\COT Technical Memorandum: TM-0611

Th-Ue1]

On a Recursive Query Processing Method
for Deductive Databases

by
H. Seki

October, 1988

© 1988, ICOT

Mita Kokusar Dldg, 211 (0 456-3191 -5

|| :D I 4-28 Mita 1-Chome Telex 1COT 32964

Mingto-ku Tokyvo 108 Japan

Institute for New Generation Computer Technology

On A Recursive Query Processing Method

for Deductive Databases
{Extended Abstract)

Hirohisa SEKI
Institute for New Generation Computer Technology

1-4-25, Alita, Manate-ku, Tekyo 105, Japan

1 Introduction

Recursive guery processing in deductive databases has altracted much attention recently, and both Lop-
down and bottom-up algorithms for query evaluation have been proposed by many authors {[4], [11] and
references therein). This paper gives o bottom-up query evaluation algorithm called Alezander Templates
(AT), particularly emphasizing comparison with & top-down evaluation with memo-ization such as the
SLD-ATL procedure [16] |{r:r Q5Q [18]) and Extension Tables [6].

AT is a generalization of the Alexander Method [12], and it is applicable to general Horu programs,
allowing partially bound terrns (such as p(f(a, X},¥)) and repeated variables (such as p(X, X}). The
basic principle of AT are similar to those of (Generalized) Magic Seis [53], [3, that is, s progeaumn is
transformed into a set of rules whose bottom-up evaluation is devised to simulate top-down evaluation
of the origimal program. We show that there exists an exact one-to-one correspondence between the
bottom-up evalnation of the transformed rules and the top-down evaluation of the original program by
the SLI-AL procedure. Thos, the bottom-up computation can be considered to have at least the same
power as the top-down with memo-ization.

Cinee the correspondence betwesy AT and the top-down evaluation with memoe-lzation is established,
properties of AT such as correctness, complexily and termination are immediately derived from the
counterparts of the SLO-AT, procedure. For example, the bottom-up evaluation of AT s shown to be
sip-optimal [11] {except supplementary atoms). Moreover, under the same sip and coutrol strategy, the
counts of generation of facts and solotions are shown Lo be eguivalent in bolth AT and the SLI-AL
procedure. We also propose a techrique which nproves the termination property of the hottom-up
evaliation of AT, which is also applicable to {Generalized) Magic Sets.

Since the completion of the fisst version of Lhis paper [13], we have recently found similar work by
Ramakrishnan [IT]. He propased the Magie Templates rMT_}I which is a gﬂnﬂraﬁzahinn of Generalized
Magic Sets [5] in the same sense that our AT is a generalization of the Alexander method (thus, we

borrow the gamne templale for our ;||1L't.hud} AT is sumilar Lo o supplementary version of MT (SMT]).

Tt is, however, further optimized by applying unfolding to rules of SMT, which reduces intermediately
generated supplementasy atoms during the bottom-up evaluation. Furthermere, in order to show the
correspondence hetween bottom-up and top-down with meme-ization, AT gives a nicer framework than
MT.

The orgenization of this paper is as follows, After summarizing preliminary terminologies, zection 2
describes Alexander Templates algorithm. Section 3 gives a brief explanation of a top-down evaluation
method with meme-ization, the SLD-AL procedure. Section 4 gives the main result of this paper, which
shows the one-to-one correspondence between the behaviour of AT and that of the SLD-AL procedure.
Several corcllaries on the properties such as termination, sip-optimality and termination, are alse given,
Section § describes termination issues of AT in more detatl and proposes a technigue to guarantes jis

termination for a more general class.

2 Alexander Templates

2.1 Preliminaries

We consider general Horn clauses (with function symbels) as a database. We mestly follaw basie termi-
nologies and conventions given in [11] and [4). Throughout this paper, P means a program consisting of
a finite set of Horn clauses (rules), and [& database which is a set of facts (i.e., not necessarily ground
unit clauses). Predizates in D are called datebase predicates, while all other predicates are called dertved.
No database predicate is assumed to appear in the head of a rule in P. Furthermore, each rule in P is
supposed to he assigned a unigue natural number called rule number. We denote a (possibly empty) set
of all the variables occurring in an atom, A, by var(A). Similarly, var(4; U ..U A,) means a set of all
the variables oceurring ameong atoms A;, ..., 4,. For simplicity, we denote this set by a list form. For
example, var(p{X,Y)) is denoted by [X,¥].

