 3r.A(z) or AV B, is on the deduction path from an occurrence

of the induction hypothesis.

4.5 Marking Theorem

The missing and overflow marking phenomena vary according to the proofs and declarations.
They oceur as complex mixtures of eritical applications, critical markings, critical assumptions

and critical segments. However, the following theorem holds for regular vertical proofs:

Theorem 1:

Suppose that a formula, ¥z.A(z), is proved by mathematical induction, and I is an arbitrary

declaration to the conclusion. Let II'™ be the vertical induction proof of the induction step,

Az} b A(x + 1), and suppose that 111", the marked version of 114 is regular, then:

(1) IFII'™ has a critical (D -E) application in one of the paths from an occurrence of the

induction hypothesis, A(z), then the marking of [A(z)] is trivial;

(2) If IIi?* has no eritical {D-F}) applications, critical segments, or critical (3-E) assumptions

on any symmetric paths from any occurrences of the induction hypothesis, the marking of the

induction hypothesis by Mark, [A(z)], is I;

(3) If TIi™ has no critical (2 -E) application but there are either critical segments or critical
- —

(3-E) assumptions on a path from an occurrence of A(x) or both, the marking of [A(z)] is a

superset of [

According to this theorem, the declaration of the conclusion should be as follows to construct
the right recursive call functions from the vertical induction proofs.

Case 1: If the proof tree of the induction step has a critical {2-F) application in one of the
main paths from the induetion hypothesis, the declaration is trivial.

Case 2: If the proof tree of the induction step has ne eritical (2 E) applications, critical 3-E
assumptions. or critical segments, the declaration may be arbitrary.

Case 3: [f the proof tree of the induction step has no eritical (2-F) applications but has at least
one eritical segment or critical Z-E assumption on one of the main paths from an occurrence
of the lnduction hypothesis, there is a possibility that the declaration must be enlarged to
eliminate critical segments. In this case, the marking of the induction hypothesis, S, and the
initial declaration may be different, so that the declaration should be § U U and perform the
marking again. There is also a possibility that § contains some overflowed marking numbers
when Iis larger and S ¢ I; however, I and S are bounded by the trivial marking, so that §
becomes equal to [in finite steps of the above operation.

Note that the marking, overflow check, and re-marking eycle for vertical proofs can also be

applied to non-vertical proofs.

5. Modified Proof Compilation Algorithm

Ext should be modified to handle marked proof trees. The chief modifications are:

1} If the given formula. A, is marked by {ig.--, i}, extract only the i;th (0 < I < k) realiser
code from every subtree of the proof;

2) If the formula, 4, is marked by ¢, no code should be extracted;

J) If the formula, A, 15 trovially marked, apply the Ert procedure.

The modificd Exf procedure will be called N Ext in the following description.

Theorem 2: N Euxt procedure and projection

Let A be a sentence and D be the declaration. If b A and 1T is its normalised proof tree, then

(1) If (D-I} is not used in II, N Ext{Mark(Il}) = proj(D)(Ext(I)) (projection of ¥i{€ D)th
elements);

(2) If A is the consequence of a (2-1} application and there is no other application of the rule in
1T, then N Ext(Mark(I1)) is equal to the code, T, that is obtained by the following procedure: a)
Let proj(D)(Ext(IT)) = AZ. ¢z, where T is the realising variables of the hypothesis of the (D-I)
apphcation; b} subtract the variables which do not occur in tz from T to obtain a subsequence,

y;and ¢) let T = Ay t5.
R

6. Example

Here, example of a prime number checker program is investigated. The redundancy-free code is

extracted by the extended projecltion method.

6.1 Extraction of a Prime Number Checker Program by Ext

The specification of the program which takes any natural number as input and returns the

boolean value, T, when the given number is prime, otherwise returns F, 15 as follows:

Specification

Vo:nal, {p=22 3b: bool. ((Vd:nat. (L<d<pD-{d|p))Ab=T)
V({3d:nat. (1<d<pa(d|p))rnb=F))})

where (z |y) = Jzy =z 2.

This specification can be proved by using the following lemma which is proved by mathematical

induction aud two applications of (¥-E) and an application of (V-I).

Lemma: Yp:nat. ¥z :nat. {2 2 22 Alp, 2]}
where
Alp, =)™ 3b: nat. (Po(p, 2,b) V Py(p, 2, b))

Pn{p,z?bjd:“ﬂ'd:nai. (led<czo=(d|pab=T
Pyp,z,b) ' 34 : nat. (l<d<zMh(d|p)irb=F

The program cxtracted by Ext is as follows:

prirme ! Ap. Ext(Lemma)(p)ip)
Ext{ Lemma) aef Ap. plzp, 27,22, 23).
Az, if z =0 then anyl|4]
else 1f z =1 then any(4]
else if z =2 then (T, left, any(2]}
else if proj(0)((z1,22,23)(z = 1)) =left -+ (%)
then if proj(0)(PROPeay) = left
then (T left, any[2])
clse (F,right,z = 1, proj(1)(propog))
else (F,right, zo(z — 1), 23(z — 1))

PROFP ‘lé't'f proj{1)Th(m,n) = 0 then (right, proj(0YTh{m,n)})

else (left, any(1])
where oo = {m/p,n/z = 1} and Th is the program extracted from the proof of the natural
number division theorem. Ezt(Lemma) is a multi-valued recursive call function which calculates
four sequences of terms. The boolean value which denotes whether the given number is prime is
the first element of the sequence, so that the other part of the sequence seems to be redundant.

