ICOT Technical Memorandum: TM-0615

TM-O6 15

EUODHILOS: A General Approach
to Computor Aided Deductive
Reasoning

by
T. Minami and H. Sawamura (Funtsu)

October, 1988

© 1988, 1ICOT

Mua hokusar Bide, 21F {13 456-319] =5

'GDT 1-94 Mita 1-Chome Telex 1007 132961

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

EUQDHILOS: A General Approach to Computer Aided Deductive Reasoning
topic area: Deductive Heasoning
Toshiro MINAMI and Hajime SAWAMURA
[pternational Institute for Advanced Study of Social Information Seience. FUJITSU LIMITED
140 Miyamoto, Numazu, Shizuoka 410-03. JAPAN

1. Introduction

The purpose of the reascning assistant system named EUQDHILOS lies in increasing the
efficiency of the human reasoning process under the aid of the computer. The phrase “(human)
reasoning”, in this paper, denotes the human activities consisting of the following three phases: (1)
Making mental images about the objects and concepts. (2) Making logical models which describe
the mental images. (3) Examining the models to make sure that they are sufficient.

The first phase begins when one becomes aware that some mental images of objects and
concepts have some structures and wants to clarify them formally. To clarify the mental images,
one has to describe them, A formal framework for the description is called a “logic” in this paper,
and a logical description is called a “logical model.” In the second phase, one makes logical models.
At first, one has to determine the syntax of the logical expressions. The logical structure can be
described by axioms and derivation rules such as inference and rewriting rules. In the third phase,
one investigates the logical model, and proves its formal properties. At the same time, one examines
the correctness of the model. The model is insufficient if some properties which are expected to
hold from the image of the objects fail to prove in it. In this case, one has to modify some or all
of the logical expressions about the objects. Sometimes one has to modify not only the logical
expressions, but also the definition of the language used for the modeling.

In these days, logical reasening plays important and even essential roles in maoy fields includ-
ing mathematics, computer science, artificial intelligence. In these fields, various logics such as
first-order, higher-order, aquational, temporal, modal, intuitionistic, and type theoretic logics are
used. The importance of assisting reasoning activities by computers is increasing dav by day.

Two major subjects have to be pursued to realize such a system. The first one is the “gen-
erality” of the system. The phrase “general-purpose system” denotes a logic-independent system.
As S. K. Langer[12] told, we recognize that “Every universe of discourse has its logical structure.”
That is a thought that for each object which we mention, there must be a logie best suited for
expressing and discussing about it. In order to assist human reascning for various objects, the

reasoning assistant system must have the ability to describe a variety of logical structures and

manipulate the expressions under these logics. The system EUODHILQOS is named as an acronym

1l

of the phrase by Langer to emphasize the lmportance of the generality of the svstem.

The other subject is the investigation of “reasoning-oriented human-computer interface.” The
fundamenral recognition in this subject is that the (mathematical) reasoning proceeds through
“Proofs and Refutations” [11]. A system is helpful for one to conceive ideas in reasoning if it has

a good interface so that ope can reason by trial and error easily.

2. EUODHILOS
EUQDHILOS is a prototype of the general-purpose reasoning assistant system. We intend ta
clarify the concept of the ideal system image through developing and using it. It is designed by
considering the following issues: (i) Realization of a logic-independent reasoning system, based on
the philosophy of Langer[12]. (ii) Environment for experimenting logical model construction based
on the philosophy of Lakatos[11].
Figure 2.1 is an illustration of how the reasoning as-

sistant system EUODHILOS is used. In the upper half

of the figure which corresponds to the feature (i) above,

the user specifies constituents of a logic, such as sym-

bols, syntax of expressions including formulas, deduction
rules. In the lower half, which corresponds to (i), the

user tries te construct proofs of theorems under the logic

defined in the previous step. In EUCDHILOS, partially

constructed proofs, which are called proof fragments, ap-

pear scatteringly on a sheet of thought. The user edits

these proof fragments by the editing commands such as

create, delete, derive, connect, separate, and so forth. The

Figure 2.1 Using EUODHILOS

sheet of thought is the environment for creating theorems
and their proofs. The thearems on the sheet can be saved to the library of thecrems so that they
can be reused as a starting formula in the later proofs for other theorems.
2.1 Language Description in EUODHILOS
In EUODHILOS, a language system to be used is designed and defined by the user at the
beginning. The language system consists of the definitions of the syntax for the logical expressions.
The syntax of the expressions is given by using definite clause grammar (DCG)([L5] in the current
version. From the description, a bottom-up parser based on BUP[13] is automatically generated.
The system generates not only the parser, but also the unparser for the defined language. The

unparser translates from the internal expressions into external ones which can be understood by

2

the user. The parser and unparser are used in all the following phases of symbol manipulatione.
When an expression is entered. the parser is invoked to check its validation. At the same time the
internal scructures of the sxpression in the langnage are constructed as well. Owing to this function.
one can omit the internal structures of expressions in the syotax definitions in EUODHILOS.
When derivation commands are given by the user. the internal expressions of the formulas are
manipulated and pew internal expressions are generated. These expressions are presented to ihe
user after translating into the external ones by the unparser.