Example 2.1 Consider the following program Py, of the same generation problem [4]

sg(X,Y) — flat(X,Y). (1)
sg(X,¥) — up(X,Z1),59(Z1,22), flat(Z2, 23),39(Z3, 24), down{Z4,¥). (2)

To each rule (1} ({2)), the number in the parentheses is assumed Lo be assigned as its rule number,

respectively. We also assume the following database [y, is given.

flat(a,a). flat(b,b). flat{e,e). flat(d,d). flat(e.e}.
upla, dj. upia, e). upib, d) uplc,e).
downl(d,a), downfe,a). down{d b). downie, c)

In Magic Temnplates and also in AT, & given program P 13 transformed inte a new set of (adorned)
rules P based on a sideways information passing (sip} [11], [5]. For simplicity of exposition, we assume

throughout this paper that a full sip (see [li]]l is used. Thus, there exists a fotal order in all atoms of

cach rule in P, and we can assume thal the body literals of cach rule in P are ordered according o its
toval ordering induced by the total sip. Then, as is described in [11], P and P*? are identical, with the
understanding that in P%%, each p-arv predicate is adorned with & string of n bs. In the following, we

thues vse P in stead of £9¢

2.2 CP Rule Transformation

Qur ruls transformation of AT s 2 generalization of the Alexander methed, 1n the same sense that MT
iz a generalization of Generalized Magic Sets [5]. Lt 15 appheable to general Horn programs. Hules of a
given program are transformed into a set of new rules which we call contimuation passing {CFP} rules,
An informal explanation of CF rules 15 as follows, Consider a rule rof form: “p — I, g, A", where
I"and A are {possibly empty) sequences of atoms and g 15 an arbiteary atsm. This rule could be divided

into the followmg two rules:

call_g, contlg — calip T ceofal)
sol.p «— solg, comlg, A <o (#2)

The ficst rule (+1) is simply a convention of two rules; “call_g = call_p, I and “cont_g — callp, ", The
atom cell_g plays the same role with thatl of magic.g in Magic Sets. The intention of rule {#1) is that, if
a query of pis given (this is the meaning of call_p), and subgoals T are solved, then a subgoal, g, is to be
tried next {this is the meaning of call g}, The information obtained during selving subgoals T' is stared
in an atom, cont_g. On the other hand, the second rule {+2) means that, if a goal g is solved { a solution
of ¢ is denoted by solg), then, an attempt is made to solve subgoal A under the constraint specified
by contog. If A is soived, then a solution of p iz obtained in the form sol_p. Thus, forward reasoning
interpretation of the criginal rule r could be considered to be rewritten into vules («1) and [#2).

Before describing the transformation algorithm from & given pragram inte CP rules, we introduce the

fallowing definitions.

Definition 2.1 An stom which bas a prefix, call_ (soll), is sald 1o be a call-atom (sol-atemj. An atom
whose predicate svmbol is cont is said to be a cont-atom (thus, “cont” is a reserved predicate). These
cell-atoms. sol-atoms and cont-atoms are called CP-atoms,

A rule is said to be a confinuation passing (CP) rule if its body contains only CP-atoms.

Let — g be a given query. The call-atom of call_g is said to be an initial cell-alom for —y =

For example, let == gy(a, ¥') be a query, Then, its initial cali-atom is call_sy{a, 17
The algorithm for transforming 1ules in P and facts in D into the corresponding (0" reles consists of
the following four steps

Transformation Algorithm:

Input : agiven program P, a database [and a query Q
Output @ aset of CP rules, CFRs(PU D}, and initial call-atom ecall.Q

Procedore :

Let r be an arbitrary rule in P or I of form: A — A, ..., Anln = 0). When risin P, let N, be 1ts
rule number. Let PR r) be an empty set. Apply the following steps to r.

step 1 {Imtroduction of call/scl-predicates} For a rule, v, the following rule. v, is introduced:
sol. 4 — call 4 A4y, .. Ag (3)

step 2 ¢+ {Termination eondition} If rule ro.. 15 already a CP rule, then let CPRs(r) be CPR3(r}
Li{rnew). and terminates the process of deriving CP rules for r. Otherwise, apply the following step 3

10 Mhewe

step 3 : {Cutting off recursion} Let A4, be the leftmost atorn in the body of rn,, such that it is not a
CP-atem. Suppose that Ag 1s the &-th [1 < & < ») atom in the body of the original rule #. Note that

Trew 15 Of the following form:
sol_4 — T, A, A (4)

where I' is a sequence consisting only of CP-atoms, and A 15 a {possibly empty) sequence of atoms. Then,

WE TEWTILE Tagy tnto the following twe rales:

call_dp cond(N.-k TV, V) — T (5)
sol_ A =~ sol_Ag, conl{N-k, IVy, O3} A {6

where IV (called nternal variables of Ap) means a set of variables (if any) in Ay in (4), and CVi {called
continuation variahbles) means a set of all the variables in rule (4) which occur among both “I'™ and

YA sal A7 simuoltanesusly bul net in A, Namely,
CVe = var(T) Nvar(A U sold) — IV

Each of IV} and OV} i3 denoted in list form. Each variable in lists IV, and OV, is ordered according
to the order of its textual appearance in rule ro. . Since rule (3) is a CP rule, et CFHs{r} be CPRsfr)
u{(5)}.
step 4+ {Applyiug step 2 and step 3 until the end of the rule body} Let (6) be & new rpew, and go
back to step 2.