— B

However, the decision procedure {+) uses the second term of the sequence. This means that the
second term of the sequence 1s also necessary. The other part, the third and fourth elements, is

redundant.

6.2 Extraction of a Prime Number Checker by N Ext

The meaning of the realising variable sequence, (zg, 21, 22, 23), of the specification is as follows:

zy denotes I-information for 3b; z; denotes V-information for Fo(p, p, b) v Fi(p, p, b); 22 denoctes
J-information for 3d; z; denotes J-information for (d | p) 4 3 nat. p=r-d

As the only information needed is whether the given natural number is prime or not, z¢ should
be specified, i.e., the declaration is {0}, However, 1 turns out to be an overflowed marking
number in the first application of Mark, then 1 is added to the initial marking and Mark is

performed again. Consequently, N I'xt generates the following code:

N Ext(Lemma) aef Ap. plzg, 2),
Az if 2 =0 then any[2]
else if 2 =1 then any|2]
else if z =2 then (T,left)
else if z1({z—1)=left
then if proj(0}PROPay) = left then (T, left)
else (F right)

else {F,right)

6.3 Extraction of Other Programs from the Same Proof

Another kind of progruan can be extracted from the same proof by changing the declaration to

{1}. The extracted program 1= as follows:
. def . .
primey = Ap.Ti(p)(p)

T, % Ap. pz,.
Az. if 2 =0 then any[1]
else if z =1 then any|l]
else if : =2 then left
else if z;(z — 1) =left
then if proj(0) PROPoy) = left then left
else right

else right

This 1s the program that returns left if p is prime, and returns right otherwise.
If the program which returns the minimum divisor of p when p is not prime is needed, it can be
extracted by changing the declaration to {2}. Note that the overflow of the marking number

happens, so that the program calculates 1st and 2nd elements.
— H —_—

7. Conclusion

A proof theoretic method to extract redundancy-free realiser code from a constructive logic was
presented in this paper. The realiser codes of q-realisability contain some redundancy which
can he seen as verification information. The redundancy can be removed by analysing of the
length of farmula oceurrences in the given proof tree. The crucial part is the analysis of proofs
in induction where the inference rules on logical constants are used in particular ways in the
proof of induction step. These critical cases were specified from a proof theoretic point of
view, The method presented in this paper antomatically analyses and eliminates redundancy
by making a simple declaration when the theorems and their proofs are set. The advantage of
this method is that there is no need to change the underlying logic: the marking systein, which
15 the additional information to proof trees, 1= independent of the base logic, QPCy. Therefore,

the method presented in this paper can be applied to other logic with minor modifications.

REFERENCES
[EEJ.tt_':‘.:'i TH‘] Bates, 1.1, “A logie for correct program development”, Ph.D. Thesis, Cornell Univer-
sity, 1970

[Constable 86] Constable, R.L., “Implementing Mathematics with the Nuprl Proof Development
System”, Prentice-Hall, 19586

[Coquand 88] Coquand, T. and Huet, G., “The Caleulus of Construction”, Information and
Computation Vol. 76, 1988

[Goad 80| Goad, C.A., “Compuiational Uses of the Manipulation of Formal Proofs”, Ph.D.
Thesis, Stanford University, 1980

[Hayashi 88] Hayashi, 8. and Nakano, H., “PX: A Computational Logic”, The MIT Press,
Cambridge, Massachusetts, 1938

[Howard 80] Howard, W. A., “The Formulae-as-types Notion of Construction”, in ‘Essays on
Combinatory Logic, Lambda Calculus and Formalism’, Eds. J. P. Seldin and J. R. Hindley,
Academic Press, 1980

[Nordstrom 83] Nordstrom, B. and Petersson, K., “Types and specifications”, Proceedings of
IFIP'83, Elsevier, Amsterdam, 1983

[Paulin-Mohring 88] Paulin-Moehring, C., 1988, personal communication
[Prawitz 65) Prawitz, D., “Natural Deduction”, Almqvist & Wiksell, 1985

[Sasaki 86] Sasaki, J., “Eztracting Efficient Code From Ceonstructive Froofs”, Ph.D. Thesis,
Cornell University, 1986

[Sato 86] Sato, M., “QJ: A Constructive Logical System with Types”, France-Japan Artificial
Intelligence and Computer Science Symposium 806, Tokyo, 1986
[Takayama 88] Takayamna, Y., “QPC: QJ-Based Proof Compiler — Simple Examples and Anal-

ysis =", Buropean Symposium on Programming '§8, Nancy, 1988

- 10—