Figure 2.2 is an example description of the logic for a puzzle of mocking bird by Smullyan[16]
which is an interpretation for combinatory logic. From the definition, expressions such as "Mex=xtex”
and “fA#B)ex=As(Bex)" are formulas of this logic. Meta symbols are used in the definitions of
axioms, inference rules, and rewriting rules and also in a schematic proof on a sheet of thought.

Svotax description:

fermula—term, "=", term
term—b_term

term—b-term, "«", b_term
b_term—variable_symbol
b.term—constant_symbol

bterm—"{", b-term, "*", b_term, "}"
b_term—"{", term, "J"

Symbel declaration:

variable-symbal: "“A"-"E"
vuiahlﬂJj‘mbal: g # bl
constant_symbol: "IY-"HY

Meata symbol declaration:

formula: "FY-"E"
tearm: Yv-"I"
elementary-Serm: "IV

Figure 2.2 A description of a logic

2.2 Axiom and Derivation Rule Description in EUODHILOS

A derivation system in EUODHILOS consists of axioms and derivation rules. Derivation rules
consist of inference and rewriting rules. A finite set of formulas is given as the axioms. Inference
rules are given in a natural deduction like style presentation by the user. An inference rule consists
of three parts; the first one is the premises of a rule, each of which may have an assumption, the
second is the conclusion of a rule, and finally the third is for the restriction that is imposed on
the derivations of the premises, such as variable occurrence conditions (eigenvariable). Well-known
typical styles of logic presentations such as Hilbert's style, Gentzen's style, equational style can be

treated within this framework.

Schematically, inference rules are given in the natural deduction stvle format as follows:

[Assumption,] [Assumptions] --- [Assumption,]
Premise, Premise- e Premize.
Conclusion

In this format, each of the assumption parts is optional. If a premise has its assumption, it
indicates that the premise is obtained under the assumption, and otherwise it is obtained without
condition. An inference rule may have a condition on the eigenvariable. An inference rule is applied
if all the premises are obtained in this manner, and the restrictive condiiion is satisfied. Then. the
conclusion is obtained by the application of the rule.

Figure 2.3 is the definitions of axioms and inference rules for the logic of mocking bird. In
the definitions of inference rules, the expressions ‘[X]’ and ‘[¥]" indicate the oceurrences of the
expressions ‘X" and 'Y’ respectively.

Axioms:
Mex=xex Existeoce of the mocking bird.
(A+B)ex=4+(Bex) Composition.

Inference rules:

FLx] N FIY] ¥=2 -
= (substitution) izl (equality)

Figure 2.3 Axioms and inference rules for the logic of mocking bird

Considering the fact that mathematicians use rewriting rules so much as inference rules, we

decided to add rewriting rules as a kind of derivations. Rewriting rules are presented in the

following scheme:
Pre_Expression

Post_Expression

A rewriting rule indicates that it is applied to an expression when it has a subsxpression which
matches to the pre_expression part of the rule. The resultant expression is obtained by replacing
the subexpression with the appropriate expression corresponding to the post_expression part of the
rule. Rewriting rules have no condition of application in the current version.

I[terating the applications of the derivation rules, one can obtain a derivation tree.

2.3 Constructing Proofs

In EUCDHILOS an environment called the “sheet of thought” provides the assistance to find
proofs of theorems by trial and error. This originates from a metaphor of work or calculation sheet
and is analogous to the concept of sheet of assertion due to C. S. Peirce [14]. It allows one to draft

a proof, to compose proof fragments, detach a proof, to,reason by using lemmas, and so on.

4

On a sheet of thought, proof fragments (or partially constructed proofs) are the elementary
units for manipulation. Proof fragments are pewly created as assumptions. axioms. or theorems
of the theory, which are composed, and deleted according o the operations given by the user.
Inference and rewriting rules are applied and expressed in the same style as those on the paper.
This ual,ura.iiy induces thut the appearance of a derivation tree on the sheet is also the same as
that on the paper. This way of treating is an example of the proof visualization.

it is desirable that reasoning during proof comstruction can be done along the natural way of
thinking of human reasoners. Therefors EUODHILOS supports the typical method for reasoning,
that is, forward (or top-down) reasoning, backward (or bottom-up) reasoning, interpolation (i.e
filling the gap between proof fragments) and reasoning in a mixture of them. Theyv are accomplished
interactively by manipulating the fragments on a sheet of thought. It is planned to incerporate
not only such a provieg methodelogy but alse methodology of science (e.g., Lakatos® mathematical

philosophy of science [11], Kitagawa's relativistic logic of mutual specification [10], ete.).