Mote that the above process always terminates, We apply this procedure to every rule r in F L DL

Then, the output of the transformation algorithm is UrePuD C P Rs(r). a

Example 2.2 Continued from Example 2.1. The following is the set of derived CF rules CPRs{ Py, U

D,.} {a detailed process of transformation is given in Appendix-Al):

call_flat(X,Y), cont{1-1,[X,¥],[]) — ecali_sg(X,Y) (7)
sol_sg(X.Y) — sol_flat(X,Y),cont{1-1,[X,¥].{]) - (8)

callup(X, Z1), cont(2-1,{X, Z1],[¥]) «— call_sg(X,¥) (9)
call_sg(Z1, 22), cont(2-2,[Z1, 22),[X.Y]) =~ solup(X,Z1),cont(2-1,[X, Z1],[¥]) (10)

call_flat{Z2, 23}, cont(2-3,{Z22, Z3], [N, V]) — solsg(Z1,22),cont(2-2,[21,22),[X, YT} (11)
calllsglZ3, 24), cont (24, [Z23, 24],[X, Y]] — sol.flat(Z22,23), cont(2-3,[22. 231, [X.¥]) (17}
call.doun({Z4, 1), cont(2-5, [Z4, Y] [X]) = solsp(Z3, Z4), cont(2-4,(23. Z4],[X. Y]} (13}
sol sg(X\Y) - sol.down(Z4,Y), cont(2-5,[24,Y], [X]) (14}

sol_flat{a, a} — call flat(a, a)

sol_downie,ch — rall_down(e, ¢) O

2,21 Motes an the rule transformation

For a given quers — €, 1t 15 obviously unnecessary to transform all rules and facts in P U D, but it is
enough to transform only those related to the query, Furthermore, it might be curious that even facte
in D are transformed into its corresponding CP rule, since we do not transform facts in 12 in usual
query evaluation methods such as (Generalized) Magic Sets and MT. OFf course, we could do such a rule
transformation which does not modify predicates in D, We give such an example ir Appendix- 42 In
this paper, however, we adopt the above transformation for the ease of explanation of comparison with
the corresponding top-down algorithm described in the following section.

For readers who are famibar with the supp]emenht.a.ry version of Magic Templates or Generalized
Supplementary Magic Sets (GSMS), we give a comparison with AT and SMT in Appendix-A2 for
the same generation problem. In that problem, CPRs(P,,) is similar to a set P*P™ of magic rules
and modified rules rewritten by SMT, but CPRs(F,;) is an further optimized result of PP ™8 Ly
applying straightforward snfalding to it. Thus, the size of intermediate atoms generalized by bottom-up

computation in AT becomes smalter than that of Supplementary MT or GEMS.

2.3 Naive Evaluation of CP Rules

Since a sip and a control strategy are quite another issues (see [3]), we can consider various contrel
strategies for our CF rules. In this paper, we employ a naive bottom-up evaluation [4] as the control

strategy.’. For a given set of CP rules CPRs(# U D) and an initial call-atom call.g, we compute a

sequence of sefs of atcins 5y, -, 5. - - as follows:
Spoo= eallg) (13)
Snr| = Tl!-.'_‘:i‘n_: EIG}

AP A —T iz aule in CFPRs{FU DY), @ is o substitution such that

each atom in ['f iz in 5,) (17}

where variables (if any) in A# in (17} are considered to be freshly introduced variables such that they

are distinet from those in 5, Note that, since each atom is no Ir:mgur a Ernu:nr.] atom, the evaluation of

LLaly course, other optimizing strategies such as semi-uaive evaluation are possible.

Tin “ﬁ:l 15 nob a usual “joln™ eperation, but a unification operation. The above evalualion tecminates,
when no new atoms are generated for some n. Here, an aiom A in S, is said to be aew if 4 is not
an inetance of any atom in S,_y. The solution for a given ivitial atom coll_g is given by set {sol g’ |

sol_g" is in S{n) and ¢ is an instanee of).

Example 2.3 Continued from Example 2.2, The computation process of the naive evaluation for input

CPRs(P, 0D,) call_sgia, ¥ 15 shown in Appendix-AJ3 (Figure 1).
g ¥) PP E

The correztness of AT and other properties are given in section 4,

3 Top-down Ewvaluation with Memo-ization

As a top-down method for query evaluation, we adopt the SLD-AL procedure [16] (or Q5Q [18]) intro-
duced by Vieille. The basie principle of SLD-AL 15 to prevent the interpreter {rom repeatledly trying to
solve the “similar” goal and thus to cut off an infinite branch, by introducing memo-ization into SLD
derivation (e.g., [10]). Similar work has been proposed by several researchers (e.g., [15] [6]). The following
description of QS5Q (or SLD-AL) is maialy borrowed {rom [8] and [16].

Definition 3.1 A femma is an atom for & predicate in P U D, |

A computation rule [10] determines which literal in a goal is selected. We assume that our computation
rule always selects-the leftmest atom io a goal, as in wsual Prolog interpreter. This corresponds to our
assumption that a total sip is adopted in the previous section. Next, we define a precedence relationship

between nodes in a tree, which Spsr_iﬂes a search strategy in a derivation bree.

Definition 3.2 Node M precedes node N in a tree T if either M is an ancestor of N or M is visited

before N in a preorder traversal of T m

Definition 3.3 The lefumost literal Lin a goal & of an SLD-AL tree {defined below) is admissible if

there is no goal G (its leftmost atorm L) of T such that &' precedes & and L is an instance of L. O

The SLD-AL tree is defined as follows.

Definition 3.4 An SL0-AL tree for query — @ with respect to (P, D) and E (a set of lemmas) is a tree
T af goals such that @

(1} The oot of T is — Q.

(2} MNodes that are the empty goal have no children (success nodes),

(3} {OLD ertension} Let N = * — L, T" be a non-empty goal of T and I' & (poasibly empty)
sequence consisting of atoms and “call-exit markers” (introduced below). Suppose that [y
is admissible. Let Cy, - Ce(k = 0) be all clauses (if any) in (P,) such that L, and C; is
resolvable {(with mgu 0;), and let Oy be of form: Ay — Ay, -~ Ag(li 2 0}, Then, add k child

pades N Np to N where each WV is of form: — [Aqg, - - Ay [018], T8 Each [L18] is
criled a call-eret mn:‘ler‘[Tj_:

{4} {Lemma exfension} If Ly in & = ° — L1, 17 is not admissible, then, for each lemma L in
Y that is unifiable with L; {]et # be its megue), & has a child — T8,

[y {Detecting Lemmas) i node N 1s of form: © — [L], I, then, N has a child — . 0

Henre, an 3LT-AL tree 1= an 51D tree except that an admissibility test and lemma extension are intro-

dured. The following definition shows a role of the call-exit marker.

Definition 3.5 Let & = = -+ L,.T7, Gizr.- -+, Gy be a derivation BR with mgu's #4,,....%; in an
SLO-AL tree. Suppose thal & is of form: = — [I.-.ﬁ,-,]_, o aff, Tiio-- of” and i5 the first goal
in Bf pot containing any descendantz of Ly, Then, the decivation B8 15 called a proof segmeni for
Ly starianyg al &) proving Loy -8 Lifigy -8 is the lemuma corresponding lo Lthe prool segment.

G

Finally, the SLI-AL procedure is defined as follows. 'L'he {ollowing procedure 13 based on a breadth
first strategy such that, al n-th (n = 0) iteration step, the construction of the SLD-AL tree is limited up

Lo d:pr.h .
Definition 3.6 The SLD-AL procedure for evalvating — @ with respect to (P, 1) is as follows:
no= 0 Bp o= ¢ Tet Ty be an SLDtree consisting ouly of root «— @
repeat .
n o= n+l;
Construct an SLO-AL tree 1, for = § wrt (P, 1) and ¥, _y such that the depth
of Ty 15 m;
Let AT be the set of leinmas for predicates corresponding to proof segments in B,

E. =B UAE;
until AYC i Heturn all computed answers for — ¢ in 7). g

The soundness and completeness of SLD-AL procedure is given by |16].

Exammnple 3.1 Contipued from Example 2.1, The SLI-AL procedure for — sgia, ¥') with respoct to
[Py D) is given in Appendix- A4 (Figere 7).
4 Simulation of Top-down with Memo by AT

The following proposition establishes the one-toa-one coreespendence hetween the behavior of the STD-AL

procedure and that of AT

"The intentivn of introducing a cali-exit marker is to detect and store efficiently lemmas genernted intermediately during

the SLO-AL procedure, Se= Definition 3.5,

Proposition 4.1 Let P (D) be a given Horn program (database), respectively and — £ a given query.
Consider the SLD-AL procedure for — @ wrt (P, D}, and the naive evaluation of CP rules CPRs(P U
[t} together with the initial call-atom eali_Q). Then, the following correspondence between these two

algorithms holds (in the below, 5. is defined in (15) and (16), while T}, is defined in Definition 3.6):

(i} (initial stage) — @ is the root of SLD-AL tree ¥5, while, in the naive evaluation. {2 possibly

variznt of} an atom of the form: call G} is in 5.

i) A node of form: *«— 4 T7 is derived in SLD-AL tree T, (n > 0), if and onlv if (a variant
of | an atom of the form: call_4 15 in 5. of the naive evaluation. Furthermore, 4 is admissible

il and only if call 4 is newly derived al n-th step in the naive evaluation

(i) A lemma L {or equivalently, a node of form: * — [L],T™) is derived in SLD-AL tree
I (n > 0), if and only if {a variant of) an atem of the form: sol_L is in S, of the naive
evaluation, Furthermore, L is a newly derived lemma at n-th step in the SLD AL procedure,

if and only if sol_L is newly derived at n-th step in the naive evaluation. 5]

The proolis dope by induction on n, and it is found in the full paper [13]. "The above proposition shows
that, there exists an exact one-to-one correspondence between each node in an SLD-AL tree constructed
by the SLD-AL procedurs and an atom generated in the naive evaluation of CP rules. Once the above
correspondence is established, the following properties of Alexander Template are immediate. At first,

AT is sovngd and complete.

Corollary 4.1

(Soundness) If an atom sol_4 is derived by the naive evaluation of CPRs(PU 0}, then A is a logical
consequence of P U D,

(Completeness} If an atom A% is a logical consequence of (°, D), then 2 sol-atom sol_4; is derived
by the naive evaluation of O PRs(PULD) with an initial call-atom call_A, where A: subsumes 48, =

Next, we discuss the sip-optimality [11] of AT. Tn [11], Ramakrishnan gives definitions of a sip-strategy
and sip-optimality as follows. Taken as input a query and a program together with a collection of sips,
sip-siraiegy computes answers to the query under such a compulabion rule that it satisfies the following

two condilions:
(1) IE p(f} is & query, and p(@) is an answer, then pld) is computed.