STNTAN. & mOochopmge~ _ 5 o™ 2l

Tarmula ==3> Term #qual, termi
sgpiml ==3> "=

term =—> b_Tafm:

tearm ==> b_Term apply D_teTE:
ARElY ——& "7

b_tafm =-—2 censtant:

b_tarm ==3> wvatlablae}

3 - e R e mps mowawm h = -t

=y

|
-
MHex=irx .
TR S e
(AFH) *x=A+ (B=x) Me-A=A+H

(ARE) ~x=A+ (B*x) == xex
{ibiz @) ——EhET)
(ARBY « (AwB) =A« (B~ (A®B]] W= (AxB) = (ARB) - (AXE)
{thzt O) ————— LA R
(AEM) « (AU =& (M- (AR) M= CAZMD) = CARAD = (AxLD)

{wq 01

CARMY » (AU =A- { (MR « (ARED)

(A%E} » x=hs (B=¥)

(sbhat @)
(ARMD o« h e e Mex=n-x
{sb2T 0] ——————{sbzt Q)
(Amuh » CAxL) =4« Q- (Awld)) s (ALY = (AEMD + (AXLD

{AXE} =sx=HA (B+x}

(wq O} H
i L]

[A®M) « (A%M) =A- ([AXN) - (AEM) D

Figure 2.4 Proof Construction on the Sheet of Thought

As an example of deduction process on a sheet, we will illustrate how one can procesd deduction
in the example of the mocking bird. The problem is to prove the statement: “Any bird is fond

of some bird.” That is, for any bird ‘A’ there exists a bird ‘X’ such that “aeX=%" holds. At first,

]

one enters two axioms "Mex=xex” and “(A+B)ex=4+(Bex)"” on a sheet. To deduce some formula.
he may deduce “Med=A«i" from the axiom “Msx=xex" by substituting ‘A" to the variable 'z.” He
canpot procesd apy more i this case, so he tries other substitution. Next. he mav substitute
‘A+B' to ‘x In this case. he gors “Ma(A#B)=(A*B)e (A*B)" and “(A+E)e(A*E)=4«{Be{4*E8))." Afier
looking these, he makes aware that by substituting ‘M’ to ‘B’ he can get the desired formula
“(A*M)e(AxM)=Ae ((A*M)e(4*M))." This indicates thai a bird ‘A’ is fond of the bird denoted by the
expression "(A=M)s (A#M) " [f he re-reads his proof carefully, he may become aware that the proof
is redundant, and he can get the final procf of the theorem: By substituting ‘4+M’' to ‘x’ and ¥’
to ‘E', and by the inference rule of equality, one can get the desired formula. Proofs on the sheet
of thought proceed like this. Figure 2.4 is the actual screen image of sheet of thoughts for this

example. More practical example will be presented in the full paper.

3. Related Systems

Aside from the reasoning assistant system (RAS for short), we consider the following three
types of the systems which can be used for assisting human reasoning: (1) automated theorem
prover, {2) proof checker, and (3} proof constructor.

As the most significant features of RAS, we can state (i) that it is logic free, and (ii) that it
supports the interactive proof constructions.

An (automated) theorem prover is a system which searches a proof of a formula given by the
user. In a RAS, proofs are searched and found through the interactions hetwsen the system and
the user. This is the major difference between a thecrem prover and a RAS.

A proof checker is a system which checks the correctness of a proof described by the user. Ina
proof checker, the user has a putative proof of a theorem from the beginning. A human proof may
contain some careless mistakes including small gaps in a proof. The checker provides a language
for describing human proofs. By using this language, the user describes the proof and gives it to
the checker. The system begins to check the correctness of the proof. If the checker finds errors in
the proof, it shows them to the user. When a user has a proof and wants to verify its correctness,
a proof checker is one of the best tools for him. But when one begins to find a proof for some
formula, the system such as RAS which assists to construct a proof is more suited than the proof
checker.

Many proof checkers have been developed up to now. AUTOMATH [1] is a proof checker in
which the user can specify how the proofs are constructed. PL/CV2 (2] is used for proving the
correctness of PL/I like programs. CAP-LA [8] deals with the proofs on linear algebra.

A proof constructor(e.z. LCF [5], FOL [17], EKL [9] and Nuprl [3]) is a system which supports

i

a user to copstruct proofs as well as theorems through the interaction bervwesn the user and the
system. The proof copstruction 1s, in other words. a “proof editing.” Users edit proofs. preciseiyv
proof fragments. by inputting, deleting, and combining the preois. From chis poine of view. a proef
constructor is a proof editor.