{2) If p{8} is a query, then for very rule with head predicate p, a query is constiucted for every

predicate in the rule body according o the sip for their ruls.

Then, a sip-optrmal strategy is defined to be a sip-strategy that generates only the facts and the
queries required by the above defimition for the predicates in the program. Sip-optimality is a natural
concept Lo capture the properties of many previously propesed top-down/bottom-up methods for general
Horn progrins (see [4], [11] and references therein). As mentioned in [11], however, sip-optimality does

not imply that fuets and queries are not generated more than once.

Throughout this paper, we are confined into fall sips. Under a full sip strategy, it is sasy to see from
the definiticn that the SLD-AL procedure is sip-optimal. Thus, again from Proposition 4.1, AT is
shown to be sip-optimal, except supplementary cont-atoms generated. Furthermore, we can say more on

the counts of generation of facts and queries in AT,

Corollary 4.2 The naive evaluation of CFRs[FP U D) is sip-optimal, except cont-atoms geperated in
termediately. Furthermore, the numbers of times facts aned queries are gener&tﬂd in the naive evaluation

of CPR:{ P L) are the same as those in the SLD-AL procedure for (P U D) o
The next coroliary 13 concerned with the termination of the naive evaluation of CF rules,

Corollary 4.3 The naive evaluation of CHHe{F U L), together with initial atom cali_A, terminates if
and only if the SLD-AL procedure for — A with respect to (F, D) terminates.
In particular, when /15 a dafalop database, the naive evaluation of CPRs{ P U D) always terminates

for anv initial call-atam. n]

5 More on Termination Issues

We show in the previous section thal the naive evaluation of Alexander Templates faithfully simulates
the behavior of top-down compuotation with memo-izetion of the SLD-AL procedure, and the termination
condition of both methods s thus the same.

Interestingly, AT (also MT) sometimes simulates the top-down with meme-ization too faithfully, and
thers exist programs P soch that the naive evaluation of CPRe(P 1 D) will not terminate even if the

naive evaluation of (P, I¥) terminates. Consider the following example:
Example 5.1 Suppose that the following program Frypp 15 given (let D be empty).

feg twols{s(0))].
legtwe(X) — legtws{s(X)).

Predicate leqfwol) is supposed to hold il X is less than or equal to two, OF sl Pocp) is as follows,

where N 15 the rule number of the second rule in Floop.

sol deg tun{s{s{0))) — call deg twals(s(0)))
ealldeg twols{ X)), cont{N=-1[X], [} — ecalldegtwo{X).

sol deqdwel N}y — soldegdwols(X)), cont(N-1,[X], [])

The naive evaluation of ., terminates, genecating atoms {leq fwol (), leg frwols(0)), leg 2wals{s{0)))},
as is expected. Suppose that query — leqtwols{s{s(U}})) 15 given. "T'he naive evaluation of CFP Ks{ Frecp)
together with initial call-atom call leg_two(s(s(s(0)))) does not terminate, since it can tepealedir produce
new atoms call teqtwols(s{s(s(0))))), cali_feq two(s(s(s(s{s(U13)))), - -. In this case, there is no way to

stop the computation, sinee newly generated atoms are not instances of previeus ones. Nobe that the

same thing also bolds in Magic Templates (see the discussion in [11]) and in the SLD-AL procedure.
a

We propose a methad which guarantees the termination of the naive evaluation of CP rules, at least
when the corresponding evaluation of the original program terminate. In order to prevent the above

infinite generation of distinet (call-)atoms, we introduce ferm-depth abstraciton [15].

Definition 5.1 Let 4 be an atom of a predicate p, and k the term-depth of p*. Then, the ferm-depth
abstraction of A, denoted by abs{A}, is A with every subterm of depth maore than & replaced by distinet
new variables, Let T = Ay, .-, A, be a sequence of atoms. Then, the term-depth abstraction wit
call-atom of U, denoted by call-abs(T}, is T with every call-atom A; (if any) in it replaced by abs(A;).

]

For example, if the term-depth of pis 1, abs{p(s(s{X)))) 13 p(s(.X}). The following is a naive evaluation

given in 2.3, incorporating the term-depth abstraction into it.

Site {abs{call_g)} {18)
Ser = Tiaa(S55™) (19)

= {ca“—nﬁs{ﬂﬁ':l | A Tisarulein CPRs(FPU D), #is asubstitution such that

each atom in T8 is in S92} (20)

Example 5.2 Continued from Example 5.1, Let the term-depth of feq.iwo (thus, callfegdwo} be 3.
Then, evaluation of O P R Fio.p) together with initial call-atom ecall_leq two(s(s(s{0}))) terminates. The

following is a sequence of sets of atoms generated at each iteration step.

S = {call leg two(s(s(s(0)))}}

51 = 53 U {call leq twols(s(s(X)))). comt{N-1,[X], [1)}

St = SH U {eall legtwo(s(s(s(Y), cont(N-1, [s(s(s(2)))], [1)}
o= S (20

Note that each newly generated atomin 52%, namely, call leg two(s(s(s{¥]']-_]':I and cont(N-1, [s{s(s(Z)}}], []),
15 an instance of the call-atom and the cont-atom in 5"{"‘, respectively. Thus, the above naive evaluation

with term-depth abstraction terminates at step 2. (|
The following property on the termination of the above evaluation is easily shown 13]

Corollary 5.1 The naive svaluation with term-depth abstraction of O PRs{ FU D), togather with initial

call-atom call €}, terminates, whenever the naive evaluation of P with a seed @ terminates. G

As for the termination problem, several work has been proposed (eg., (9], [1], citeKRS:88). Kifer

and Lezinskil, for example, introduced a similar technique into their SYGRAF [9]. We believe that our

IWe assurne that a positive natiral number k is nssigned to each atom p and its call-atom col.p as its term-depth. This

Assigniment is arbitrary and the resulting naive evaluation with term-depth abstraction is shown to be sound and complete.

10}

method has the same power as that of SYGRAF wrt termination, and we claim that a characteristic of

AT is simplicity of its evaluation method.

6 Concluding Remarks

Vie have proposed 2 boltom-up query evaluation algorithm called Alexander Templates {AT) which is
applicable to general Hom programs. We have shown that its behaviour corresponds exactly to that
of the SLD-AL procedure, thus, the bottam-up computation of CP rules has the same power as the
top-down evaluation of the SLD-AT. procedure. Several researchers have mentioned the correspondence
between the botiomn-up evalnation and the top-down evaluation for some examples {e.g., [L7]} but nou
for genesal Horn programs.

Although we confine ourselves to Horn programs, it is straightforward to extend AT into stratified
programs [2] We have already proposed a top-down algerithm called OLDTNF resolution [14] which is
sound and complete for a class of stratified databases. Since OLDTNF resolution is QL) resolution [13]
sugmented with “Negation as Failure” rule, a simple modification of AT would give a bottom-up query
evalualion algorithm for stratified databases [13].

Finally, compared with previcus work, the contributions of this paper can be summarized as follows :

1) A query evaluation method called the Alerander Templates (AT} was proposed, which is an

extension of the Alexander method and is sound and complete for general Horn programs.

2) 1t was shown that there exists an exact one-to-one correspondence between the naive evalua-

tion of AT and the corresponding SLIO-AL procedure.

3} A technique called term-depth abstraction was introduced into the naive evaluation of CP
rules, in order to guarantee its termination, whenever the naive evaluation of the original

program terminates,

References

(11 F. Afrati, C Papadimitrion, G. Papageorgion, A. Roussou, Y. Sagiv, and J.1}. Uliman. Convergence
of Sidewavs Query Evaluation. In Proc. Fifth ACM Sympesiem on lriciples of Database Systems,
pages 24-30, 1950

[2] K ®. Apt, H. Blair, and A. Walker. Towards A Theory of Declarative Knowledge. In 1. Minker, edi-
tor, Froc. of Woerkshep en Foundations of Deductive Databases and Loyic Pragramming, pages 346-
723, 1086, Washington, DC.

(3] F. Bancilhon, D. Maier, U. Sagiv, and J. D. Ullman. Magic Sets and Other Strange Ways to
Implement Logic Programs. In Proc. Fifth ACM SIGMOD-SIGACT Sympostum on Principles of
Database Systems, pages 1-15, 19587,

i1

(4]

[5]

F. Baneilhon and R. Ramabkrishnan, An Amateur’s Introduction to Recursive Query Pruc::;::i.ng
Strategies. In Proc. of the ACM-SIGMOD Conference, pages 16-32, 1986, Washington, DC.

C. Beert and K. Ramakrishpan. Cn the Power of Magic. In Proc. Fifth ACM Symposium on Priciples
of Database Systems, pages 269-284, 1986,

{68] S.W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In Proc. 1987 Symposium

(7]

(8]

(8]

[10]

{11

12

(13}

[14]

[15]

(16]

(17]

(18]

on Logic Programming, pages 2(4-272, IEEE Computer Society, 1957,

T Kanamori and T. Kawamura, Analyzing Success Patterns of Logic Programs by Abstract Hybrid
fmierpreiairon. ICOT Technical Heport TR-279, 1C0T, 1987,

B.D. Kemp and R.W. Topor. Compleleness of @ Top-down Query Evaluation Procedure for Stratified
Databases. Technical Report, Dept. of Computer Seience, Univ. of Melbourne, 1988, also in 5th

International Conference Syinposivm on Logic Programming, Seattle,

M. Kifer and E. Tozinskil. Implementing Logic Programs As & Database System. In froc. of

International Conference on Data Engineering, pages 375-385, 1987,
J.W. Lloyd. Feundations of Logic Programoming. Springer, 1954,

K. Ramakrishnan. Magic Templates: A Spellbinding Approach to Logic Programs. In Proceedings of
the Fifth International Conference and Sympesium on Logic Programming, pages 140-159, Seattle,
1048,

J. Rohmer, R, Lescouer, and J.M. Kerizit. The Alexander Method -—— A Technique for the Processing
of Recursive Axioms in Deductive Databases. New Generation Computing, 4(3):273-285, 1986.