EUODHILCS is a kind of proof construetors. The mest significant difference of it from other
proof constructors is that in EUODHILOS underlying logic can be defined in the system, while
in others it is fixed. There are merits and demerits for fixing the underlying logic. As a merit it
is easv to introduce some specific procedures suited to the logic. As a demerit, if the system is
applied for general cases of human reasoning, the fixation of logic may restrict the reasoning about
some objects under consideration. In such a case, a general framework treating a variety of logies

is required, and EUODHILOS is the best choice.

4. Concluding Remarks

The first version of EVCDHILOS is now available and the next version is being improved by
reflecting the experience of using the current one.

So far, we have dealt with several existing logics, such as first-order logic {NK), propositional
modal logic (T}, intensional logic (IL), combinatery logic, and Martin-L&{'s type theory. Maany
logics can be treated in the current version. Some logic such as tableau method seems impossible
to be treated in the current framework. We plan to extend the framework so that logies given in
other formulations can be treated in the system.

The current state is the first step towards the realization of a practical reasoning assistant
system. To put the step forward, we have to investigate various subjects including the followings:
(1) Treatment of relationships between meta and object theories, (2) Maintaining dependency
relations among various theories, (3) Opening up various new application fields of reasoning, and
(4) Improvement and refinement of human-computer interface for the reasoning system.

From the experiments so far in EUQDHILQS, we are convinced of the followings: (i) Describing
the syntax of logical expressions is difficult at first. But, after defining several logics, we can define
a new logic in a few hours. If the system keeps descriptions for typical logics as a library, the
description of a new logic would be an easy task even for beginners. (ii) On a sheet of thought,
users are free from deduction errors. On the paper, they may make mistakes in deriving a new
formula when deduction rules are applied. The difference is important, because the users have (o
pay attentions only to the decision how to proceed the proof on the sheet of thought. (iii) The

reasoning assistant system can be used as a tool for CAL In the system, users can deal with a

variety of logics.

=1

Bv using the gemeral-purpose reasoning assistant system EUQDHILOS, we can treat various
kinds of knowledge represented as logical expressions in a uniform way, and we can investigate the

relationships berween them. This will open a new fieid of reasoning assisting by computers.

References

[1] N.G.de Brluiju: The Mathematical Language AUTOMATH, its Usage, and some of its Exten-
sions, In M. Laudet et al. {eds.), Sympoosium on Automated Demonstration, Springer-Verlag,
pp.29-61, 1970.

[2] R.L.Constable et al.: An Intreduction to the PL/CV2 Programming Logies. LNCS 135,
Springer-Verlag, 1982,

[3] R.L.Constable et al.: Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, 1986.

[4] J.A.Goguen & R.M.Burstall: Introducing Institutions, LNCS 164, Springer-Verlag, 1983.

(5] M.J.Gordon et al.: Edinburgh LCF LNCS 78, Springer-Verlag, pp.221-270, 1978.

[6] T.G.Gnffin: An Environment for Formal Systems, ECS-LFCS-87-24, Univ. of Edinburgh, 1987.

[7] R.Harper et al.: A Framework for Defining Logics, ECS-LF(CS-87-23, Univ. of Edinburch, 1987.

[8] ICOT: The CAP Project (1)~(6), Proc. 32nd Annual Conv. IPS Japan, 1986. (in Japanese)

[9] J Ketonen & J.5.Weening: EKL—An Interactive Proof Checker, User’s Reference Manual.
Dept. of Computer Science, Stanford Univ., 1984.

[10] T.Kitagawa: The Relativistic Logic of Mutual Specification in Statistics, Mem. Fac. Sci
Kyushu Univ., Ser. A, 17, 1, 1963.

(11] I.Lakatos: Proofs and Refutations — The Logic of Mathematical Discovery—, J. Worrall &
E.Zabar (eds.), Cambridge Univ. Press, 1976.

[12] S.K.Langer: A Set of Postulates for the Logical Structure of Music, Monist 39, pp.561-570,
1925.

[13] Y.Matsumoto et al.: BUP:A Bottom-Up Parser Embedded in Prolog, New Generation Com-
puting 1, pp.145-158, 1983.

[14] C.5.Peirce: Collected Papers of C.S.Peirce, Ch.Hartshorne et al. (eds.), Harvard Univ. Press,
1974.

[15] F.C.N.Pereira et al.: Definite Clause Grammars for Language Analysis—A Survey of the
Formalism and a Comparison with Augmented Transition Networks, Al Journal 13, pp.231-
278, 1980.

[16] R.Smullyan: To Mock a Mockingbird, Alfred A. Knopf Inc., 1985.

[17] R.W.Weyhrauch: Prolegomena to a Theory of Mechanized Formal Reasoning, AT Journal 13,
pp.133-179, 1980.