H. Seki. On the Power of Continuation Passing. manuscript, 1987. Its revised version is to appear
in ICOT Technical Report.

H. Seki and H. Itoh. An Euvaluation Method for Stratified Programs under the Exiended CWA.
1COT Technical Report 337, ICOT, 1983, also in 5th International Conlerence Symposivm on Logie

Programming, Seattle,

H. Tamaki and T. Sato. OLD Resslution with Tabulation. In Precesdings of the Third International
Conference on Logie Programming, pages 84=98, London, 1986,

L. Vieille. A Database-complete Proof Procedure Based on SLD-resolution. In Proceedings of the

Fourth International Conference on Logic Programming, pages 74=103, Melbourne, 1587,

L Vieille. From Q3@ fowards QoSa(: Glebal Optimization of Recurstve Queries. Technical He-
port TR-ICB-18, ECRC, 1987,

L. Vieille, Recursive Axioms in Deductive Databases: The Query /Subquery Approach. In Proceed-
ings af the First Iniernotinnal Conference on Expert Daiabase Sysiems, pages 179-193, Charleston,
1966,

Appendix

Al: Example 2.2

We iliustrate Transformation Algorithm described in Section 2.2, using the same generation problem
in Example 2.1 In step |, the following rales are introduced, each of which corresponds to rule (1) and
{2Y, respectively.
ol gl XV} — cailsg(X,Y), flat(X,Y) (21)
ol sgl XYY — callsg(X,Y),up(X, Z1),5¢{Z1, 22, flat(Z2, Z3),=59(73, 74}, down{Z4,Y).(22)
Firar. censider rule {21). Since it does not satisfy the termination condiiion in siep 2, we apply step 3
to it generating the two rules (7) and (3) in Example 2.2, Similacly, we apply step 3 to (22), generating

the two rules:

callup(X, Z1), cont(2-1,[X, Z1], [Y]} — call_sg(X, Y)

sol_sgl X, ¥) — solup(X, Z1), cont(2-1,[X, Z1),(¥]), s0(Z1, Z2), flat(Z2, Z3),59(Z3, Z4), down(Z4,Y).

The first rule in the above iz exactly rule (9], and it is & CP rule. Thus, it is in CPRs(Z). On the

other hand, we apply step 2 to the second rule again, generating the following two rules:

call_sg{Z1, Z%), cont{2-2,{21, 22].IX.Y]) — sol up(X, Z1), cont(2-1, [X, Z1],[¥])

sol_sg{X,Y) « sol_sg(Z1, 22), cont(2-2,[21, 22, [X, Y]}, flat(Z2, 23), sg(Z3, Z4), down(Z4,Y).

The first rule gives another CP rule derived from (2). Similarly, we apply step 2 to the second rule,

until the termination condition is satisfied.

A2: Comparison with AT and Supplementary M'T

As mentionsd in 2.2.1, we can modify our rule transformation algorithm into the one which does not
transform database predicates in the body of each rule in P. The following is such an example corre-

sponcing to Example 2.1,

solasgl XY — callosg{ XY, Mlati XY [23)

call_sg(Z1, 22}, cont(2-2,[Z1, Z2),[X,¥]) «- callsg{X,Y), up(N, Z1) (24)
call_sg{ Z3. 24), cont(2-4. |25, Z4), [N Y]} — solsg(Z1, 22}, cont(2-2,[Z], 22],[X,Y]), flat(22, Z3)
(25)

sol.sg(X Y} — sol.sg(Z23, Z4), cont(2-4,[Z3, 24], [X, Y]), down(24,Y)
(26)

13

Supplementary Magic Templates (or Generalized Supplementary Magic Sets) produces the following
rulss by the rewriting algorithm, when it is applied to the same generation problem (we zzsume also the

total sip here). The following rules are borrowed from [3].

magic.sgla, Y. % We assume that a query «— sg(a,Y) is given {27)
supmagici (X, ¥,Z1,22) — magic_sg(X,Y), up(X,Z1) % from rule (2) (25)
supmagic(X, Y, 71,22) - supmagici(X,Y, Z1, Z2), sg(Z1, Z2) % from rule {2) (20}
supmagici(X,Y, 22, Z3) — supmagici(X,Y, Z1,72), flot(72, 23) % from rule (2) (30)

sg(X,Y) — magic.sg(X, Y}, flat(X,¥) % Modified rule (1 (31)
sy(X,Y) — supmagici(X,¥, 72, 23),su(23, Z4),doun{Z4,Y} % Modified rule {2}

(42)

magie_sg(Z1, 22) — supmagicy(X. Y, Z1,22) % from rule (2), 2nd body literal (33)
magic.sg{Z3, Z4) — supmagici(X,Y,Z2, 23) % from rule (2), 4th bady literal (34)

The seed (27) corresponds to the initial call-atom call_sg(a, ¥) in AT. Each magic_sg | supmagic) in
the above corresponds to call sy (a cont-atom) in AT, respectively. Suppose that rule (28) generates an
atom supmagici(X,Y, Z1, Z2). Then, it would fire rule (33), which produces an atom magic_sg(21, Z2).
These two rules in Supplementary MT can merged into one CF rule (24) in AT. Similarly, rules (29,
(30) and (34} can merged into a CP rule {25).

A3: Example 2.3

The computation process of the naive evaluation of CPRs(F,; U D,,), together with initial call-atom

call_sg(a,¥)) is shown in Figure 1. AL cach iteration step, only newly generated atoms are depicted.

Ad: Example 3.1

The computation process of the SLD-AL procedure for «— sg{a, Y} with respect to (P, I,g) is shown
in Figure 2.

14

call_sofa,Y) .

(1 ~._(9)
S; eall_flat{a,Y},cont{1-1,[a.¥].[]} H_:11l_up-{a.!l].:unt{i-l,[a,!i],['r]j
| — -
5; so0l _fiat{a,a) sal_upfa,d} Hn‘sul_up[me_]
{E-JI»cunt{l-‘l,[a..T],[]} {1?,+com{z—1,[a.21].[m {lﬂjT:ontIZ-l.[ai11],[‘!‘]]
%3 sol_sg(a,a) call_sgid, Z2),cont{2-2,[d,22].[a.Y]} call_sg(e,22),cont(2-2,[e.22].[2.7Y]]
(7 [{9} A7 (9]
5. call_fiet{d.Z2), call_up(d.il'], call_flatf{e.l2), call_up(e,Z1"}),
cont{1-1,[d.Z2].[]} coat{Z-1,[4,71"],22) |cunt[1—1.[e.zz].[]} cont{2-1,{e,21'],22}
5; sol flat{d,d) sol_flat{e,e)
(8)tcont(1-1,[d,22],[]) X {BJTcuntti-l.[a-R]-E]l bt
S¢ sol_sgid,d) sol_sg{e,e)
{11)+cont{2-2.[d.22].[2.¥]) (111+lcnnt{z-z.[u.i:z].[a.r]J
57 {calt_flat{d,Z3)}.cont(2-3,[d, 73], [a.Y]) {eall_flat(e.23)}.cont{2-3.[e.L3].[a.Y]}
{12) + so01_flat(d.d} (1Z2)#s01_flat{e, e}
S5g {call_sg{d.Z4)}.cont{2-4,[d.214].[a.¥]) {cali_sgfe,Z4)},cont(2-4,[e.I8].[a.¥])
{13} + so0l_sgid.d) (lﬂi-isu'l_sg{e.el
S5 call_down{d,Y),cont(2-5,[d.¥].[a]} call_down(e,¥Y), cont(2-5,[e,¥].[a])
*
Sy p 0] _down(d,a) ‘ sol_down(d,b) sol_down(e,a) sol_down(e, c)
(14)+cont(2-5,[d.Y].[2]) (14)+cont(2-5,[d,Y],[a]) [14-_}1]~cunt{2-5.[e.\"].[ﬂ]} {1417--
5., {sol_sg({a,a}} sol_sg{a,b) {s0)_sg{a.a)} sol_sg(a,c)

Figure 1. Naive Evaluation of CPRs(F,, U D,,) for seed call_sgia, ¥))

Ia

Ta — sg(a.¥)
Yema 1
—flat{a.¥).[sg(a.¥)] +upl{a,Zi).so{I1,72),71a%(72,73),50(73,74) down(Z4,Y},[sa(a, ¥Y}]

=T
Yea 71e=d Tl

Ty +[flat{a,2)].[s9(2,2}] —f{up(a,d)], +{I1/d} “efupla,e)], M{i1/e)
"'\—-._‘_‘___-_

Ts +[sgla,a)] «sg(d.22).T1at(72,23),50(73,24),down(24,Y),[sala,¥}] <sg(e.I2).T;
-

f,/-"". H\‘-. =1 o

To —flat(d,22),[59(¢,22) J.T) —up(d.21').....Fre-flat(e 22).[5g(e.22)]. [y «tple.71°),....Ty
|

! \ 1 \

Ta «[flat(d.d)].[sg(d.d}],Io{Z2/d} ¥ «iflat(e.e}].[sg(e.e)]."~(Z2/e)} ‘n:

Te <«Isg(d.d}].I'i={Z2/d} ~{sg{e.e)].T1={Z2/e}

Ty +flat{d,Z3),50(73,74) down{I4 Y}, [safa | +—flat{e,13),I's

not admuissible =Ty nof admissible
Ts +sg(d.Id).down(Z4.Y).[sg(a.¥)
not admissible) *—5?{:;!1:;;5::'::{:-4 M Lea(e1]
|
Ts Pdﬂﬁ:}M{a.'r}] c—duwn!fi}.[sg{a.‘fjj

Tio +{down(d.a)].[59(s.8)] [down(d.b)].[sg(a.b)] {down(e.a)].[s9(a,3)] +[down(e.c)],[s9(se)]

/

Ty =+{sg(a.a)] ~[sg{a.b)] +[sg(a,a}] «—|sgla.e)]

Figure 2; The SI.T-AT, procedure for — .fr:rl.-[nl VJ

16

